zwt123home123 commited on
Commit
a38e92e
·
verified ·
1 Parent(s): bf01b47

Upload folder using huggingface_hub

Browse files
.gitattributes CHANGED
@@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ examples/red-panda.mp4 filter=lfs diff=lfs merge=lfs -text
37
+ examples/image2.jpg filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,677 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ pipeline_tag: image-text-to-text
4
+ library_name: transformers
5
+ base_model:
6
+ - OpenGVLab/InternViT-300M-448px-V2_5
7
+ - internlm/internlm2_5-7b-chat
8
+ base_model_relation: merge
9
+ language:
10
+ - multilingual
11
+ tags:
12
+ - internvl
13
+ - custom_code
14
+ datasets:
15
+ - HuggingFaceFV/finevideo
16
+ ---
17
+
18
+ # InternVL2_5-8B
19
+
20
+ [\[📂 GitHub\]](https://github.com/OpenGVLab/InternVL) [\[📜 InternVL 1.0\]](https://huggingface.co/papers/2312.14238) [\[📜 InternVL 1.5\]](https://huggingface.co/papers/2404.16821) [\[📜 Mini-InternVL\]](https://arxiv.org/abs/2410.16261) [\[📜 InternVL 2.5\]](https://huggingface.co/papers/2412.05271)
21
+
22
+ [\[🆕 Blog\]](https://internvl.github.io/blog/) [\[🗨️ Chat Demo\]](https://internvl.opengvlab.com/) [\[🤗 HF Demo\]](https://huggingface.co/spaces/OpenGVLab/InternVL) [\[🚀 Quick Start\]](#quick-start) [\[📖 Documents\]](https://internvl.readthedocs.io/en/latest/)
23
+
24
+ <div align="center">
25
+ <img width="500" alt="image" src="https://cdn-uploads.huggingface.co/production/uploads/64006c09330a45b03605bba3/zJsd2hqd3EevgXo6fNgC-.png">
26
+ </div>
27
+
28
+ ## Introduction
29
+
30
+ We are excited to introduce **InternVL 2.5**, an advanced multimodal large language model (MLLM) series that builds upon InternVL 2.0, maintaining its core model architecture while introducing significant enhancements in training and testing strategies as well as data quality.
31
+
32
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64119264f0f81eb569e0d569/5HDAGOQOZvS1EtI107Ac-.png)
33
+
34
+ ## InternVL 2.5 Family
35
+
36
+ In the following table, we provide an overview of the InternVL 2.5 series.
37
+
38
+ | Model Name | Vision Part | Language Part | HF Link |
39
+ | :-------------: | :-------------------------------------------------------------------------------------: | :----------------------------------------------------------------------------: | :---------------------------------------------------------: |
40
+ | InternVL2_5-1B | [InternViT-300M-448px-V2_5](https://huggingface.co/OpenGVLab/InternViT-300M-448px-V2_5) | [Qwen2.5-0.5B-Instruct](https://huggingface.co/Qwen/Qwen2.5-0.5B-Instruct) | [🤗 link](https://huggingface.co/OpenGVLab/InternVL2_5-1B) |
41
+ | InternVL2_5-2B | [InternViT-300M-448px-V2_5](https://huggingface.co/OpenGVLab/InternViT-300M-448px-V2_5) | [internlm2_5-1_8b-chat](https://huggingface.co/internlm/internlm2_5-1_8b-chat) | [🤗 link](https://huggingface.co/OpenGVLab/InternVL2_5-2B) |
42
+ | InternVL2_5-4B | [InternViT-300M-448px-V2_5](https://huggingface.co/OpenGVLab/InternViT-300M-448px-V2_5) | [Qwen2.5-3B-Instruct](https://huggingface.co/Qwen/Qwen2.5-3B-Instruct) | [🤗 link](https://huggingface.co/OpenGVLab/InternVL2_5-4B) |
43
+ | InternVL2_5-8B | [InternViT-300M-448px-V2_5](https://huggingface.co/OpenGVLab/InternViT-300M-448px-V2_5) | [internlm2_5-7b-chat](https://huggingface.co/internlm/internlm2_5-7b-chat) | [🤗 link](https://huggingface.co/OpenGVLab/InternVL2_5-8B) |
44
+ | InternVL2_5-26B | [InternViT-6B-448px-V2_5](https://huggingface.co/OpenGVLab/InternViT-6B-448px-V2_5) | [internlm2_5-20b-chat](https://huggingface.co/internlm/internlm2_5-20b-chat) | [🤗 link](https://huggingface.co/OpenGVLab/InternVL2_5-26B) |
45
+ | InternVL2_5-38B | [InternViT-6B-448px-V2_5](https://huggingface.co/OpenGVLab/InternViT-6B-448px-V2_5) | [Qwen2.5-32B-Instruct](https://huggingface.co/Qwen/Qwen2.5-32B-Instruct) | [🤗 link](https://huggingface.co/OpenGVLab/InternVL2_5-38B) |
46
+ | InternVL2_5-78B | [InternViT-6B-448px-V2_5](https://huggingface.co/OpenGVLab/InternViT-6B-448px-V2_5) | [Qwen2.5-72B-Instruct](https://huggingface.co/Qwen/Qwen2.5-72B-Instruct) | [🤗 link](https://huggingface.co/OpenGVLab/InternVL2_5-78B) |
47
+
48
+ ## Model Architecture
49
+
50
+ As shown in the following figure, InternVL 2.5 retains the same model architecture as its predecessors, InternVL 1.5 and 2.0, following the "ViT-MLP-LLM" paradigm. In this new version, we integrate a newly incrementally pre-trained InternViT with various pre-trained LLMs, including InternLM 2.5 and Qwen 2.5, using a randomly initialized MLP projector.
51
+
52
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64119264f0f81eb569e0d569/BiiyXN6NOk0p-3rl3ueyL.png)
53
+
54
+ As in the previous version, we applied a pixel unshuffle operation, reducing the number of visual tokens to one-quarter of the original. Besides, we adopted a similar dynamic resolution strategy as InternVL 1.5, dividing images into tiles of 448×448 pixels. The key difference, starting from InternVL 2.0, is that we additionally introduced support for multi-image and video data.
55
+
56
+ ## Training Strategy
57
+
58
+ ### Dynamic High-Resolution for Multimodal Data
59
+
60
+ In InternVL 2.0 and 2.5, we extend the dynamic high-resolution training approach, enhancing its capabilities to handle multi-image and video datasets.
61
+
62
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64119264f0f81eb569e0d569/xoMY6rwRrNxbAGYPNyU8g.png)
63
+
64
+ - For single-image datasets, the total number of tiles `n_max` are allocated to a single image for maximum resolution. Visual tokens are enclosed in `<img>` and `</img>` tags.
65
+
66
+ - For multi-image datasets, the total number of tiles `n_max` are distributed across all images in a sample. Each image is labeled with auxiliary tags like `Image-1` and enclosed in `<img>` and `</img>` tags.
67
+
68
+ - For videos, each frame is resized to 448×448. Frames are labeled with tags like `Frame-1` and enclosed in `<img>` and `</img>` tags, similar to images.
69
+
70
+ ### Single Model Training Pipeline
71
+
72
+ The training pipeline for a single model in InternVL 2.5 is structured across three stages, designed to enhance the model's visual perception and multimodal capabilities.
73
+
74
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64119264f0f81eb569e0d569/5NduZeCPLgPJTFr0RGTq3.png)
75
+
76
+ - **Stage 1: MLP Warmup.** In this stage, only the MLP projector is trained while the vision encoder and language model are frozen. A dynamic high-resolution training strategy is applied for better performance, despite increased cost. This phase ensures robust cross-modal alignment and prepares the model for stable multimodal training.
77
+
78
+ - **Stage 1.5: ViT Incremental Learning (Optional).** This stage allows incremental training of the vision encoder and MLP projector using the same data as Stage 1. It enhances the encoder’s ability to handle rare domains like multilingual OCR and mathematical charts. Once trained, the encoder can be reused across LLMs without retraining, making this stage optional unless new domains are introduced.
79
+
80
+ - **Stage 2: Full Model Instruction Tuning.** The entire model is trained on high-quality multimodal instruction datasets. Strict data quality controls are enforced to prevent degradation of the LLM, as noisy data can cause issues like repetitive or incorrect outputs. After this stage, the training process is complete.
81
+
82
+ ### Progressive Scaling Strategy
83
+
84
+ We introduce a progressive scaling strategy to align the vision encoder with LLMs efficiently. This approach trains with smaller LLMs first (e.g., 20B) to optimize foundational visual capabilities and cross-modal alignment before transferring the vision encoder to larger LLMs (e.g., 72B) without retraining. This reuse skips intermediate stages for larger models.
85
+
86
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64006c09330a45b03605bba3/UoNUyS7ctN5pBxNv9KnzH.png)
87
+
88
+ Compared to Qwen2-VL's 1.4 trillion tokens, InternVL2.5-78B uses only 120 billion tokens—less than one-tenth. This strategy minimizes redundancy, maximizes pre-trained component reuse, and enables efficient training for complex vision-language tasks.
89
+
90
+ ### Training Enhancements
91
+
92
+ To improve real-world adaptability and performance, we introduce two key techniques:
93
+
94
+ - **Random JPEG Compression**: Random JPEG compression with quality levels between 75 and 100 is applied as a data augmentation technique. This simulates image degradation from internet sources, enhancing the model's robustness to noisy images.
95
+
96
+ - **Loss Reweighting**: To balance the NTP loss across responses of different lengths, we use a reweighting strategy called **square averaging**. This method balances contributions from responses of varying lengths, mitigating biases toward longer or shorter responses.
97
+
98
+ ### Data Organization
99
+
100
+ #### Dataset Configuration
101
+
102
+ In InternVL 2.0 and 2.5, the organization of the training data is controlled by several key parameters to optimize the balance and distribution of datasets during training.
103
+
104
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64119264f0f81eb569e0d569/2LJe24b1ua3gjI9gDitVl.png)
105
+
106
+ - **Data Augmentation:** JPEG compression is applied conditionally: enabled for image datasets to enhance robustness and disabled for video datasets to maintain consistent frame quality.
107
+
108
+ - **Maximum Tile Number:** The parameter `n_max` controls the maximum tiles per dataset. For example, higher values (24–36) are used for multi-image or high-resolution data, lower values (6–12) for standard images, and 1 for videos.
109
+
110
+ - **Repeat Factor:** The repeat factor `r` adjusts dataset sampling frequency. Values below 1 reduce a dataset's weight, while values above 1 increase it. This ensures balanced training across tasks and prevents overfitting or underfitting.
111
+
112
+ #### Data Filtering Pipeline
113
+
114
+ During development, we found that LLMs are highly sensitive to data noise, with even small anomalies—like outliers or repetitive data—causing abnormal behavior during inference. Repetitive generation, especially in long-form or CoT reasoning tasks, proved particularly harmful.
115
+
116
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64119264f0f81eb569e0d569/aka8ZRiKF3ajdyZBnNFZI.png)
117
+
118
+ To address this challenge and support future research, we designed an efficient data filtering pipeline to remove low-quality samples.
119
+
120
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64119264f0f81eb569e0d569/70l1UxnX-Arn0NoOGwpth.png)
121
+
122
+ The pipeline includes two modules, for **pure-text data**, three key strategies are used:
123
+
124
+ 1. **LLM-Based Quality Scoring**: Each sample is scored (0–10) using a pre-trained LLM with domain-specific prompts. Samples scoring below a threshold (e.g., 7) are removed to ensure high-quality data.
125
+ 2. **Repetition Detection**: Repetitive samples are flagged using LLM-based prompts and manually reviewed. Samples scoring below a stricter threshold (e.g., 3) are excluded to avoid repetitive patterns.
126
+ 3. **Heuristic Rule-Based Filtering**: Anomalies like abnormal sentence lengths or duplicate lines are detected using rules. Flagged samples undergo manual verification to ensure accuracy before removal.
127
+
128
+ For **multimodal data**, two strategies are used:
129
+
130
+ 1. **Repetition Detection**: Repetitive samples in non-academic datasets are flagged and manually reviewed to prevent pattern loops. High-quality datasets are exempt from this process.
131
+ 2. **Heuristic Rule-Based Filtering**: Similar rules are applied to detect visual anomalies, with flagged data verified manually to maintain integrity.
132
+
133
+ #### Training Data
134
+
135
+ As shown in the following figure, from InternVL 1.5 to 2.0 and then to 2.5, the fine-tuning data mixture has undergone iterative improvements in scale, quality, and diversity. For more information about the training data, please refer to our technical report.
136
+
137
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64119264f0f81eb569e0d569/GaTY9Lde02YzclASMthDa.png)
138
+
139
+ ## Evaluation on Multimodal Capability
140
+
141
+ ### Multimodal Reasoning and Mathematics
142
+
143
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64119264f0f81eb569e0d569/ihFWMRHbF0lpFTkLqnnj1.png)
144
+
145
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64119264f0f81eb569e0d569/Nrzq0kjlitjp_jrJCqtwX.png)
146
+
147
+ ### OCR, Chart, and Document Understanding
148
+
149
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64119264f0f81eb569e0d569/3yCMoLjlbsqY7ZJViGzih.png)
150
+
151
+ ### Multi-Image & Real-World Comprehension
152
+
153
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64119264f0f81eb569e0d569/DSnalmEyhDVQ9GE0GPCla.png)
154
+
155
+ ### Comprehensive Multimodal & Hallucination Evaluation
156
+
157
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64119264f0f81eb569e0d569/Z7Raj3TGDiV1H81pDHtoG.png)
158
+
159
+ ### Visual Grounding
160
+
161
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64119264f0f81eb569e0d569/lPcIrng8MPSg_PM1hpDPt.png)
162
+
163
+ ### Multimodal Multilingual Understanding
164
+
165
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64119264f0f81eb569e0d569/BPpbAOX36RV8RTnm3j-gs.png)
166
+
167
+ ### Video Understanding
168
+
169
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64006c09330a45b03605bba3/tcwH-i1qc8H16En-7AZ5M.png)
170
+
171
+ ## Evaluation on Language Capability
172
+
173
+ Training InternVL 2.0 models led to a decline in pure language capabilities. InternVL 2.5 addresses this by collecting more high-quality open-source data and filtering out low-quality data, achieving better preservation of pure language performance.
