zzyzx0's picture
Complete Deep RL Course Unit 1
c4f1abf
{
"policy_class": {
":type:": "<class 'abc.ABCMeta'>",
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
"__module__": "stable_baselines3.common.policies",
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f80c9274710>",
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f80c92747a0>",
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f80c9274830>",
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f80c92748c0>",
"_build": "<function ActorCriticPolicy._build at 0x7f80c9274950>",
"forward": "<function ActorCriticPolicy.forward at 0x7f80c92749e0>",
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f80c9274a70>",
"_predict": "<function ActorCriticPolicy._predict at 0x7f80c9274b00>",
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f80c9274b90>",
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f80c9274c20>",
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f80c9274cb0>",
"__abstractmethods__": "frozenset()",
"_abc_impl": "<_abc_data object at 0x7f80c92ca2d0>"
},
"verbose": 1,
"policy_kwargs": {},
"observation_space": {
":type:": "<class 'gym.spaces.box.Box'>",
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
"dtype": "float32",
"_shape": [
8
],
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
"high": "[inf inf inf inf inf inf inf inf]",
"bounded_below": "[False False False False False False False False]",
"bounded_above": "[False False False False False False False False]",
"_np_random": null
},
"action_space": {
":type:": "<class 'gym.spaces.discrete.Discrete'>",
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
"n": 4,
"_shape": [],
"dtype": "int64",
"_np_random": null
},
"n_envs": 16,
"num_timesteps": 507904,
"_total_timesteps": 500000,
"_num_timesteps_at_start": 0,
"seed": null,
"action_noise": null,
"start_time": 1652063193.437524,
"learning_rate": 0.0003,
"tensorboard_log": null,
"lr_schedule": {
":type:": "<class 'function'>",
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
},
"_last_obs": {
":type:": "<class 'numpy.ndarray'>",