174
+
175
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64119264f0f81eb569e0d569/mxuSKvSY-kfI8zePpXj6y.png)
176
+
177
+ ## Quick Start
178
+
179
+ We provide an example code to run `InternVL2_5-8B` using `transformers`.
180
+
181
+ > Please use transformers>=4.37.2 to ensure the model works normally.
182
+
183
+ ### Model Loading
184
+
185
+ #### 16-bit (bf16 / fp16)
186
+
187
+ ```python
188
+ import torch
189
+ from transformers import AutoTokenizer, AutoModel
190
+ path = "OpenGVLab/InternVL2_5-8B"
191
+ model = AutoModel.from_pretrained(
192
+ path,
193
+ torch_dtype=torch.bfloat16,
194
+ low_cpu_mem_usage=True,
195
+ use_flash_attn=True,
196
+ trust_remote_code=True).eval().cuda()
197
+ ```
198
+
199
+ #### BNB 8-bit Quantization
200
+
201
+ ```python
202
+ import torch
203
+ from transformers import AutoTokenizer, AutoModel
204
+ path = "OpenGVLab/InternVL2_5-8B"
205
+ model = AutoModel.from_pretrained(
206
+ path,
207
+ torch_dtype=torch.bfloat16,
208
+ load_in_8bit=True,
209
+ low_cpu_mem_usage=True,
210
+ use_flash_attn=True,
211
+ trust_remote_code=True).eval()
212
+ ```
213
+
214
+ #### Multiple GPUs
215
+
216
+ The reason for writing the code this way is to avoid errors that occur during multi-GPU inference due to tensors not being on the same device. By ensuring that the first and last layers of the large language model (LLM) are on the same device, we prevent such errors.
217
+
218
+ ```python
219
+ import math
220
+ import torch
221
+ from transformers import AutoTokenizer, AutoModel
222
+
223
+ def split_model(model_name):
224
+ device_map = {}
225
+ world_size = torch.cuda.device_count()
226
+ num_layers = {
227
+ 'InternVL2_5-1B': 24, 'InternVL2_5-2B': 24, 'InternVL2_5-4B': 36, 'InternVL2_5-8B': 32,
228
+ 'InternVL2_5-26B': 48, 'InternVL2_5-38B': 64, 'InternVL2_5-78B': 80}[model_name]
229
+ # Since the first GPU will be used for ViT, treat it as half a GPU.
230
+ num_layers_per_gpu = math.ceil(num_layers / (world_size - 0.5))
231
+ num_layers_per_gpu = [num_layers_per_gpu] * world_size
232
+ num_layers_per_gpu[0] = math.ceil(num_layers_per_gpu[0] * 0.5)
233
+ layer_cnt = 0
234
+ for i, num_layer in enumerate(num_layers_per_gpu):
235
+ for j in range(num_layer):
236
+ device_map[f'language_model.model.layers.{layer_cnt}'] = i
237
+ layer_cnt += 1
238
+ device_map['vision_model'] = 0
239
+ device_map['mlp1'] = 0
240
+ device_map['language_model.model.tok_embeddings'] = 0
241
+ device_map['language_model.model.embed_tokens'] = 0
242
+ device_map['language_model.output'] = 0
243
+ device_map['language_model.model.norm'] = 0
244
+ device_map['language_model.model.rotary_emb'] = 0
245
+ device_map['language_model.lm_head'] = 0
246
+ device_map[f'language_model.model.layers.{num_layers - 1}'] = 0
247
+
248
+ return device_map
249
+
250
+ path = "OpenGVLab/InternVL2_5-8B"
251
+ device_map = split_model('InternVL2_5-8B')
252
+ model = AutoModel.from_pretrained(
253
+ path,
254
+ torch_dtype=torch.bfloat16,
255
+ low_cpu_mem_usage=True,
256
+ use_flash_attn=True,
257
+ trust_remote_code=True,
258
+ device_map=device_map).eval()
259
+ ```
260
+
261
+ ### Inference with Transformers
262
+
263
+ ```python
264
+ import numpy as np
265
+ import torch
266
+ import torchvision.transforms as T
267
+ from decord import VideoReader, cpu
268
+ from PIL import Image
269
+ from torchvision.transforms.functional import InterpolationMode
270
+ from transformers import AutoModel, AutoTokenizer
271
+
272
+ IMAGENET_MEAN = (0.485, 0.456, 0.406)
273
+ IMAGENET_STD = (0.229, 0.224, 0.225)
274
+
275
+ def build_transform(input_size):
276
+ MEAN, STD = IMAGENET_MEAN, IMAGENET_STD
277
+ transform = T.Compose([
278
+ T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),
279
+ T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC),
280
+ T.ToTensor(),
281
+ T.Normalize(mean=MEAN, std=STD)
282
+ ])
283
+ return transform
284
+
285
+ def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size):
286
+ best_ratio_diff = float('inf')
287
+ best_ratio = (1, 1)
288
+ area = width * height
289
+ for ratio in target_ratios:
290
+ target_aspect_ratio = ratio[0] / ratio[1]
291
+ ratio_diff = abs(aspect_ratio - target_aspect_ratio)
292
+ if ratio_diff < best_ratio_diff:
293
+ best_ratio_diff = ratio_diff
294
+ best_ratio = ratio
295
+ elif ratio_diff == best_ratio_diff:
296
+ if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:
297
+ best_ratio = ratio
298
+ return best_ratio
299
+
300
+ def dynamic_preprocess(image, min_num=1, max_num=12, image_size=448, use_thumbnail=False):
301
+ orig_width, orig_height = image.size
302
+ aspect_ratio = orig_width / orig_height
303
+
304
+ # calculate the existing image aspect ratio
305
+ target_ratios = set(
306
+ (i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if
307
+ i * j <= max_num and i * j >= min_num)
308
+ target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])
309
+
310
+ # find the closest aspect ratio to the target
311
+ target_aspect_ratio = find_closest_aspect_ratio(
312
+ aspect_ratio, target_ratios, orig_width, orig_height, image_size)
313
+
314
+ # calculate the target width and height
315
+ target_width = image_size * target_aspect_ratio[0]
316
+ target_height = image_size * target_aspect_ratio[1]
317
+ blocks = target_aspect_ratio[0] * target_aspect_ratio[1]
318
+
319
+ # resize the image
320
+ resized_img = image.resize((target_width, target_height))
321
+ processed_images = []
322
+ for i in range(blocks):
323
+ box = (
324
+ (i % (target_width // image_size)) * image_size,
325
+ (i // (target_width // image_size)) * image_size,
326
+ ((i % (target_width // image_size)) + 1) * image_size,
327
+ ((i // (target_width // image_size)) + 1) * image_size
328
+ )
329
+ # split the image
330
+ split_img = resized_img.crop(box)
331
+ processed_images.append(split_img)
332
+ assert len(processed_images) == blocks
333
+ if use_thumbnail and len(processed_images) != 1:
334
+ thumbnail_img = image.resize((image_size, image_size))
335
+ processed_images.append(thumbnail_img)
336
+ return processed_images
337
+
338
+ def load_image(image_file, input_size=448, max_num=12):
339
+ image = Image.open(image_file).convert('RGB')
340
+ transform = build_transform(input_size=input_size)
341
+ images = dynamic_preprocess(image, image_size=input_size, use_thumbnail=True, max_num=max_num)
342
+ pixel_values = [transform(image) for image in images]
343
+ pixel_values = torch.stack(pixel_values)
344
+ return pixel_values
345
+
346
+ # If you want to load a model using multiple GPUs, please refer to the `Multiple GPUs` section.
347
+ path = 'OpenGVLab/InternVL2_5-8B'
348
+ model = AutoModel.from_pretrained(
349
+ path,
350
+ torch_dtype=torch.bfloat16,
351
+ low_cpu_mem_usage=True,
352
+ use_flash_attn=True,
353
+ trust_remote_code=True).eval().cuda()
354
+ tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True, use_fast=False)
355
+
356
+ # set the max number of tiles in `max_num`
357
+ pixel_values = load_image('./examples/image1.jpg', max_num=12).to(torch.bfloat16).cuda()
358
+ generation_config = dict(max_new_tokens=1024, do_sample=True)
359
+
360
+ # pure-text conversation (纯文本对话)
361
+ question = 'Hello, who are you?'
362
+ response, history = model.chat(tokenizer, None, question, generation_config, history=None, return_history=True)
363
+ print(f'User: {question}\nAssistant: {response}')
364
+
365
+ question = 'Can you tell me a story?'
366
+ response, history = model.chat(tokenizer, None, question, generation_config, history=history, return_history=True)
367
+ print(f'User: {question}\nAssistant: {response}')
368
+
369
+ # single-image single-round conversation (单图单轮对话)
370
+ question = '<image>\nPlease describe the image shortly.'
371
+ response = model.chat(tokenizer, pixel_values, question, generation_config)
372
+ print(f'User: {question}\nAssistant: {response}')
373
+
374
+ # single-image multi-round conversation (单图多轮对话)
375
+ question = '<image>\nPlease describe the image in detail.'
376
+ response, history = model.chat(tokenizer, pixel_values, question, generation_config, history=None, return_history=True)
377
+ print(f'User: {question}\nAssistant: {response}')
378
+
379
+ question = 'Please write a poem according to the image.'
380
+ response, history = model.chat(tokenizer, pixel_values, question, generation_config, history=history, return_history=True)
381
+ print(f'User: {question}\nAssistant: {response}')
382
+
383
+ # multi-image multi-round conversation, combined images (多图多轮对话,拼接图像)
384
+ pixel_values1 = load_image('./examples/image1.jpg', max_num=12).to(torch.bfloat16).cuda()
385
+ pixel_values2 = load_image('./examples/image2.jpg', max_num=12).to(torch.bfloat16).cuda()
386
+ pixel_values = torch.cat((pixel_values1, pixel_values2), dim=0)
387
+
388
+ question = '<image>\nDescribe the two images in detail.'
389
+ response, history = model.chat(tokenizer, pixel_values, question, generation_config,
390
+ history=None, return_history=True)
391
+ print(f'User: {question}\nAssistant: {response}')
392
+
393
+ question = 'What are the similarities and differences between these two images.'
394
+ response, history = model.chat(tokenizer, pixel_values, question, generation_config,
395
+ history=history, return_history=True)
396
+ print(f'User: {question}\nAssistant: {response}')
397
+
398
+ # multi-image multi-round conversation, separate images (多图多轮对话,独立图像)
399
+ pixel_values1 = load_image('./examples/image1.jpg', max_num=12).to(torch.bfloat16).cuda()
400
+ pixel_values2 = load_image('./examples/image2.jpg', max_num=12).to(torch.bfloat16).cuda()
401
+ pixel_values = torch.cat((pixel_values1, pixel_values2), dim=0)
402
+ num_patches_list = [pixel_values1.size(0), pixel_values2.size(0)]
403
+
404
+ question = 'Image-1: <image>\nImage-2: <image>\nDescribe the two images in detail.'
405
+ response, history = model.chat(tokenizer, pixel_values, question, generation_config,
406
+ num_patches_list=num_patches_list,
407
+ history=None, return_history=True)
408
+ print(f'User: {question}\nAssistant: {response}')
409
+
410
+ question = 'What are the similarities and differences between these two images.'
411
+ response, history = model.chat(tokenizer, pixel_values, question, generation_config,
412
+ num_patches_list=num_patches_list,
413
+ history=history, return_history=True)
414
+ print(f'User: {question}\nAssistant: {response}')
415
+
416
+ # batch inference, single image per sample (单图批处理)
417
+ pixel_values1 = load_image('./examples/image1.jpg', max_num=12).to(torch.bfloat16).cuda()
418
+ pixel_values2 = load_image('./examples/image2.jpg', max_num=12).to(torch.bfloat16).cuda()
419
+ num_patches_list = [pixel_values1.size(0), pixel_values2.size(0)]
420
+ pixel_values = torch.cat((pixel_values1, pixel_values2), dim=0)
421
+
422
+ questions = ['<image>\nDescribe the image in detail.'] * len(num_patches_list)
423
+ responses = model.batch_chat(tokenizer, pixel_values,
424
+ num_patches_list=num_patches_list,
425
+ questions=questions,
426
+ generation_config=generation_config)
427
+ for question, response in zip(questions, responses):
428
+ print(f'User: {question}\nAssistant: {response}')
429
+
430
+ # video multi-round conversation (视频多轮对话)
431
+ def get_index(bound, fps, max_frame, first_idx=0, num_segments=32):
432
+ if bound:
433
+ start, end = bound[0], bound[1]
434
+ else:
435
+ start, end = -100000, 100000
436
+ start_idx = max(first_idx, round(start * fps))
437
+ end_idx = min(round(end * fps), max_frame)
438
+ seg_size = float(end_idx - start_idx) / num_segments
439
+ frame_indices = np.array([
440
+ int(start_idx + (seg_size / 2) + np.round(seg_size * idx))
441
+ for idx in range(num_segments)
442
+ ])
443
+ return frame_indices
444
+
445
+ def load_video(video_path, bound=None, input_size=448, max_num=1, num_segments=32):
446
+ vr = VideoReader(video_path, ctx=cpu(0), num_threads=1)
447
+ max_frame = len(vr) - 1
448
+ fps = float(vr.get_avg_fps())
449
+
450
+ pixel_values_list, num_patches_list = [], []
451
+ transform = build_transform(input_size=input_size)
452
+ frame_indices = get_index(bound, fps, max_frame, first_idx=0, num_segments=num_segments)
453
+ for frame_index in frame_indices:
454
+ img = Image.fromarray(vr[frame_index].asnumpy()).convert('RGB')
455
+ img = dynamic_preprocess(img, image_size=input_size, use_thumbnail=True, max_num=max_num)
456
+ pixel_values = [transform(tile) for tile in img]
457
+ pixel_values = torch.stack(pixel_values)
458
+ num_patches_list.append(pixel_values.shape[0])
459
+ pixel_values_list.append(pixel_values)
460
+ pixel_values = torch.cat(pixel_values_list)
461
+ return pixel_values, num_patches_list
462
+
463
+ video_path = './examples/red-panda.mp4'
464
+ pixel_values, num_patches_list = load_video(video_path, num_segments=8, max_num=1)
465
+ pixel_values = pixel_values.to(torch.bfloat16).cuda()
466
+ video_prefix = ''.join([f'Frame{i+1}: <image>\n' for i in range(len(num_patches_list))])
467
+ question = video_prefix + 'What is the red panda doing?'
468
+ # Frame1: <image>\nFrame2: <image>\n...\nFrame8: <image>\n{question}
469
+ response, history = model.chat(tokenizer, pixel_values, question, generation_config,
470
+ num_patches_list=num_patches_list, history=None, return_history=True)
471
+ print(f'User: {question}\nAssistant: {response}')
472
+
473
+ question = 'Describe this video in detail.'
474
+ response, history = model.chat(tokenizer, pixel_values, question, generation_config,
475
+ num_patches_list=num_patches_list, history=history, return_history=True)
476
+ print(f'User: {question}\nAssistant: {response}')
477
+ ```
478
+
479
+ #### Streaming Output
480
+
481
+ Besides this method, you can also use the following code to get streamed output.
482
+
483
+ ```python
484
+ from transformers import TextIteratorStreamer
485
+ from threading import Thread
486
+
487
+ # Initialize the streamer
488
+ streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True, timeout=10)
489
+ # Define the generation configuration
490
+ generation_config = dict(max_new_tokens=1024, do_sample=False, streamer=streamer)
491
+ # Start the model chat in a separate thread
492
+ thread = Thread(target=model.chat, kwargs=dict(
493
+ tokenizer=tokenizer, pixel_values=pixel_values, question=question,
494
+ history=None, return_history=False, generation_config=generation_config,
495
+ ))
496
+ thread.start()
497
+
498
+ # Initialize an empty string to store the generated text
499
+ generated_text = ''
500
+ # Loop through the streamer to get the new text as it is generated
501
+ for new_text in streamer:
502
+ if new_text == model.conv_template.sep:
503
+ break
504
+ generated_text += new_text
505
+ print(new_text, end='', flush=True) # Print each new chunk of generated text on the same line
506
+ ```
507
+
508
+ ## Finetune
509
+
510
+ Many repositories now support fine-tuning of the InternVL series models, including [InternVL](https://github.com/OpenGVLab/InternVL), [SWIFT](https://github.com/modelscope/ms-swift), [XTurner](https://github.com/InternLM/xtuner), and others. Please refer to their documentation for more details on fine-tuning.
511
+
512
+ ## Deployment
513
+
514
+ ### LMDeploy
515
+
516
+ LMDeploy is a toolkit for compressing, deploying, and serving LLMs & VLMs.
517
+
518
+ ```sh
519
+ pip install lmdeploy>=0.6.4
520
+ ```
521
+
522
+ LMDeploy abstracts the complex inference process of multi-modal Vision-Language Models (VLM) into an easy-to-use pipeline, similar to the Large Language Model (LLM) inference pipeline.
523
+
524
+ #### A 'Hello, world' Example
525
+
526
+ ```python
527
+ from lmdeploy import pipeline, TurbomindEngineConfig
528
+ from lmdeploy.vl import load_image
529
+
530
+ model = 'OpenGVLab/InternVL2_5-8B'
531
+ image = load_image('https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/tests/data/tiger.jpeg')
532
+ pipe = pipeline(model, backend_config=TurbomindEngineConfig(session_len=8192))
533
+ response = pipe(('describe this image', image))
534
+ print(response.text)
535
+ ```
536
+
537
+ If `ImportError` occurs while executing this case, please install the required dependency packages as prompted.
538
+
539
+ #### Multi-images Inference
540
+
541
+ When dealing with multiple images, you can put them all in one list. Keep in mind that multiple images will lead to a higher number of input tokens, and as a result, the size of the context window typically needs to be increased.
542
+
543
+ ```python
544
+ from lmdeploy import pipeline, TurbomindEngineConfig
545
+ from lmdeploy.vl import load_image
546
+ from lmdeploy.vl.constants import IMAGE_TOKEN
547
+
548
+ model = 'OpenGVLab/InternVL2_5-8B'
549
+ pipe = pipeline(model, backend_config=TurbomindEngineConfig(session_len=8192))
550
+
551
+ image_urls=[
552
+ 'https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/demo/resources/human-pose.jpg',
553
+ 'https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/demo/resources/det.jpg'
554
+ ]
555
+
556
+ images = [load_image(img_url) for img_url in image_urls]
557
+ # Numbering images improves multi-image conversations
558
+ response = pipe((f'Image-1: {IMAGE_TOKEN}\nImage-2: {IMAGE_TOKEN}\ndescribe these two images', images))
559
+ print(response.text)
560
+ ```
561
+
562
+ #### Batch Prompts Inference
563
+
564
+ Conducting inference with batch prompts is quite straightforward; just place them within a list structure:
565
+
566
+ ```python
567
+ from lmdeploy import pipeline, TurbomindEngineConfig
568
+ from lmdeploy.vl import load_image
569
+
570
+ model = 'OpenGVLab/InternVL2_5-8B'
571
+ pipe = pipeline(model, backend_config=TurbomindEngineConfig(session_len=8192))
572
+
573
+ image_urls=[
574
+ "https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/demo/resources/human-pose.jpg",
575
+ "https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/demo/resources/det.jpg"
576
+ ]
577
+ prompts = [('describe this image', load_image(img_url)) for img_url in image_urls]
578
+ response = pipe(prompts)
579
+ print(response)
580
+ ```
581
+
582
+ #### Multi-turn Conversation
583
+
584
+ There are two ways to do the multi-turn conversations with the pipeline. One is to construct messages according to the format of OpenAI and use above introduced method, the other is to use the `pipeline.chat` interface.
585
+
586
+ ```python
587
+ from lmdeploy import pipeline, TurbomindEngineConfig, GenerationConfig
588
+ from lmdeploy.vl import load_image
589
+
590
+ model = 'OpenGVLab/InternVL2_5-8B'
591
+ pipe = pipeline(model, backend_config=TurbomindEngineConfig(session_len=8192))
592
+
593
+ image = load_image('https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/demo/resources/human-pose.jpg')
594
+ gen_config = GenerationConfig(top_k=40, top_p=0.8, temperature=0.8)
595
+ sess = pipe.chat(('describe this image', image), gen_config=gen_config)
596
+ print(sess.response.text)
597
+ sess = pipe.chat('What is the woman doing?', session=sess, gen_config=gen_config)
598
+ print(sess.response.text)
599
+ ```
600
+
601
+ #### Service
602
+
603
+ LMDeploy's `api_server` enables models to be easily packed into services with a single command. The provided RESTful APIs are compatible with OpenAI's interfaces. Below are an example of service startup:
604
+
605
+ ```shell
606
+ lmdeploy serve api_server OpenGVLab/InternVL2_5-8B --server-port 23333
607
+ ```
608
+
609
+ To use the OpenAI-style interface, you need to install OpenAI:
610
+
611
+ ```shell
612
+ pip install openai
613
+ ```
614
+
615
+ Then, use the code below to make the API call:
616
+
617
+ ```python
618
+ from openai import OpenAI
619
+
620
+ client = OpenAI(api_key='YOUR_API_KEY', base_url='http://0.0.0.0:23333/v1')
621
+ model_name = client.models.list().data[0].id
622
+ response = client.chat.completions.create(
623
+ model=model_name,
624
+ messages=[{
625
+ 'role':
626
+ 'user',
627
+ 'content': [{
628
+ 'type': 'text',
629
+ 'text': 'describe this image',
630
+ }, {
631
+ 'type': 'image_url',
632
+ 'image_url': {
633
+ 'url':
634
+ 'https://modelscope.oss-cn-beijing.aliyuncs.com/resource/tiger.jpeg',
635
+ },
636
+ }],
637
+ }],
638
+ temperature=0.8,
639
+ top_p=0.8)
640
+ print(response)
641
+ ```
642
+
643
+ ## License
644
+
645
+ This project is released under the MIT License. This project uses the pre-trained internlm2_5-7b-chat as a component, which is licensed under the Apache License 2.0.
646
+
647
+ ## Citation
648
+
649
+ If you find this project useful in your research, please consider citing:
650
+
651
+ ```BibTeX
652
+ @article{chen2024expanding,
653
+ title={Expanding Performance Boundaries of Open-Source Multimodal Models with Model, Data, and Test-Time Scaling},
654
+ author={Chen, Zhe and Wang, Weiyun and Cao, Yue and Liu, Yangzhou and Gao, Zhangwei and Cui, Erfei and Zhu, Jinguo and Ye, Shenglong and Tian, Hao and Liu, Zhaoyang and others},
655
+ journal={arXiv preprint arXiv:2412.05271},
656
+ year={2024}
657
+ }
658
+ @article{gao2024mini,
659
+ title={Mini-internvl: A flexible-transfer pocket multimodal model with 5\% parameters and 90\% performance},
660
+ author={Gao, Zhangwei and Chen, Zhe and Cui, Erfei and Ren, Yiming and Wang, Weiyun and Zhu, Jinguo and Tian, Hao and Ye, Shenglong and He, Junjun and Zhu, Xizhou and others},
661
+ journal={arXiv preprint arXiv:2410.16261},
662
+ year={2024}
663
+ }
664
+ @article{chen2024far,
665
+ title={How Far Are We to GPT-4V? Closing the Gap to Commercial Multimodal Models with Open-Source Suites},
666
+ author={Chen, Zhe and Wang, Weiyun and Tian, Hao and Ye, Shenglong and Gao, Zhangwei and Cui, Erfei and Tong, Wenwen and Hu, Kongzhi and Luo, Jiapeng and Ma, Zheng and others},
667
+ journal={arXiv preprint arXiv:2404.16821},
668
+ year={2024}
669
+ }
670
+ @inproceedings{chen2024internvl,
671
+ title={Internvl: Scaling up vision foundation models and aligning for generic visual-linguistic tasks},
672
+ author={Chen, Zhe and Wu, Jiannan and Wang, Wenhai and Su, Weijie and Chen, Guo and Xing, Sen and Zhong, Muyan and Zhang, Qinglong and Zhu, Xizhou and Lu, Lewei and others},
673
+ booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
674
+ pages={24185--24198},
675
+ year={2024}
676
+ }
677
+ ```
added_tokens.json ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</box>": 92552,
3
+ "</img>": 92545,
4
+ "</quad>": 92548,
5
+ "</ref>": 92550,
6
+ "<IMG_CONTEXT>": 92546,
7
+ "<box>": 92551,
8
+ "<img>": 92544,
9
+ "<quad>": 92547,
10
+ "<ref>": 92549
11
+ }
config.json ADDED
@@ -0,0 +1,145 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_commit_hash": null,
3
+ "architectures": [
4
+ "InternVLChatModel"
5
+ ],
6
+ "auto_map": {
7
+ "AutoConfig": "configuration_internvl_chat.InternVLChatConfig",
8
+ "AutoModel": "modeling_internvl_chat.InternVLChatModel",
9
+ "AutoModelForCausalLM": "modeling_internvl_chat.InternVLChatModel"
10
+ },
11
+ "downsample_ratio": 0.5,
12
+ "dynamic_image_size": true,
13
+ "force_image_size": 448,
14
+ "llm_config": {
15
+ "_name_or_path": "internlm/internlm2_5-7b-chat",
16
+ "add_cross_attention": false,
17
+ "architectures": [
18
+ "InternLM2ForCausalLM"
19
+ ],
20
+ "attn_implementation": "flash_attention_2",
21
+ "auto_map": {
22
+ "AutoConfig": "configuration_internlm2.InternLM2Config",
23
+ "AutoModel": "modeling_internlm2.InternLM2ForCausalLM",
24
+ "AutoModelForCausalLM": "modeling_internlm2.InternLM2ForCausalLM",
25
+ "AutoModelForSequenceClassification": "modeling_internlm2.InternLM2ForSequenceClassification"
26
+ },
27
+ "bad_words_ids": null,
28
+ "begin_suppress_tokens": null,
29
+ "bias": false,
30
+ "bos_token_id": 1,
31
+ "chunk_size_feed_forward": 0,
32
+ "cross_attention_hidden_size": null,
33
+ "decoder_start_token_id": null,
34
+ "diversity_penalty": 0.0,
35
+ "do_sample": false,
36
+ "early_stopping": false,
37
+ "encoder_no_repeat_ngram_size": 0,
38
+ "eos_token_id": 2,
39
+ "exponential_decay_length_penalty": null,
40
+ "finetuning_task": null,
41
+ "forced_bos_token_id": null,
42
+ "forced_eos_token_id": null,
43
+ "hidden_act": "silu",
44
+ "hidden_size": 4096,
45
+ "id2label": {
46
+ "0": "LABEL_0",
47
+ "1": "LABEL_1"
48
+ },
49
+ "initializer_range": 0.02,
50
+ "intermediate_size": 14336,
51
+ "is_decoder": false,
52
+ "is_encoder_decoder": false,
53
+ "label2id": {
54
+ "LABEL_0": 0,
55
+ "LABEL_1": 1
56
+ },
57
+ "length_penalty": 1.0,
58
+ "max_length": 20,
59
+ "max_position_embeddings": 32768,
60
+ "min_length": 0,
61
+ "model_type": "internlm2",
62
+ "no_repeat_ngram_size": 0,
63
+ "num_attention_heads": 32,
64
+ "num_beam_groups": 1,
65
+ "num_beams": 1,
66
+ "num_hidden_layers": 32,
67
+ "num_key_value_heads": 8,
68
+ "num_return_sequences": 1,
69
+ "output_attentions": false,
70
+ "output_hidden_states": false,
71
+ "output_scores": false,
72
+ "pad_token_id": 2,
73
+ "prefix": null,
74
+ "pretraining_tp": 1,
75
+ "problem_type": null,
76
+ "pruned_heads": {},
77
+ "remove_invalid_values": false,
78
+ "repetition_penalty": 1.0,
79
+ "return_dict": true,
80
+ "return_dict_in_generate": false,
81
+ "rms_norm_eps": 1e-05,
82
+ "rope_scaling": {
83
+ "factor": 2.0,
84
+ "type": "dynamic"
85
+ },
86
+ "rope_theta": 1000000,
87
+ "sep_token_id": null,
88
+ "suppress_tokens": null,
89
+ "task_specific_params": null,
90
+ "temperature": 1.0,
91
+ "tf_legacy_loss": false,
92
+ "tie_encoder_decoder": false,
93
+ "tie_word_embeddings": false,
94
+ "tokenizer_class": null,
95
+ "top_k": 50,
96
+ "top_p": 1.0,
97
+ "torch_dtype": "bfloat16",
98
+ "torchscript": false,
99
+ "transformers_version": "4.37.2",
100
+ "typical_p": 1.0,
101
+ "use_bfloat16": true,
102
+ "use_cache": true,
103
+ "vocab_size": 92553
104
+ },
105
+ "max_dynamic_patch": 12,
106
+ "min_dynamic_patch": 1,
107
+ "model_type": "internvl_chat",
108
+ "ps_version": "v2",
109
+ "select_layer": -1,
110
+ "template": "internvl2_5",
111
+ "torch_dtype": "bfloat16",
112
+ "use_backbone_lora": 0,
113
+ "use_llm_lora": 0,
114
+ "use_thumbnail": true,
115
+ "vision_config": {
116
+ "architectures": [
117
+ "InternVisionModel"
118
+ ],
119
+ "attention_dropout": 0.0,
120
+ "drop_path_rate": 0.0,
121
+ "dropout": 0.0,
122
+ "hidden_act": "gelu",
123
+ "hidden_size": 1024,
124
+ "image_size": 448,
125
+ "initializer_factor": 1.0,
126
+ "initializer_range": 0.02,
127
+ "intermediate_size": 4096,
128
+ "layer_norm_eps": 1e-06,
129
+ "model_type": "intern_vit_6b",
130
+ "norm_type": "layer_norm",
131
+ "num_attention_heads": 16,
132
+ "num_channels": 3,
133
+ "num_hidden_layers": 24,
134
+ "output_attentions": false,
135
+ "output_hidden_states": false,
136
+ "patch_size": 14,
137
+ "qk_normalization": false,
138
+ "qkv_bias": true,
139
+ "return_dict": true,
140
+ "torch_dtype": "bfloat16",
141
+ "transformers_version": "4.37.2",
142
+ "use_bfloat16": true,
143
+ "use_flash_attn": true
144
+ }
145
+ }
configuration_intern_vit.py ADDED
@@ -0,0 +1,120 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # --------------------------------------------------------
2
+ # InternVL
3
+ # Copyright (c) 2024 OpenGVLab
4
+ # Licensed under The MIT License [see LICENSE for details]
5
+ # --------------------------------------------------------
6
+
7
+ import os
8
+ from typing import Union
9
+
10
+ from transformers.configuration_utils import PretrainedConfig
11
+ from transformers.utils import logging
12
+
13
+ logger = logging.get_logger(__name__)
14
+
15
+
16
+ class InternVisionConfig(PretrainedConfig):
17
+ r"""
18
+ This is the configuration class to store the configuration of a [`InternVisionModel`]. It is used to
19
+ instantiate a vision encoder according to the specified arguments, defining the model architecture.