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAIANTL1Io4+6pg9VO7xbcjQhkLK6M6h1ugAAgD8AAIA/M1JiPcPlc7oO0dY8a47CuBrN9zp4srK3AACAPwAAgD+aEd67FICKuksvjzmzm680n7F8Oh/YorgAAIA/AACAP02YV724+c48mgC6vNUlT70dhs68LvoDPQAAAAAAAAAAmgvJvT34drujdHS8q3WcPM36p7y6f4U9AACAPwAAgD/N/T09UrC6ua0ewbx+dP67cq+6OqIPmzwAAAAAAAAAABp5OT2EzZg/8rFFPMG52L4jqNA9veLNOwAAAAAAAAAAeqZEPgGgyrw+TQc5QuN2PHaQO77G6cQ8AAAAAAAAAABNATm9KaxPur6f9LiWDki0PHuCOyOWDjgAAIA/AACAP3Oyyz2FC8G5sg6+ucu467XQ4Jy7FdDjOAAAgD8AAIA/gP1NvvcbQj6FGPc9p/s0vhj8t7zLtfw8AAAAAAAAAAAAwKG8w5kUulJtHztmY201jKcHuuAwNboAAIA/AACAP00KRb2PJne6VNo7uevyljNP34u77u1WOAAAgD8AAIA/YLEoPkQJKT9usSC9xMksvuL7hj0GwLe9AAAAAAAAAADA85o9w6lYuvh+Wrw6QIg8SqmQu2u1bT0AAIA/AACAP2Z60z32jB+62nODOFaFwTOuC2I7xTeXtwAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
},
"_last_episode_starts": {
":type:": "<class 'numpy.ndarray'>",
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
},
"_last_original_obs": null,
"_episode_num": 0,
"use_sde": false,
"sde_sample_freq": -1,
"_current_progress_remaining": -0.015808000000000044,
"ep_info_buffer": {
":type:": "<class 'collections.deque'>",
":serialized:": "gAWVfhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIsTGvIw7fWkCUhpRSlIwBbJRN6AOMAXSUR0CMrT0eU6gedX2UKGgGaAloD0MIgJpattYzX0CUhpRSlGgVTegDaBZHQIy5SYw7DEZ1fZQoaAZoCWgPQwjSbYlc8BxgQJSGlFKUaBVN6ANoFkdAjMoRYzSCv3V9lChoBmgJaA9DCOP/jqhQPVtAlIaUUpRoFU3oA2gWR0CM2XyAhB7edX2UKGgGaAloD0MIGeWZl8M2XUCUhpRSlGgVTegDaBZHQIzmcMCtA9p1fZQoaAZoCWgPQwjarPpcbTlLwJSGlFKUaBVNEgFoFkdAjO0f0VafSXV9lChoBmgJaA9DCCbfbHPjAWRAlIaUUpRoFU3oA2gWR0CM8U/cFhXsdX2UKGgGaAloD0MIsn+eBgz8U0CUhpRSlGgVTegDaBZHQIzy6vFFUhp1fZQoaAZoCWgPQwg4ns+AerP9v5SGlFKUaBVL82gWR0CNFoERradudX2UKGgGaAloD0MIINJvX4f6YUCUhpRSlGgVTegDaBZHQI0WrdadMCd1fZQoaAZoCWgPQwgJw4Al1xpjQJSGlFKUaBVN6ANoFkdAjSOJ+c6Nl3V9lChoBmgJaA9DCP3BwHNvwWBAlIaUUpRoFU3oA2gWR0CNNevcrRShdX2UKGgGaAloD0MIcQSpFDtqW0CUhpRSlGgVTegDaBZHQI03i/wiJO51fZQoaAZoCWgPQwjG/NzQlMVhQJSGlFKUaBVN6ANoFkdAjXmmf5DZ13V9lChoBmgJaA9DCABTBg5oV1pAlIaUUpRoFU3oA2gWR0CNhrskY4yXdX2UKGgGaAloD0MIda29T9WGYUCUhpRSlGgVTegDaBZHQI2kQSJ0nw51fZQoaAZoCWgPQwirz9VWbERkQJSGlFKUaBVN6ANoFkdAjaV+C04R3HV9lChoBmgJaA9DCCGSIcdWcWBAlIaUUpRoFU3oA2gWR0CNpbI1cdHUdX2UKGgGaAloD0MIyvli78WeW0CUhpRSlGgVTegDaBZHQI2ulR3u/lB1fZQoaAZoCWgPQwilgoqqX9ViQJSGlFKUaBVN6ANoFkdAjc/Fiz9jw3V9lChoBmgJaA9DCBFUjV4NiV1AlIaUUpRoFU3oA2gWR0CN4sd/axoqdX2UKGgGaAloD0MI3XpNDwo0XECUhpRSlGgVTegDaBZHQI33nlr/Khd1fZQoaAZoCWgPQwiRmnYxzZ9bQJSGlFKUaBVN6ANoFkdAjfw+RYA80XV9lChoBmgJaA9DCAYOaOkKVFlAlIaUUpRoFU3oA2gWR0CN/dBwdbPhdX2UKGgGaAloD0MIp0HRPIDkXECUhpRSlGgVTegDaBZHQI4gsbtJFsp1fZQoaAZoCWgPQwgFxY8xd9BgQJSGlFKUaBVN6ANoFkdAjiDfO2RaHXV9lChoBmgJaA9DCIS9iSE5Tl9AlIaUUpRoFU3oA2gWR0COLH9Tgl4UdX2UKGgGaAloD0MIdQZGXtaQV0CUhpRSlGgVTegDaBZHQI49KWNWEK51fZQoaAZoCWgPQwiqglFJnRFcQJSGlFKUaBVN6ANoFkdAjj6QzLwF1XV9lChoBmgJaA9DCCidSDDVhFhAlIaUUpRoFU3oA2gWR0COQRkrf+CLdX2UKGgGaAloD0MIF/NzQ9OCY0CUhpRSlGgVTegDaBZHQI6Pl7KJVKh1fZQoaAZoCWgPQwhYc4BgDohhQJSGlFKUaBVN6ANoFkdAjq0fms/6f3V9lChoBmgJaA9DCOaRPxh4RV5AlIaUUpRoFU3oA2gWR0COrmza9K28dX2UKGgGaAloD0MIK/aX3ZN6YECUhpRSlGgVTegDaBZHQI6uqIDYAbR1fZQoaAZoCWgPQwizeLEwRKpVQJSGlFKUaBVN6ANoFkdAjrc3YDklu3V9lChoBmgJaA9DCAHbwYh9ljhAlIaUUpRoFU1FAWgWR0COu00zj3mFdX2UKGgGaAloD0MIrn/XZ878R0CUhpRSlGgVTT8BaBZHQI67jB0p3HJ1fZQoaAZoCWgPQwjUYBqGj9dYQJSGlFKUaBVN6ANoFkdAjtPTT4L1EnV9lChoBmgJaA9DCEJ6ihwiqVdAlIaUUpRoFU3oA2gWR0CO4wOQQtjDdX2UKGgGaAloD0MIT135LM8zOECUhpRSlGgVS+poFkdAjuVdDx9XtHV9lChoBmgJaA9DCA3+fjHbB2BAlIaUUpRoFU3oA2gWR0CO9tjMFEApdX2UKGgGaAloD0MIs++K4P+kYUCUhpRSlGgVTegDaBZHQI77SSaEzwd1fZQoaAZoCWgPQwgDfLd546VfQJSGlFKUaBVN6ANoFkdAjvzJNTLntHV9lChoBmgJaA9DCL6lnC/2PihAlIaUUpRoFU0OAWgWR0CPF0a1kUbldX2UKGgGaAloD0MI1J6Sc2IcVUCUhpRSlGgVTegDaBZHQI8eyKBNEgJ1fZQoaAZoCWgPQwgT1sbYCXdYQJSGlFKUaBVN6ANoFkdAjx73sHB1tHV9lChoBmgJaA9DCETf3coSy15AlIaUUpRoFU3oA2gWR0CPKoL61stTdX2UKGgGaAloD0MIaFw4EJLsYUCUhpRSlGgVTegDaBZHQI8/D9ycTal1fZQoaAZoCWgPQwiQT8jO27NbQJSGlFKUaBVN6ANoFkdAj46ac7Qsw3V9lChoBmgJaA9DCKs+V1ux711AlIaUUpRoFU3oA2gWR0CPrTOuaF23dX2UKGgGaAloD0MIPC0/cBXuYUCUhpRSlGgVTegDaBZHQI+uekFfReF1fZQoaAZoCWgPQwiIZMix9fpVQJSGlFKUaBVN6ANoFkdAj66tnoPkJnV9lChoBmgJaA9DCMUB9Pv+N2VAlIaUUpRoFU3oA2gWR0CPt2RSP2f1dX2UKGgGaAloD0MIxHdi1otbV0CUhpRSlGgVTegDaBZHQI+7v6Mzdk91fZQoaAZoCWgPQwjjUpW2uC1aQJSGlFKUaBVN6ANoFkdAj9TIuGsV+XV9lChoBmgJaA9DCHnL1Y/NmGBAlIaUUpRoFU3oA2gWR0CP541Gb1AadX2UKGgGaAloD0MIsU8AxUheYECUhpRSlGgVTegDaBZHQI/6f4TK1Xx1fZQoaAZoCWgPQwjQfTmzXahgQJSGlFKUaBVN6ANoFkdAj/8JrLyMDXV9lChoBmgJaA9DCPLuyFhthWFAlIaUUpRoFU3oA2gWR0CQAFczqKP5dX2UKGgGaAloD0MIWvYksLkIYUCUhpRSlGgVTegDaBZHQJAOyzVtoBd1fZQoaAZoCWgPQwgpz7wcdpJbQJSGlFKUaBVN6ANoFkdAkBLMFUyYX3V9lChoBmgJaA9DCHhDGhU4ZFdAlIaUUpRoFU3oA2gWR0CQEuSx7iQ1dX2UKGgGaAloD0MInUtxVdl/W0CUhpRSlGgVTegDaBZHQJAYxLEk0Jp1fZQoaAZoCWgPQwhOC170lXdlQJSGlFKUaBVN6ANoFkdAkCNZvo/zKHV9lChoBmgJaA9DCLk2VIzzBWFAlIaUUpRoFU3oA2gWR0CQSa00m+j/dX2UKGgGaAloD0MIlUbM7PMIXUCUhpRSlGgVTegDaBZHQJBY0H7gsK91fZQoaAZoCWgPQwiYMQVrnJ1cQJSGlFKUaBVN6ANoFkdAkFl5wS8J2XV9lChoBmgJaA9DCNKL2v2qX2BAlIaUUpRoFU3oA2gWR0CQWZuTibUgdX2UKGgGaAloD0MItOVciqt1ZECUhpRSlGgVTegDaBZHQJBeNVCHARF1fZQoaAZoCWgPQwhf61Ij9GtkQJSGlFKUaBVN6ANoFkdAkGB3gpBomHV9lChoBmgJaA9DCNkG7kCdGE1AlIaUUpRoFU0GAWgWR0CQYr2HtWuHdX2UKGgGaAloD0MIdY9srpokWUCUhpRSlGgVTegDaBZHQJBsjgKnei11fZQoaAZoCWgPQwhuF5rrtDZkQJSGlFKUaBVN6ANoFkdAkHTgi/wiJXV9lChoBmgJaA9DCDo7GRwlkzJAlIaUUpRoFU0VAWgWR0CQdplBhQWOdX2UKGgGaAloD0MI4/viUpXsW0CUhpRSlGgVTegDaBZHQJB87Kkl/pd1fZQoaAZoCWgPQwgA/5QqUehWQJSGlFKUaBVN6ANoFkdAkH8JowmE5HV9lChoBmgJaA9DCKxwy0dSf15AlIaUUpRoFU3oA2gWR0CQf7t4RmK7dX2UKGgGaAloD0MI5QrvchFVWkCUhpRSlGgVTegDaBZHQJCLmmLtNSJ1fZQoaAZoCWgPQwhQpzy6EThIQJSGlFKUaBVNFAFoFkdAkI0tVFQVK3V9lChoBmgJaA9DCB6HwfwVDV1AlIaUUpRoFU3oA2gWR0CQjtjsUqQSdX2UKGgGaAloD0MIdQRws3jgX0CUhpRSlGgVTegDaBZHQJCO8Gnn+yZ1fZQoaAZoCWgPQwiQMXctofhgQJSGlFKUaBVN6ANoFkdAkJPGTTvy9XV9lChoBmgJaA9DCDFAogkUG2NAlIaUUpRoFU3oA2gWR0CQnQ0E5hjOdX2UKGgGaAloD0MIS1tc4zMHSUCUhpRSlGgVS9toFkdAkKISRB/qgXV9lChoBmgJaA9DCCTvHMrQW2BAlIaUUpRoFU3oA2gWR0CQ0nBzFMqSdX2UKGgGaAloD0MI5e5zfLS7XECUhpRSlGgVTegDaBZHQJDTDW6K+BZ1fZQoaAZoCWgPQwhIwOjy5ppjQJSGlFKUaBVN6ANoFkdAkNMnX/YJ3XV9lChoBmgJaA9DCDAt6pNckWFAlIaUUpRoFU3oA2gWR0CQ2fyfcvdudX2UKGgGaAloD0MIUYL+Qg9aYUCUhpRSlGgVTegDaBZHQJDcYr9VFQV1fZQoaAZoCWgPQwjYg0nx8URiQJSGlFKUaBVN6ANoFkdAkOZJ1vES/XV9lChoBmgJaA9DCM8Tz9kCAWJAlIaUUpRoFU3oA2gWR0CQ8JQ7LdN4dX2UKGgGaAloD0MI0GIpki99YkCUhpRSlGgVTegDaBZHQJD3aV6eGwl1fZQoaAZoCWgPQwiNDd3sD3liQJSGlFKUaBVN6ANoFkdAkPmH8CPp6nV9lChoBmgJaA9DCBb6YBkbqmNAlIaUUpRoFU3oA2gWR0CQ+kjdHlOodX2UKGgGaAloD0MIOfBqubNwYECUhpRSlGgVTegDaBZHQJEHq2iL2pR1fZQoaAZoCWgPQwjAQBAgQ4ddQJSGlFKUaBVN6ANoFkdAkQlsV+I/JXV9lChoBmgJaA9DCMVU+gnne2VAlIaUUpRoFU3oA2gWR0CRCzGZuyeJdX2UKGgGaAloD0MI0Amhgy7NYkCUhpRSlGgVTegDaBZHQJEQv04BFNN1fZQoaAZoCWgPQwh+i06WWmleQJSGlFKUaBVN6ANoFkdAkRqGHk92YHV9lChoBmgJaA9DCLeadcZ3CmBAlIaUUpRoFU3oA2gWR0CRH8UypJf6dWUu"
},
"ep_success_buffer": {
":type:": "<class 'collections.deque'>",
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
},
"_n_updates": 124,
"n_steps": 1024,
"gamma": 0.999,
"gae_lambda": 0.98,
"ent_coef": 0.01,
"vf_coef": 0.5,
"max_grad_norm": 0.5,
"batch_size": 64,
"n_epochs": 4,
"clip_range": {
":type:": "<class 'function'>",
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
},
"clip_range_vf": null,
"normalize_advantage": true,
"target_kl": null
}