20
+
21
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
22
+ documentation from [`PretrainedConfig`] for more information.
23
+
24
+ Args:
25
+ num_channels (`int`, *optional*, defaults to 3):
26
+ Number of color channels in the input images (e.g., 3 for RGB).
27
+ patch_size (`int`, *optional*, defaults to 14):
28
+ The size (resolution) of each patch.
29
+ image_size (`int`, *optional*, defaults to 224):
30
+ The size (resolution) of each image.
31
+ qkv_bias (`bool`, *optional*, defaults to `False`):
32
+ Whether to add a bias to the queries and values in the self-attention layers.
33
+ hidden_size (`int`, *optional*, defaults to 3200):
34
+ Dimensionality of the encoder layers and the pooler layer.
35
+ num_attention_heads (`int`, *optional*, defaults to 25):
36
+ Number of attention heads for each attention layer in the Transformer encoder.
37
+ intermediate_size (`int`, *optional*, defaults to 12800):
38
+ Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
39
+ qk_normalization (`bool`, *optional*, defaults to `True`):
40
+ Whether to normalize the queries and keys in the self-attention layers.
41
+ num_hidden_layers (`int`, *optional*, defaults to 48):
42
+ Number of hidden layers in the Transformer encoder.
43
+ use_flash_attn (`bool`, *optional*, defaults to `True`):
44
+ Whether to use flash attention mechanism.
45
+ hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
46
+ The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
47
+ `"relu"`, `"selu"` and `"gelu_new"` ``"gelu"` are supported.
48
+ layer_norm_eps (`float`, *optional*, defaults to 1e-6):
49
+ The epsilon used by the layer normalization layers.
50
+ dropout (`float`, *optional*, defaults to 0.0):
51
+ The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
52
+ drop_path_rate (`float`, *optional*, defaults to 0.0):
53
+ Dropout rate for stochastic depth.
54
+ attention_dropout (`float`, *optional*, defaults to 0.0):
55
+ The dropout ratio for the attention probabilities.
56
+ initializer_range (`float`, *optional*, defaults to 0.02):
57
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
58
+ initializer_factor (`float`, *optional*, defaults to 0.1):
59
+ A factor for layer scale.
60
+ """
61
+
62
+ model_type = 'intern_vit_6b'
63
+
64
+ def __init__(
65
+ self,
66
+ num_channels=3,
67
+ patch_size=14,
68
+ image_size=224,
69
+ qkv_bias=False,
70
+ hidden_size=3200,
71
+ num_attention_heads=25,
72
+ intermediate_size=12800,
73
+ qk_normalization=True,
74
+ num_hidden_layers=48,
75
+ use_flash_attn=True,
76
+ hidden_act='gelu',
77
+ norm_type='rms_norm',
78
+ layer_norm_eps=1e-6,
79
+ dropout=0.0,
80
+ drop_path_rate=0.0,
81
+ attention_dropout=0.0,
82
+ initializer_range=0.02,
83
+ initializer_factor=0.1,
84
+ **kwargs,
85
+ ):
86
+ super().__init__(**kwargs)
87
+
88
+ self.hidden_size = hidden_size
89
+ self.intermediate_size = intermediate_size
90
+ self.dropout = dropout
91
+ self.drop_path_rate = drop_path_rate
92
+ self.num_hidden_layers = num_hidden_layers
93
+ self.num_attention_heads = num_attention_heads
94
+ self.num_channels = num_channels
95
+ self.patch_size = patch_size
96
+ self.image_size = image_size
97
+ self.initializer_range = initializer_range
98
+ self.initializer_factor = initializer_factor
99
+ self.attention_dropout = attention_dropout
100
+ self.layer_norm_eps = layer_norm_eps
101
+ self.hidden_act = hidden_act
102
+ self.norm_type = norm_type
103
+ self.qkv_bias = qkv_bias
104
+ self.qk_normalization = qk_normalization
105
+ self.use_flash_attn = use_flash_attn
106
+
107
+ @classmethod
108
+ def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> 'PretrainedConfig':
109
+ config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
110
+
111
+ if 'vision_config' in config_dict:
112
+ config_dict = config_dict['vision_config']
113
+
114
+ if 'model_type' in config_dict and hasattr(cls, 'model_type') and config_dict['model_type'] != cls.model_type:
115
+ logger.warning(
116
+ f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
117
+ f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.'
118
+ )
119
+
120
+ return cls.from_dict(config_dict, **kwargs)
configuration_internlm2.py ADDED
@@ -0,0 +1,150 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) The InternLM team and The HuggingFace Inc. team. All rights reserved.
2
+ #
3
+ # This code is based on transformers/src/transformers/models/llama/configuration_llama.py
4
+ #
5
+ # Licensed under the Apache License, Version 2.0 (the "License");
6
+ # you may not use this file except in compliance with the License.
7
+ # You may obtain a copy of the License at
8
+ #
9
+ # http://www.apache.org/licenses/LICENSE-2.0
10
+ #
11
+ # Unless required by applicable law or agreed to in writing, software
12
+ # distributed under the License is distributed on an "AS IS" BASIS,
13
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14
+ # See the License for the specific language governing permissions and
15
+ # limitations under the License.
16
+ """ InternLM2 model configuration"""
17
+
18
+ from transformers.configuration_utils import PretrainedConfig
19
+ from transformers.utils import logging
20
+
21
+ logger = logging.get_logger(__name__)
22
+
23
+ INTERNLM2_PRETRAINED_CONFIG_ARCHIVE_MAP = {}
24
+
25
+
26
+ # Modified from transformers.model.llama.configuration_llama.LlamaConfig
27
+ class InternLM2Config(PretrainedConfig):
28
+ r"""
29
+ This is the configuration class to store the configuration of a [`InternLM2Model`]. It is used to instantiate
30
+ an InternLM2 model according to the specified arguments, defining the model architecture. Instantiating a
31
+ configuration with the defaults will yield a similar configuration to that of the InternLM2-7B.
32
+
33
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
34
+ documentation from [`PretrainedConfig`] for more information.
35
+
36
+
37
+ Args:
38
+ vocab_size (`int`, *optional*, defaults to 32000):
39
+ Vocabulary size of the InternLM2 model. Defines the number of different tokens that can be represented by the
40
+ `inputs_ids` passed when calling [`InternLM2Model`]
41
+ hidden_size (`int`, *optional*, defaults to 4096):
42
+ Dimension of the hidden representations.
43
+ intermediate_size (`int`, *optional*, defaults to 11008):
44
+ Dimension of the MLP representations.
45
+ num_hidden_layers (`int`, *optional*, defaults to 32):
46
+ Number of hidden layers in the Transformer encoder.
47
+ num_attention_heads (`int`, *optional*, defaults to 32):
48
+ Number of attention heads for each attention layer in the Transformer encoder.
49
+ num_key_value_heads (`int`, *optional*):
50
+ This is the number of key_value heads that should be used to implement Grouped Query Attention. If
51
+ `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
52
+ `num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
53
+ converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
54
+ by meanpooling all the original heads within that group. For more details checkout [this
55
+ paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
56
+ `num_attention_heads`.
57
+ hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
58
+ The non-linear activation function (function or string) in the decoder.
59
+ max_position_embeddings (`int`, *optional*, defaults to 2048):
60
+ The maximum sequence length that this model might ever be used with. Typically set this to something large
61
+ just in case (e.g., 512 or 1024 or 2048).
62
+ initializer_range (`float`, *optional*, defaults to 0.02):
63
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
64
+ rms_norm_eps (`float`, *optional*, defaults to 1e-12):
65
+ The epsilon used by the rms normalization layers.
66
+ use_cache (`bool`, *optional*, defaults to `True`):
67
+ Whether or not the model should return the last key/values attentions (not used by all models). Only
68
+ relevant if `config.is_decoder=True`.
69
+ tie_word_embeddings(`bool`, *optional*, defaults to `False`):
70
+ Whether to tie weight embeddings
71
+ Example:
72
+
73
+ """
74
+ model_type = 'internlm2'
75
+ _auto_class = 'AutoConfig'
76
+
77
+ def __init__( # pylint: disable=W0102
78
+ self,
79
+ vocab_size=103168,
80
+ hidden_size=4096,
81
+ intermediate_size=11008,
82
+ num_hidden_layers=32,
83
+ num_attention_heads=32,
84
+ num_key_value_heads=None,
85
+ hidden_act='silu',
86
+ max_position_embeddings=2048,
87
+ initializer_range=0.02,
88
+ rms_norm_eps=1e-6,
89
+ use_cache=True,
90
+ pad_token_id=0,
91
+ bos_token_id=1,
92
+ eos_token_id=2,
93
+ tie_word_embeddings=False,
94
+ bias=True,
95
+ rope_theta=10000,
96
+ rope_scaling=None,
97
+ attn_implementation='eager',
98
+ **kwargs,
99
+ ):
100
+ self.vocab_size = vocab_size
101
+ self.max_position_embeddings = max_position_embeddings
102
+ self.hidden_size = hidden_size
103
+ self.intermediate_size = intermediate_size
104
+ self.num_hidden_layers = num_hidden_layers
105
+ self.num_attention_heads = num_attention_heads
106
+ self.bias = bias
107
+
108
+ if num_key_value_heads is None:
109
+ num_key_value_heads = num_attention_heads
110
+ self.num_key_value_heads = num_key_value_heads
111
+
112
+ self.hidden_act = hidden_act
113
+ self.initializer_range = initializer_range
114
+ self.rms_norm_eps = rms_norm_eps
115
+ self.use_cache = use_cache
116
+ self.rope_theta = rope_theta
117
+ self.rope_scaling = rope_scaling
118
+ self._rope_scaling_validation()
119
+
120
+ self.attn_implementation = attn_implementation
121
+ if self.attn_implementation is None:
122
+ self.attn_implementation = 'eager'
123
+ super().__init__(
124
+ pad_token_id=pad_token_id,
125
+ bos_token_id=bos_token_id,
126
+ eos_token_id=eos_token_id,
127
+ tie_word_embeddings=tie_word_embeddings,
128
+ **kwargs,
129
+ )
130
+
131
+ def _rope_scaling_validation(self):
132
+ """
133
+ Validate the `rope_scaling` configuration.
134
+ """
135
+ if self.rope_scaling is None:
136
+ return
137
+
138
+ if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2:
139
+ raise ValueError(
140
+ '`rope_scaling` must be a dictionary with with two fields, `type` and `factor`, '
141
+ f'got {self.rope_scaling}'
142
+ )
143
+ rope_scaling_type = self.rope_scaling.get('type', None)
144
+ rope_scaling_factor = self.rope_scaling.get('factor', None)
145
+ if rope_scaling_type is None or rope_scaling_type not in ['linear', 'dynamic']:
146
+ raise ValueError(
147
+ f"`rope_scaling`'s type field must be one of ['linear', 'dynamic'], got {rope_scaling_type}"
148
+ )
149
+ if rope_scaling_factor is None or not isinstance(rope_scaling_factor, float) or rope_scaling_factor < 1.0:
150
+ raise ValueError(f"`rope_scaling`'s factor field must be a float >= 1, got {rope_scaling_factor}")
configuration_internvl_chat.py ADDED
@@ -0,0 +1,96 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # --------------------------------------------------------
2
+ # InternVL
3
+ # Copyright (c) 2024 OpenGVLab
4
+ # Licensed under The MIT License [see LICENSE for details]
5
+ # --------------------------------------------------------
6
+
7
+ import copy
8
+
9
+ from transformers import AutoConfig, LlamaConfig
10
+ from transformers.configuration_utils import PretrainedConfig
11
+ from transformers.utils import logging
12
+
13
+ from .configuration_intern_vit import InternVisionConfig
14
+ from .configuration_internlm2 import InternLM2Config
15
+
16
+ logger = logging.get_logger(__name__)
17
+
18
+
19
+ class InternVLChatConfig(PretrainedConfig):
20
+ model_type = 'internvl_chat'
21
+ is_composition = True
22
+
23
+ def __init__(
24
+ self,
25
+ vision_config=None,
26
+ llm_config=None,
27
+ use_backbone_lora=0,
28
+ use_llm_lora=0,
29
+ select_layer=-1,
30
+ force_image_size=None,
31
+ downsample_ratio=0.5,
32
+ template=None,
33
+ dynamic_image_size=False,
34
+ use_thumbnail=False,
35
+ ps_version='v1',
36
+ min_dynamic_patch=1,
37
+ max_dynamic_patch=6,
38
+ **kwargs):
39
+ super().__init__(**kwargs)
40
+
41
+ if vision_config is None:
42
+ vision_config = {'architectures': ['InternVisionModel']}
43
+ logger.info('vision_config is None. Initializing the InternVisionConfig with default values.')
44
+
45
+ if llm_config is None:
46
+ llm_config = {'architectures': ['InternLM2ForCausalLM']}
47
+ logger.info('llm_config is None. Initializing the LlamaConfig config with default values (`LlamaConfig`).')
48
+
49
+ self.vision_config = InternVisionConfig(**vision_config)
50
+ if llm_config.get('architectures')[0] == 'LlamaForCausalLM':
51
+ self.llm_config = LlamaConfig(**llm_config)
52
+ elif llm_config.get('architectures')[0] == 'InternLM2ForCausalLM':
53
+ self.llm_config = InternLM2Config(**llm_config)
54
+ else:
55
+ raise ValueError('Unsupported architecture: {}'.format(llm_config.get('architectures')[0]))
56
+ self.use_backbone_lora = use_backbone_lora
57
+ self.use_llm_lora = use_llm_lora
58
+ self.select_layer = select_layer
59
+ self.force_image_size = force_image_size
60
+ self.downsample_ratio = downsample_ratio
61
+ self.template = template
62
+ self.dynamic_image_size = dynamic_image_size
63
+ self.use_thumbnail = use_thumbnail
64
+ self.ps_version = ps_version # pixel shuffle version
65
+ self.min_dynamic_patch = min_dynamic_patch
66
+ self.max_dynamic_patch = max_dynamic_patch
67
+
68
+ logger.info(f'vision_select_layer: {self.select_layer}')
69
+ logger.info(f'ps_version: {self.ps_version}')
70
+ logger.info(f'min_dynamic_patch: {self.min_dynamic_patch}')
71
+ logger.info(f'max_dynamic_patch: {self.max_dynamic_patch}')
72
+
73
+ def to_dict(self):
74
+ """
75
+ Serializes this instance to a Python dictionary. Override the default [`~PretrainedConfig.to_dict`].
76
+
77
+ Returns:
78
+ `Dict[str, any]`: Dictionary of all the attributes that make up this configuration instance,
79
+ """
80
+ output = copy.deepcopy(self.__dict__)
81
+ output['vision_config'] = self.vision_config.to_dict()
82
+ output['llm_config'] = self.llm_config.to_dict()
83
+ output['model_type'] = self.__class__.model_type
84
+ output['use_backbone_lora'] = self.use_backbone_lora
85
+ output['use_llm_lora'] = self.use_llm_lora
86
+ output['select_layer'] = self.select_layer
87
+ output['force_image_size'] = self.force_image_size
88
+ output['downsample_ratio'] = self.downsample_ratio
89
+ output['template'] = self.template
90
+ output['dynamic_image_size'] = self.dynamic_image_size
91
+ output['use_thumbnail'] = self.use_thumbnail
92
+ output['ps_version'] = self.ps_version
93
+ output['min_dynamic_patch'] = self.min_dynamic_patch
94
+ output['max_dynamic_patch'] = self.max_dynamic_patch
95
+
96
+ return output
conversation.py ADDED
@@ -0,0 +1,391 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Conversation prompt templates.
3
+
4
+ We kindly request that you import fastchat instead of copying this file if you wish to use it.
5
+ If you have changes in mind, please contribute back so the community can benefit collectively and continue to maintain these valuable templates.
6
+
7
+ Modified from https://github.com/lm-sys/FastChat/blob/main/fastchat/conversation.py
8
+ """
9
+
10
+ import dataclasses
11
+ from enum import IntEnum, auto
12
+ from typing import Dict, List, Tuple, Union
13
+
14
+
15
+ class SeparatorStyle(IntEnum):
16
+ """Separator styles."""
17
+
18
+ ADD_COLON_SINGLE = auto()
19
+ ADD_COLON_TWO = auto()
20
+ ADD_COLON_SPACE_SINGLE = auto()
21
+ NO_COLON_SINGLE = auto()
22
+ NO_COLON_TWO = auto()
23
+ ADD_NEW_LINE_SINGLE = auto()
24
+ LLAMA2 = auto()
25
+ CHATGLM = auto()
26
+ CHATML = auto()
27
+ CHATINTERN = auto()
28
+ DOLLY = auto()
29
+ RWKV = auto()
30
+ PHOENIX = auto()
31
+ ROBIN = auto()
32
+ FALCON_CHAT = auto()
33
+ CHATGLM3 = auto()
34
+ INTERNVL_ZH = auto()
35
+ MPT = auto()
36
+
37
+
38
+ @dataclasses.dataclass
39
+ class Conversation:
40
+ """A class that manages prompt templates and keeps all conversation history."""
41
+
42
+ # The name of this template
43
+ name: str
44
+ # The template of the system prompt
45
+ system_template: str = '{system_message}'
46
+ # The system message
47
+ system_message: str = ''
48
+ # The names of two roles
49
+ roles: Tuple[str] = ('USER', 'ASSISTANT')
50
+ # All messages. Each item is (role, message).
51
+ messages: List[List[str]] = ()
52
+ # The number of few shot examples
53
+ offset: int = 0
54
+ # The separator style and configurations
55
+ sep_style: SeparatorStyle = SeparatorStyle.ADD_COLON_SINGLE
56
+ sep: str = '\n'
57
+ sep2: str = None
58
+ # Stop criteria (the default one is EOS token)
59
+ stop_str: Union[str, List[str]] = None
60
+ # Stops generation if meeting any token in this list
61
+ stop_token_ids: List[int] = None
62
+
63
+ def get_prompt(self) -> str:
64
+ """Get the prompt for generation."""
65
+ system_prompt = self.system_template.format(system_message=self.system_message)
66
+ if self.sep_style == SeparatorStyle.ADD_COLON_SINGLE:
67
+ ret = system_prompt + self.sep
68
+ for role, message in self.messages:
69
+ if message:
70
+ ret += role + ': ' + message + self.sep
71
+ else:
72
+ ret += role + ':'
73
+ return ret
74
+ elif self.sep_style == SeparatorStyle.ADD_COLON_TWO:
75
+ seps = [self.sep, self.sep2]
76
+ ret = system_prompt + seps[0]
77
+ for i, (role, message) in enumerate(self.messages):
78
+ if message:
79
+ ret += role + ': ' + message + seps[i % 2]
80
+ else:
81
+ ret += role + ':'
82
+ return ret
83
+ elif self.sep_style == SeparatorStyle.ADD_COLON_SPACE_SINGLE:
84
+ ret = system_prompt + self.sep
85
+ for role, message in self.messages:
86
+ if message:
87
+ ret += role + ': ' + message + self.sep
88
+ else:
89
+ ret += role + ': ' # must be end with a space
90
+ return ret
91
+ elif self.sep_style == SeparatorStyle.ADD_NEW_LINE_SINGLE:
92
+ ret = '' if system_prompt == '' else system_prompt + self.sep
93
+ for role, message in self.messages:
94
+ if message:
95
+ ret += role + '\n' + message + self.sep
96
+ else:
97
+ ret += role + '\n'
98
+ return ret
99
+ elif self.sep_style == SeparatorStyle.NO_COLON_SINGLE:
100
+ ret = system_prompt
101
+ for role, message in self.messages:
102
+ if message:
103
+ ret += role + message + self.sep
104
+ else:
105
+ ret += role
106
+ return ret
107
+ elif self.sep_style == SeparatorStyle.NO_COLON_TWO:
108
+ seps = [self.sep, self.sep2]
109
+ ret = system_prompt
110
+ for i, (role, message) in enumerate(self.messages):
111
+ if message:
112
+ ret += role + message + seps[i % 2]
113
+ else:
114
+ ret += role
115
+ return ret
116
+ elif self.sep_style == SeparatorStyle.RWKV:
117
+ ret = system_prompt
118
+ for i, (role, message) in enumerate(self.messages):
119
+ if message:
120
+ ret += (
121
+ role
122
+ + ': '
123
+ + message.replace('\r\n', '\n').replace('\n\n', '\n')
124
+ )
125
+ ret += '\n\n'
126
+ else:
127
+ ret += role + ':'
128
+ return ret
129
+ elif self.sep_style == SeparatorStyle.LLAMA2:
130
+ seps = [self.sep, self.sep2]
131
+ if self.system_message:
132
+ ret = system_prompt
133
+ else:
134
+ ret = '[INST] '
135
+ for i, (role, message) in enumerate(self.messages):
136
+ tag = self.roles[i % 2]
137
+ if message:
138
+ if i == 0:
139
+ ret += message + ' '
140
+ else:
141
+ ret += tag + ' ' + message + seps[i % 2]
142
+ else:
143
+ ret += tag
144
+ return ret
145
+ elif self.sep_style == SeparatorStyle.CHATGLM:
146
+ # source: https://huggingface.co/THUDM/chatglm-6b/blob/1d240ba371910e9282298d4592532d7f0f3e9f3e/modeling_chatglm.py#L1302-L1308
147
+ # source2: https://huggingface.co/THUDM/chatglm2-6b/blob/e186c891cf64310ac66ef10a87e6635fa6c2a579/modeling_chatglm.py#L926
148
+ round_add_n = 1 if self.name == 'chatglm2' else 0
149
+ if system_prompt:
150
+ ret = system_prompt + self.sep
151
+ else:
152
+ ret = ''
153
+
154
+ for i, (role, message) in enumerate(self.messages):
155
+ if i % 2 == 0:
156
+ ret += f'[Round {i//2 + round_add_n}]{self.sep}'
157
+
158
+ if message:
159
+ ret += f'{role}:{message}{self.sep}'
160
+ else:
161
+ ret += f'{role}:'
162
+ return ret
163
+ elif self.sep_style == SeparatorStyle.CHATML:
164
+ ret = '' if system_prompt == '' else system_prompt + self.sep + '\n'
165
+ for role, message in self.messages:
166
+ if message:
167
+ ret += role + '\n' + message + self.sep + '\n'
168
+ else:
169
+ ret += role + '\n'
170
+ return ret
171
+ elif self.sep_style == SeparatorStyle.CHATGLM3:
172
+ ret = ''
173
+ if self.system_message:
174
+ ret += system_prompt
175
+ for role, message in self.messages:
176
+ if message:
177
+ ret += role + '\n' + ' ' + message
178
+ else:
179
+ ret += role
180
+ return ret
181
+ elif self.sep_style == SeparatorStyle.CHATINTERN:
182
+ # source: https://huggingface.co/internlm/internlm-chat-7b-8k/blob/bd546fa984b4b0b86958f56bf37f94aa75ab8831/modeling_internlm.py#L771
183
+ seps = [self.sep, self.sep2]
184
+ ret = system_prompt
185
+ for i, (role, message) in enumerate(self.messages):
186
+ # if i % 2 == 0:
187
+ # ret += "<s>"
188
+ if message:
189
+ ret += role + ':' + message + seps[i % 2] + '\n'
190
+ else:
191
+ ret += role + ':'
192
+ return ret
193
+ elif self.sep_style == SeparatorStyle.DOLLY:
194
+ seps = [self.sep, self.sep2]
195
+ ret = system_prompt
196
+ for i, (role, message) in enumerate(self.messages):
197
+ if message:
198
+ ret += role + ':\n' + message + seps[i % 2]
199
+ if i % 2 == 1:
200
+ ret += '\n\n'
201
+ else:
202
+ ret += role + ':\n'
203
+ return ret
204
+ elif self.sep_style == SeparatorStyle.PHOENIX:
205
+ ret = system_prompt
206
+ for role, message in self.messages:
207
+ if message:
208
+ ret += role + ': ' + '<s>' + message + '</s>'
209
+ else:
210
+ ret += role + ': ' + '<s>'
211
+ return ret
212
+ elif self.sep_style == SeparatorStyle.ROBIN:
213
+ ret = system_prompt + self.sep
214
+ for role, message in self.messages:
215
+ if message:
216
+ ret += role + ':\n' + message + self.sep
217
+ else:
218
+ ret += role + ':\n'
219
+ return ret
220
+ elif self.sep_style == SeparatorStyle.FALCON_CHAT:
221
+ ret = ''
222
+ if self.system_message:
223
+ ret += system_prompt + self.sep
224
+ for role, message in self.messages:
225
+ if message:
226
+ ret += role + ': ' + message + self.sep
227
+ else:
228
+ ret += role + ':'
229
+
230
+ return ret
231
+ elif self.sep_style == SeparatorStyle.INTERNVL_ZH:
232
+ seps = [self.sep, self.sep2]
233
+ ret = self.system_message + seps[0]
234
+ for i, (role, message) in enumerate(self.messages):
235
+ if message:
236
+ ret += role + ': ' + message + seps[i % 2]
237
+ else:
238
+ ret += role + ':'
239
+ return ret
240
+ elif self.sep_style == SeparatorStyle.MPT:
241
+ ret = system_prompt + self.sep
242
+ for role, message in self.messages:
243
+ if message:
244
+ if type(message) is tuple:
245
+ message, _, _ = message
246
+ ret += role + message + self.sep
247
+ else:
248
+ ret += role
249
+ return ret
250
+ else:
251
+ raise ValueError(f'Invalid style: {self.sep_style}')
252
+
253
+ def set_system_message(self, system_message: str):
254
+ """Set the system message."""
255
+ self.system_message = system_message
256
+
257
+ def append_message(self, role: str, message: str):
258
+ """Append a new message."""
259
+ self.messages.append([role, message])
260
+
261
+ def update_last_message(self, message: str):
262
+ """Update the last output.
263
+
264
+ The last message is typically set to be None when constructing the prompt,
265
+ so we need to update it in-place after getting the response from a model.
266
+ """
267
+ self.messages[-1][1] = message
268
+
269
+ def to_gradio_chatbot(self):
270
+ """Convert the conversation to gradio chatbot format."""
271
+ ret = []
272
+ for i, (role, msg) in enumerate(self.messages[self.offset :]):
273
+ if i % 2 == 0:
274
+ ret.append([msg, None])
275
+ else:
276
+ ret[-1][-1] = msg
277
+ return ret
278
+
279
+ def to_openai_api_messages(self):
280
+ """Convert the conversation to OpenAI chat completion format."""
281
+ ret = [{'role': 'system', 'content': self.system_message}]
282
+
283
+ for i, (_, msg) in enumerate(self.messages[self.offset :]):
284
+ if i % 2 == 0:
285
+ ret.append({'role': 'user', 'content': msg})
286
+ else:
287
+ if msg is not None:
288
+ ret.append({'role': 'assistant', 'content': msg})
289
+ return ret
290
+
291
+ def copy(self):
292
+ return Conversation(
293
+ name=self.name,
294
+ system_template=self.system_template,
295
+ system_message=self.system_message,
296
+ roles=self.roles,
297
+ messages=[[x, y] for x, y in self.messages],
298
+ offset=self.offset,
299
+ sep_style=self.sep_style,
300
+ sep=self.sep,
301
+ sep2=self.sep2,
302
+ stop_str=self.stop_str,
303
+ stop_token_ids=self.stop_token_ids,
304
+ )
305
+
306
+ def dict(self):
307
+ return {
308
+ 'template_name': self.name,
309
+ 'system_message': self.system_message,
310
+ 'roles': self.roles,
311
+ 'messages': self.messages,
312
+ 'offset': self.offset,
313
+ }
314
+
315
+
316
+ # A global registry for all conversation templates
317
+ conv_templates: Dict[str, Conversation] = {}
318
+
319
+
320
+ def register_conv_template(template: Conversation, override: bool = False):
321
+ """Register a new conversation template."""
322
+ if not override:
323
+ assert (
324
+ template.name not in conv_templates
325
+ ), f'{template.name} has been registered.'
326
+
327
+ conv_templates[template.name] = template
328
+
329
+
330
+ def get_conv_template(name: str) -> Conversation:
331
+ """Get a conversation template."""
332
+ return conv_templates[name].copy()
333
+
334
+
335
+ # Both Hermes-2 and internlm2-chat are chatml-format conversation templates. The difference
336
+ # is that during training, the preprocessing function for the Hermes-2 template doesn't add
337
+ # <s> at the beginning of the tokenized sequence, while the internlm2-chat template does.
338
+ # Therefore, they are completely equivalent during inference.
339
+ register_conv_template(
340
+ Conversation(
341
+ name='Hermes-2',
342
+ system_template='<|im_start|>system\n{system_message}',
343
+ # note: The new system prompt was not used here to avoid changes in benchmark performance.
344
+ # system_message='我是书生·万象,英文名是InternVL,是由上海人工智能实验室、清华大学及多家合作单位联合开发的多模态大语言模型。',
345
+ system_message='你是由上海人工智能实验室联合商汤科技开发的书生多模态大模型,英文名叫InternVL, 是一个有用无害的人工智能助手。',
346
+ roles=('<|im_start|>user\n', '<|im_start|>assistant\n'),
347
+ sep_style=SeparatorStyle.MPT,
348
+ sep='<|im_end|>',
349
+ stop_str='<|endoftext|>',
350
+ )
351
+ )
352
+
353
+
354
+ register_conv_template(
355
+ Conversation(
356
+ name='internlm2-chat',
357
+ system_template='<|im_start|>system\n{system_message}',
358
+ # note: The new system prompt was not used here to avoid changes in benchmark performance.
359
+ # system_message='我是书生·万象,英文名是InternVL,是由上海人工智能实验室、清华大学及多家合作单位联合开发的多模态大语言模型。',
360
+ system_message='你是由上海人工智能实验室联合商汤科技开发的书生多模态大模型,英文名叫InternVL, 是一个有用无害的人工智能助手。',
361
+ roles=('<|im_start|>user\n', '<|im_start|>assistant\n'),
362
+ sep_style=SeparatorStyle.MPT,
363
+ sep='<|im_end|>',
364
+ )
365
+ )
366
+
367
+
368
+ register_conv_template(
369
+ Conversation(
370
+ name='phi3-chat',
371
+ system_template='<|system|>\n{system_message}',
372
+ # note: The new system prompt was not used here to avoid changes in benchmark performance.
373
+ # system_message='我是书生·万象,英文名是InternVL,是由上海人工智能实验室、清华大学及多家合作单位联合开发的多模态大语言模型。',
374
+ system_message='你是由上海人工智能实验室联合商汤科技开发的书生多模态大模型,英文名叫InternVL, 是一个有用无害的人工智能助手。',
375
+ roles=('<|user|>\n', '<|assistant|>\n'),
376
+ sep_style=SeparatorStyle.MPT,
377
+ sep='<|end|>',
378
+ )
379
+ )
380
+
381
+
382
+ register_conv_template(
383
+ Conversation(
384
+ name='internvl2_5',
385
+ system_template='<|im_start|>system\n{system_message}',
386
+ system_message='你是书生·万象,英文名是InternVL,是由上海人工智能实验室、清华大学及多家合作单位联合开发的多模态大语言模型。',
387
+ roles=('<|im_start|>user\n', '<|im_start|>assistant\n'),
388
+ sep_style=SeparatorStyle.MPT,
389
+ sep='<|im_end|>\n',
390
+ )
391
+ )
eval_llm_benchmark.log ADDED
@@ -0,0 +1,61 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ /mnt/petrelfs/wangweiyun/miniconda3/envs/internvl_eval2/lib/python3.10/site-packages/bitsandbytes/cextension.py:34: UserWarning: The installed version of bitsandbytes was compiled without GPU support. 8-bit optimizers, 8-bit multiplication, and GPU quantization are unavailable.
2
+ warn("The installed version of bitsandbytes was compiled without GPU support. "
3
+ /mnt/petrelfs/wangweiyun/miniconda3/envs/internvl_eval2/lib/python3.10/site-packages/bitsandbytes/libbitsandbytes_cpu.so: undefined symbol: cadam32bit_grad_fp32
4
+ model path is /mnt/petrelfs/wangweiyun/workspace_cz/InternVL/internvl_chat_dev/work_dirs/internvl_chat_v2_5/internvl_chat_v2_5_internlm2_5_7b_dynamic_res_finetune_datav162
5
+ 11/19 10:57:39 - OpenCompass - WARNING - No previous results to reuse!
6
+ 11/19 10:57:39 - OpenCompass - INFO - Reusing experiements from 20241119_105739
7
+ 11/19 10:57:39 - OpenCompass - INFO - Current exp folder: /mnt/petrelfs/wangweiyun/workspace_cz/InternVL/internvl_chat_dev/work_dirs/internvl_chat_v2_5/internvl_chat_v2_5_internlm2_5_7b_dynamic_res_finetune_datav162/20241119_105739
8
+ 11/19 10:57:42 - OpenCompass - INFO - Partitioned into 256 tasks.
9
+ [ ] 0/256, elapsed: 0s, ETA:
10
+ 11/19 11:10:45 - OpenCompass - INFO - Partitioned into 287 tasks.
11
+ [ ] 0/287, elapsed: 0s, ETA:
12
+ dataset version metric mode internvl-chat-20b
13
+ ---------------------------- --------- ---------------------------- ------ -------------------
14
+ mmlu - naive_average gen 74.61
15
+ mmlu_pro - - - -
16
+ cmmlu - naive_average gen 78.70
17
+ ceval - naive_average gen 79.74
18
+ agieval - - - -
19
+ GaokaoBench - weighted_average gen 77.29
20
+ GPQA_extended - - - -
21
+ GPQA_main - - - -
22
+ GPQA_diamond - - - -
23
+ ARC-c - - - -
24
+ truthfulqa - - - -
25
+ triviaqa 2121ce score gen 63.36
26
+ triviaqa_wiki_1shot - - - -
27
+ nq 3dcea1 score gen 29.36
28
+ C3 8c358f accuracy gen 94.68
29
+ race-high 9a54b6 accuracy gen 90.79
30
+ flores_100 - - - -
31
+ winogrande b36770 accuracy gen 83.50
32
+ hellaswag e42710 accuracy gen 94.13
33
+ bbh - naive_average gen 73.43
34
+ gsm8k 1d7fe4 accuracy gen 77.79
35
+ math 393424 accuracy gen 49.88
36
+ TheoremQA 6f0af8 score gen 23.75
37
+ MathBench - - - -
38
+ openai_humaneval 8e312c humaneval_pass@1 gen 75.00
39
+ humaneval_plus - - - -
40
+ humanevalx - - - -
41
+ sanitized_mbpp a447ff score gen 68.48
42
+ mbpp_plus - - - -
43
+ mbpp_cn 6fb572 score gen 55.20
44
+ leval - - - -
45
+ leval_closed - - - -
46
+ leval_open - - - -
47
+ longbench - - - -
48
+ longbench_single-document-qa - - - -
49
+ longbench_multi-document-qa - - - -
50
+ longbench_summarization - - - -
51
+ longbench_few-shot-learning - - - -
52
+ longbench_synthetic-tasks - - - -
53
+ longbench_code-completion - - - -
54
+ teval - - - -
55
+ teval_zh - - - -
56
+ IFEval 3321a3 Prompt-level-strict-accuracy gen 50.46
57
+ IFEval 3321a3 Inst-level-strict-accuracy gen 60.79
58
+ IFEval 3321a3 Prompt-level-loose-accuracy gen 53.42
59
+ IFEval 3321a3 Inst-level-loose-accuracy gen 63.67
60
+ 11/19 11:15:09 - OpenCompass - INFO - write summary to /mnt/petrelfs/wangweiyun/workspace_cz/InternVL/internvl_chat_dev/work_dirs/internvl_chat_v2_5/internvl_chat_v2_5_internlm2_5_7b_dynamic_res_finetune_datav162/20241119_105739/summary/summary_20241119_105739.txt
61
+ 11/19 11:15:09 - OpenCompass - INFO - write csv to /mnt/petrelfs/wangweiyun/workspace_cz/InternVL/internvl_chat_dev/work_dirs/internvl_chat_v2_5/internvl_chat_v2_5_internlm2_5_7b_dynamic_res_finetune_datav162/20241119_105739/summary/summary_20241119_105739.csv
examples/image1.jpg ADDED
examples/image2.jpg ADDED

Git LFS Details

  • SHA256: 08487494b8dc08d44bc36491adf3ab89ff30d13a3122da86f3cd67cad89eeee8
  • Pointer size: 131 Bytes
  • Size of remote file: 126 kB
examples/red-panda.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d921c07bb97224d65a37801541d246067f0d506f08723ffa1ad85c217907ccb8
3
+ size 1867237
generation_config.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "transformers_version": "4.37.2",
4
+ "eos_token_id": [
5
+ 92542,
6
+ 92543
7
+ ]
8
+ }
model-00001-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c9815f2a1c042cb4b6db939063a7b3ea6533c2ed0ffa3b4d79ac3c7d5cb5be9c
3
+ size 4939944336
model-00002-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fbc4b8d534056f7b700276ddc2e52a407767a7803d788144c620a357df799d6f
3
+ size 4915914584
model-00003-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0b5544a5021413d7b7e16f3a53800806474293df5c705101926634122c6c4103
3
+ size 4915914592
model-00004-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:304352082d3656f355ccac2833ab1faef475788e1d14973c5629d5721bd09b72
3
+ size 1379026920
model.safetensors.index.json ADDED
@@ -0,0 +1,580 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 16150730752
4
+ },
5
+ "weight_map": {
6
+ "language_model.model.layers.0.attention.wo.weight": "model-00001-of-00004.safetensors",
7
+ "language_model.model.layers.0.attention.wqkv.weight": "model-00001-of-00004.safetensors",
8
+ "language_model.model.layers.0.attention_norm.weight": "model-00001-of-00004.safetensors",
9
+ "language_model.model.layers.0.feed_forward.w1.weight": "model-00001-of-00004.safetensors",
10
+ "language_model.model.layers.0.feed_forward.w2.weight": "model-00001-of-00004.safetensors",
11
+ "language_model.model.layers.0.feed_forward.w3.weight": "model-00001-of-00004.safetensors",
12
+ "language_model.model.layers.0.ffn_norm.weight": "model-00001-of-00004.safetensors",
13
+ "language_model.model.layers.1.attention.wo.weight": "model-00001-of-00004.safetensors",
14
+ "language_model.model.layers.1.attention.wqkv.weight": "model-00001-of-00004.safetensors",
15
+ "language_model.model.layers.1.attention_norm.weight": "model-00001-of-00004.safetensors",
16
+ "language_model.model.layers.1.feed_forward.w1.weight": "model-00001-of-00004.safetensors",
17
+ "language_model.model.layers.1.feed_forward.w2.weight": "model-00001-of-00004.safetensors",
18
+ "language_model.model.layers.1.feed_forward.w3.weight": "model-00001-of-00004.safetensors",
19
+ "language_model.model.layers.1.ffn_norm.weight": "model-00001-of-00004.safetensors",
20
+ "language_model.model.layers.10.attention.wo.weight": "model-00002-of-00004.safetensors",
21
+ "language_model.model.layers.10.attention.wqkv.weight": "model-00002-of-00004.safetensors",
22
+ "language_model.model.layers.10.attention_norm.weight": "model-00002-of-00004.safetensors",
23
+ "language_model.model.layers.10.feed_forward.w1.weight": "model-00002-of-00004.safetensors",
24
+ "language_model.model.layers.10.feed_forward.w2.weight": "model-00002-of-00004.safetensors",
25
+ "language_model.model.layers.10.feed_forward.w3.weight": "model-00002-of-00004.safetensors",
26
+ "language_model.model.layers.10.ffn_norm.weight": "model-00002-of-00004.safetensors",
27
+ "language_model.model.layers.11.attention.wo.weight": "model-00002-of-00004.safetensors",
28
+ "language_model.model.layers.11.attention.wqkv.weight": "model-00002-of-00004.safetensors",
29
+ "language_model.model.layers.11.attention_norm.weight": "model-00002-of-00004.safetensors",
30
+ "language_model.model.layers.11.feed_forward.w1.weight": "model-00002-of-00004.safetensors",
31
+ "language_model.model.layers.11.feed_forward.w2.weight": "model-00002-of-00004.safetensors",
32
+ "language_model.model.layers.11.feed_forward.w3.weight": "model-00002-of-00004.safetensors",
33
+ "language_model.model.layers.11.ffn_norm.weight": "model-00002-of-00004.safetensors",
34
+ "language_model.model.layers.12.attention.wo.weight": "model-00002-of-00004.safetensors",
35
+ "language_model.model.layers.12.attention.wqkv.weight": "model-00002-of-00004.safetensors",
36
+ "language_model.model.layers.12.attention_norm.weight": "model-00002-of-00004.safetensors",
37
+ "language_model.model.layers.12.feed_forward.w1.weight": "model-00002-of-00004.safetensors",
38
+ "language_model.model.layers.12.feed_forward.w2.weight": "model-00002-of-00004.safetensors",
39
+ "language_model.model.layers.12.feed_forward.w3.weight": "model-00002-of-00004.safetensors",
40
+ "language_model.model.layers.12.ffn_norm.weight": "model-00002-of-00004.safetensors",
41
+ "language_model.model.layers.13.attention.wo.weight": "model-00002-of-00004.safetensors",
42
+ "language_model.model.layers.13.attention.wqkv.weight": "model-00002-of-00004.safetensors",
43
+ "language_model.model.layers.13.attention_norm.weight": "model-00002-of-00004.safetensors",
44
+ "language_model.model.layers.13.feed_forward.w1.weight": "model-00002-of-00004.safetensors",
45
+ "language_model.model.layers.13.feed_forward.w2.weight": "model-00002-of-00004.safetensors",
46
+ "language_model.model.layers.13.feed_forward.w3.weight": "model-00002-of-00004.safetensors",
47
+ "language_model.model.layers.13.ffn_norm.weight": "model-00002-of-00004.safetensors",
48
+ "language_model.model.layers.14.attention.wo.weight": "model-00002-of-00004.safetensors",
49
+ "language_model.model.layers.14.attention.wqkv.weight": "model-00002-of-00004.safetensors",
50
+ "language_model.model.layers.14.attention_norm.weight": "model-00002-of-00004.safetensors",
51
+ "language_model.model.layers.14.feed_forward.w1.weight": "model-00002-of-00004.safetensors",
52
+ "language_model.model.layers.14.feed_forward.w2.weight": "model-00002-of-00004.safetensors",
53
+ "language_model.model.layers.14.feed_forward.w3.weight": "model-00002-of-00004.safetensors",
54
+ "language_model.model.layers.14.ffn_norm.weight": "model-00002-of-00004.safetensors",
55
+ "language_model.model.layers.15.attention.wo.weight": "model-00002-of-00004.safetensors",
56
+ "language_model.model.layers.15.attention.wqkv.weight": "model-00002-of-00004.safetensors",
57
+ "language_model.model.layers.15.attention_norm.weight": "model-00002-of-00004.safetensors",
58
+ "language_model.model.layers.15.feed_forward.w1.weight": "model-00002-of-00004.safetensors",
59
+ "language_model.model.layers.15.feed_forward.w2.weight": "model-00002-of-00004.safetensors",
60
+ "language_model.model.layers.15.feed_forward.w3.weight": "model-00002-of-00004.safetensors",
61
+ "language_model.model.layers.15.ffn_norm.weight": "model-00002-of-00004.safetensors",
62
+ "language_model.model.layers.16.attention.wo.weight": "model-00002-of-00004.safetensors",
63
+ "language_model.model.layers.16.attention.wqkv.weight": "model-00002-of-00004.safetensors",
64
+ "language_model.model.layers.16.attention_norm.weight": "model-00002-of-00004.safetensors",
65
+ "language_model.model.layers.16.feed_forward.w1.weight": "model-00002-of-00004.safetensors",
66
+ "language_model.model.layers.16.feed_forward.w2.weight": "model-00002-of-00004.safetensors",
67
+ "language_model.model.layers.16.feed_forward.w3.weight": "model-00002-of-00004.safetensors",
68
+ "language_model.model.layers.16.ffn_norm.weight": "model-00002-of-00004.safetensors",
69
+ "language_model.model.layers.17.attention.wo.weight": "model-00002-of-00004.safetensors",
70
+ "language_model.model.layers.17.attention.wqkv.weight": "model-00002-of-00004.safetensors",
71
+ "language_model.model.layers.17.attention_norm.weight": "model-00002-of-00004.safetensors",
72
+ "language_model.model.layers.17.feed_forward.w1.weight": "model-00002-of-00004.safetensors",
73
+ "language_model.model.layers.17.feed_forward.w2.weight": "model-00002-of-00004.safetensors",
74
+ "language_model.model.layers.17.feed_forward.w3.weight": "model-00002-of-00004.safetensors",
75
+ "language_model.model.layers.17.ffn_norm.weight": "model-00002-of-00004.safetensors",
76
+ "language_model.model.layers.18.attention.wo.weight": "model-00002-of-00004.safetensors",
77
+ "language_model.model.layers.18.attention.wqkv.weight": "model-00002-of-00004.safetensors",
78
+ "language_model.model.layers.18.attention_norm.weight": "model-00002-of-00004.safetensors",
79
+ "language_model.model.layers.18.feed_forward.w1.weight": "model-00002-of-00004.safetensors",
80
+ "language_model.model.layers.18.feed_forward.w2.weight": "model-00002-of-00004.safetensors",
81
+ "language_model.model.layers.18.feed_forward.w3.weight": "model-00002-of-00004.safetensors",
82
+ "language_model.model.layers.18.ffn_norm.weight": "model-00002-of-00004.safetensors",
83
+ "language_model.model.layers.19.attention.wo.weight": "model-00002-of-00004.safetensors",
84
+ "language_model.model.layers.19.attention.wqkv.weight": "model-00002-of-00004.safetensors",
85
+ "language_model.model.layers.19.attention_norm.weight": "model-00003-of-00004.safetensors",
86
+ "language_model.model.layers.19.feed_forward.w1.weight": "model-00002-of-00004.safetensors",
87
+ "language_model.model.layers.19.feed_forward.w2.weight": "model-00003-of-00004.safetensors",
88
+ "language_model.model.layers.19.feed_forward.w3.weight": "model-00003-of-00004.safetensors",
89
+ "language_model.model.layers.19.ffn_norm.weight": "model-00003-of-00004.safetensors",
90
+ "language_model.model.layers.2.attention.wo.weight": "model-00001-of-00004.safetensors",
91
+ "language_model.model.layers.2.attention.wqkv.weight": "model-00001-of-00004.safetensors",
92
+ "language_model.model.layers.2.attention_norm.weight": "model-00001-of-00004.safetensors",
93
+ "language_model.model.layers.2.feed_forward.w1.weight": "model-00001-of-00004.safetensors",
94
+ "language_model.model.layers.2.feed_forward.w2.weight": "model-00001-of-00004.safetensors",
95
+ "language_model.model.layers.2.feed_forward.w3.weight": "model-00001-of-00004.safetensors",
96
+ "language_model.model.layers.2.ffn_norm.weight": "model-00001-of-00004.safetensors",
97
+ "language_model.model.layers.20.attention.wo.weight": "model-00003-of-00004.safetensors",
98
+ "language_model.model.layers.20.attention.wqkv.weight": "model-00003-of-00004.safetensors",
99
+ "language_model.model.layers.20.attention_norm.weight": "model-00003-of-00004.safetensors",
100
+ "language_model.model.layers.20.feed_forward.w1.weight": "model-00003-of-00004.safetensors",
101
+ "language_model.model.layers.20.feed_forward.w2.weight": "model-00003-of-00004.safetensors",
102
+ "language_model.model.layers.20.feed_forward.w3.weight": "model-00003-of-00004.safetensors",
103
+ "language_model.model.layers.20.ffn_norm.weight": "model-00003-of-00004.safetensors",
104
+ "language_model.model.layers.21.attention.wo.weight": "model-00003-of-00004.safetensors",
105
+ "language_model.model.layers.21.attention.wqkv.weight": "model-00003-of-00004.safetensors",
106
+ "language_model.model.layers.21.attention_norm.weight": "model-00003-of-00004.safetensors",
107
+ "language_model.model.layers.21.feed_forward.w1.weight": "model-00003-of-00004.safetensors",
108
+ "language_model.model.layers.21.feed_forward.w2.weight": "model-00003-of-00004.safetensors",
109
+ "language_model.model.layers.21.feed_forward.w3.weight": "model-00003-of-00004.safetensors",
110
+ "language_model.model.layers.21.ffn_norm.weight": "model-00003-of-00004.safetensors",
111
+ "language_model.model.layers.22.attention.wo.weight": "model-00003-of-00004.safetensors",
112
+ "language_model.model.layers.22.attention.wqkv.weight": "model-00003-of-00004.safetensors",
113
+ "language_model.model.layers.22.attention_norm.weight": "model-00003-of-00004.safetensors",
114
+ "language_model.model.layers.22.feed_forward.w1.weight": "model-00003-of-00004.safetensors",
115
+ "language_model.model.layers.22.feed_forward.w2.weight": "model-00003-of-00004.safetensors",
116
+ "language_model.model.layers.22.feed_forward.w3.weight": "model-00003-of-00004.safetensors",
117
+ "language_model.model.layers.22.ffn_norm.weight": "model-00003-of-00004.safetensors",
118
+ "language_model.model.layers.23.attention.wo.weight": "model-00003-of-00004.safetensors",
119
+ "language_model.model.layers.23.attention.wqkv.weight": "model-00003-of-00004.safetensors",
120
+ "language_model.model.layers.23.attention_norm.weight": "model-00003-of-00004.safetensors",
121
+ "language_model.model.layers.23.feed_forward.w1.weight": "model-00003-of-00004.safetensors",
122
+ "language_model.model.layers.23.feed_forward.w2.weight": "model-00003-of-00004.safetensors",
123
+ "language_model.model.layers.23.feed_forward.w3.weight": "model-00003-of-00004.safetensors",
124
+ "language_model.model.layers.23.ffn_norm.weight": "model-00003-of-00004.safetensors",
125
+ "language_model.model.layers.24.attention.wo.weight": "model-00003-of-00004.safetensors",
126
+ "language_model.model.layers.24.attention.wqkv.weight": "model-00003-of-00004.safetensors",
127
+ "language_model.model.layers.24.attention_norm.weight": "model-00003-of-00004.safetensors",
128
+ "language_model.model.layers.24.feed_forward.w1.weight": "model-00003-of-00004.safetensors",
129
+ "language_model.model.layers.24.feed_forward.w2.weight": "model-00003-of-00004.safetensors",
130
+ "language_model.model.layers.24.feed_forward.w3.weight": "model-00003-of-00004.safetensors",
131
+ "language_model.model.layers.24.ffn_norm.weight": "model-00003-of-00004.safetensors",
132
+ "language_model.model.layers.25.attention.wo.weight": "model-00003-of-00004.safetensors",
133
+ "language_model.model.layers.25.attention.wqkv.weight": "model-00003-of-00004.safetensors",
134
+ "language_model.model.layers.25.attention_norm.weight": "model-00003-of-00004.safetensors",
135
+ "language_model.model.layers.25.feed_forward.w1.weight": "model-00003-of-00004.safetensors",
136
+ "language_model.model.layers.25.feed_forward.w2.weight": "model-00003-of-00004.safetensors",
137
+ "language_model.model.layers.25.feed_forward.w3.weight": "model-00003-of-00004.safetensors",
138
+ "language_model.model.layers.25.ffn_norm.weight": "model-00003-of-00004.safetensors",
139
+ "language_model.model.layers.26.attention.wo.weight": "model-00003-of-00004.safetensors",
140
+ "language_model.model.layers.26.attention.wqkv.weight": "model-00003-of-00004.safetensors",
141
+ "language_model.model.layers.26.attention_norm.weight": "model-00003-of-00004.safetensors",
142
+ "language_model.model.layers.26.feed_forward.w1.weight": "model-00003-of-00004.safetensors",
143
+ "language_model.model.layers.26.feed_forward.w2.weight": "model-00003-of-00004.safetensors",
144
+ "language_model.model.layers.26.feed_forward.w3.weight": "model-00003-of-00004.safetensors",
145
+ "language_model.model.layers.26.ffn_norm.weight": "model-00003-of-00004.safetensors",
146
+ "language_model.model.layers.27.attention.wo.weight": "model-00003-of-00004.safetensors",
147
+ "language_model.model.layers.27.attention.wqkv.weight": "model-00003-of-00004.safetensors",
148
+ "language_model.model.layers.27.attention_norm.weight": "model-00003-of-00004.safetensors",
149
+ "language_model.model.layers.27.feed_forward.w1.weight": "model-00003-of-00004.safetensors",
150
+ "language_model.model.layers.27.feed_forward.w2.weight": "model-00003-of-00004.safetensors",
151
+ "language_model.model.layers.27.feed_forward.w3.weight": "model-00003-of-00004.safetensors",
152
+ "language_model.model.layers.27.ffn_norm.weight": "model-00003-of-00004.safetensors",
153
+ "language_model.model.layers.28.attention.wo.weight": "model-00003-of-00004.safetensors",
154
+ "language_model.model.layers.28.attention.wqkv.weight": "model-00003-of-00004.safetensors",
155
+ "language_model.model.layers.28.attention_norm.weight": "model-00003-of-00004.safetensors",
156
+ "language_model.model.layers.28.feed_forward.w1.weight": "model-00003-of-00004.safetensors",
157
+ "language_model.model.layers.28.feed_forward.w2.weight": "model-00003-of-00004.safetensors",
158
+ "language_model.model.layers.28.feed_forward.w3.weight": "model-00003-of-00004.safetensors",
159
+ "language_model.model.layers.28.ffn_norm.weight": "model-00003-of-00004.safetensors",
160
+ "language_model.model.layers.29.attention.wo.weight": "model-00003-of-00004.safetensors",
161
+ "language_model.model.layers.29.attention.wqkv.weight": "model-00003-of-00004.safetensors",
162
+ "language_model.model.layers.29.attention_norm.weight": "model-00003-of-00004.safetensors",
163
+ "language_model.model.layers.29.feed_forward.w1.weight": "model-00003-of-00004.safetensors",
164
+ "language_model.model.layers.29.feed_forward.w2.weight": "model-00003-of-00004.safetensors",
165
+ "language_model.model.layers.29.feed_forward.w3.weight": "model-00003-of-00004.safetensors",
166
+ "language_model.model.layers.29.ffn_norm.weight": "model-00003-of-00004.safetensors",
167
+ "language_model.model.layers.3.attention.wo.weight": "model-00001-of-00004.safetensors",
168
+ "language_model.model.layers.3.attention.wqkv.weight": "model-00001-of-00004.safetensors",
169
+ "language_model.model.layers.3.attention_norm.weight": "model-00001-of-00004.safetensors",
170
+ "language_model.model.layers.3.feed_forward.w1.weight": "model-00001-of-00004.safetensors",
171
+ "language_model.model.layers.3.feed_forward.w2.weight": "model-00001-of-00004.safetensors",
172
+ "language_model.model.layers.3.feed_forward.w3.weight": "model-00001-of-00004.safetensors",
173
+ "language_model.model.layers.3.ffn_norm.weight": "model-00001-of-00004.safetensors",
174
+ "language_model.model.layers.30.attention.wo.weight": "model-00003-of-00004.safetensors",
175
+ "language_model.model.layers.30.attention.wqkv.weight": "model-00003-of-00004.safetensors",
176
+ "language_model.model.layers.30.attention_norm.weight": "model-00004-of-00004.safetensors",
177
+ "language_model.model.layers.30.feed_forward.w1.weight": "model-00003-of-00004.safetensors",
178
+ "language_model.model.layers.30.feed_forward.w2.weight": "model-00004-of-00004.safetensors",
179
+ "language_model.model.layers.30.feed_forward.w3.weight": "model-00003-of-00004.safetensors",
180
+ "language_model.model.layers.30.ffn_norm.weight": "model-00004-of-00004.safetensors",
181
+ "language_model.model.layers.31.attention.wo.weight": "model-00004-of-00004.safetensors",
182
+ "language_model.model.layers.31.attention.wqkv.weight": "model-00004-of-00004.safetensors",
183
+ "language_model.model.layers.31.attention_norm.weight": "model-00004-of-00004.safetensors",
184
+ "language_model.model.layers.31.feed_forward.w1.weight": "model-00004-of-00004.safetensors",
185
+ "language_model.model.layers.31.feed_forward.w2.weight": "model-00004-of-00004.safetensors",
186
+ "language_model.model.layers.31.feed_forward.w3.weight": "model-00004-of-00004.safetensors",
187
+ "language_model.model.layers.31.ffn_norm.weight": "model-00004-of-00004.safetensors",
188
+ "language_model.model.layers.4.attention.wo.weight": "model-00001-of-00004.safetensors",
189
+ "language_model.model.layers.4.attention.wqkv.weight": "model-00001-of-00004.safetensors",
190
+ "language_model.model.layers.4.attention_norm.weight": "model-00001-of-00004.safetensors",
191
+ "language_model.model.layers.4.feed_forward.w1.weight": "model-00001-of-00004.safetensors",
192
+ "language_model.model.layers.4.feed_forward.w2.weight": "model-00001-of-00004.safetensors",
193
+ "language_model.model.layers.4.feed_forward.w3.weight": "model-00001-of-00004.safetensors",
194
+ "language_model.model.layers.4.ffn_norm.weight": "model-00001-of-00004.safetensors",
195
+ "language_model.model.layers.5.attention.wo.weight": "model-00001-of-00004.safetensors",
196
+ "language_model.model.layers.5.attention.wqkv.weight": "model-00001-of-00004.safetensors",
197
+ "language_model.model.layers.5.attention_norm.weight": "model-00001-of-00004.safetensors",
198
+ "language_model.model.layers.5.feed_forward.w1.weight": "model-00001-of-00004.safetensors",
199
+ "language_model.model.layers.5.feed_forward.w2.weight": "model-00001-of-00004.safetensors",
200
+ "language_model.model.layers.5.feed_forward.w3.weight": "model-00001-of-00004.safetensors",
201
+ "language_model.model.layers.5.ffn_norm.weight": "model-00001-of-00004.safetensors",
202
+ "language_model.model.layers.6.attention.wo.weight": "model-00001-of-00004.safetensors",
203
+ "language_model.model.layers.6.attention.wqkv.weight": "model-00001-of-00004.safetensors",
204
+ "language_model.model.layers.6.attention_norm.weight": "model-00001-of-00004.safetensors",
205
+ "language_model.model.layers.6.feed_forward.w1.weight": "model-00001-of-00004.safetensors",
206
+ "language_model.model.layers.6.feed_forward.w2.weight": "model-00001-of-00004.safetensors",
207
+ "language_model.model.layers.6.feed_forward.w3.weight": "model-00001-of-00004.safetensors",
208
+ "language_model.model.layers.6.ffn_norm.weight": "model-00001-of-00004.safetensors",
209
+ "language_model.model.layers.7.attention.wo.weight": "model-00001-of-00004.safetensors",
210
+ "language_model.model.layers.7.attention.wqkv.weight": "model-00001-of-00004.safetensors",
211
+ "language_model.model.layers.7.attention_norm.weight": "model-00001-of-00004.safetensors",
212
+ "language_model.model.layers.7.feed_forward.w1.weight": "model-00001-of-00004.safetensors",
213
+ "language_model.model.layers.7.feed_forward.w2.weight": "model-00001-of-00004.safetensors",
214
+ "language_model.model.layers.7.feed_forward.w3.weight": "model-00001-of-00004.safetensors",
215
+ "language_model.model.layers.7.ffn_norm.weight": "model-00001-of-00004.safetensors",
216
+ "language_model.model.layers.8.attention.wo.weight": "model-00001-of-00004.safetensors",
217
+ "language_model.model.layers.8.attention.wqkv.weight": "model-00001-of-00004.safetensors",
218
+ "language_model.model.layers.8.attention_norm.weight": "model-00002-of-00004.safetensors",
219
+ "language_model.model.layers.8.feed_forward.w1.weight": "model-00002-of-00004.safetensors",
220
+ "language_model.model.layers.8.feed_forward.w2.weight": "model-00002-of-00004.safetensors",
221
+ "language_model.model.layers.8.feed_forward.w3.weight": "model-00002-of-00004.safetensors",
222
+ "language_model.model.layers.8.ffn_norm.weight": "model-00002-of-00004.safetensors",
223
+ "language_model.model.layers.9.attention.wo.weight": "model-00002-of-00004.safetensors",
224
+ "language_model.model.layers.9.attention.wqkv.weight": "model-00002-of-00004.safetensors",
225
+ "language_model.model.layers.9.attention_norm.weight": "model-00002-of-00004.safetensors",
226
+ "language_model.model.layers.9.feed_forward.w1.weight": "model-00002-of-00004.safetensors",
227
+ "language_model.model.layers.9.feed_forward.w2.weight": "model-00002-of-00004.safetensors",
228
+ "language_model.model.layers.9.feed_forward.w3.weight": "model-00002-of-00004.safetensors",
229
+ "language_model.model.layers.9.ffn_norm.weight": "model-00002-of-00004.safetensors",
230
+ "language_model.model.norm.weight": "model-00004-of-00004.safetensors",
231
+ "language_model.model.tok_embeddings.weight": "model-00001-of-00004.safetensors",
232
+ "language_model.output.weight": "model-00004-of-00004.safetensors",
233
+ "mlp1.0.bias": "model-00004-of-00004.safetensors",
234
+ "mlp1.0.weight": "model-00004-of-00004.safetensors",
235
+ "mlp1.1.bias": "model-00004-of-00004.safetensors",
236
+ "mlp1.1.weight": "model-00004-of-00004.safetensors",
237
+ "mlp1.3.bias": "model-00004-of-00004.safetensors",
238
+ "mlp1.3.weight": "model-00004-of-00004.safetensors",
239
+ "vision_model.embeddings.class_embedding": "model-00001-of-00004.safetensors",
240
+ "vision_model.embeddings.patch_embedding.bias": "model-00001-of-00004.safetensors",
241
+ "vision_model.embeddings.patch_embedding.weight": "model-00001-of-00004.safetensors",
242
+ "vision_model.embeddings.position_embedding": "model-00001-of-00004.safetensors",
243
+ "vision_model.encoder.layers.0.attn.proj.bias": "model-00001-of-00004.safetensors",
244
+ "vision_model.encoder.layers.0.attn.proj.weight": "model-00001-of-00004.safetensors",
245
+ "vision_model.encoder.layers.0.attn.qkv.bias": "model-00001-of-00004.safetensors",
246
+ "vision_model.encoder.layers.0.attn.qkv.weight": "model-00001-of-00004.safetensors",
247
+ "vision_model.encoder.layers.0.ls1": "model-00001-of-00004.safetensors",
248
+ "vision_model.encoder.layers.0.ls2": "model-00001-of-00004.safetensors",
249
+ "vision_model.encoder.layers.0.mlp.fc1.bias": "model-00001-of-00004.safetensors",
250
+ "vision_model.encoder.layers.0.mlp.fc1.weight": "model-00001-of-00004.safetensors",
251
+ "vision_model.encoder.layers.0.mlp.fc2.bias": "model-00001-of-00004.safetensors",
252
+ "vision_model.encoder.layers.0.mlp.fc2.weight": "model-00001-of-00004.safetensors",
253
+ "vision_model.encoder.layers.0.norm1.bias": "model-00001-of-00004.safetensors",
254
+ "vision_model.encoder.layers.0.norm1.weight": "model-00001-of-00004.safetensors",
255
+ "vision_model.encoder.layers.0.norm2.bias": "model-00001-of-00004.safetensors",
256
+ "vision_model.encoder.layers.0.norm2.weight": "model-00001-of-00004.safetensors",
257
+ "vision_model.encoder.layers.1.attn.proj.bias": "model-00001-of-00004.safetensors",
258
+ "vision_model.encoder.layers.1.attn.proj.weight": "model-00001-of-00004.safetensors",
259
+ "vision_model.encoder.layers.1.attn.qkv.bias": "model-00001-of-00004.safetensors",
260
+ "vision_model.encoder.layers.1.attn.qkv.weight": "model-00001-of-00004.safetensors",
261
+ "vision_model.encoder.layers.1.ls1": "model-00001-of-00004.safetensors",
262
+ "vision_model.encoder.layers.1.ls2": "model-00001-of-00004.safetensors",
263
+ "vision_model.encoder.layers.1.mlp.fc1.bias": "model-00001-of-00004.safetensors",
264
+ "vision_model.encoder.layers.1.mlp.fc1.weight": "model-00001-of-00004.safetensors",
265
+ "vision_model.encoder.layers.1.mlp.fc2.bias": "model-00001-of-00004.safetensors",
266
+ "vision_model.encoder.layers.1.mlp.fc2.weight": "model-00001-of-00004.safetensors",
267
+ "vision_model.encoder.layers.1.norm1.bias": "model-00001-of-00004.safetensors",
268
+ "vision_model.encoder.layers.1.norm1.weight": "model-00001-of-00004.safetensors",
269
+ "vision_model.encoder.layers.1.norm2.bias": "model-00001-of-00004.safetensors",
270
+ "vision_model.encoder.layers.1.norm2.weight": "model-00001-of-00004.safetensors",
271
+ "vision_model.encoder.layers.10.attn.proj.bias": "model-00001-of-00004.safetensors",
272
+ "vision_model.encoder.layers.10.attn.proj.weight": "model-00001-of-00004.safetensors",
273
+ "vision_model.encoder.layers.10.attn.qkv.bias": "model-00001-of-00004.safetensors",
274
+ "vision_model.encoder.layers.10.attn.qkv.weight": "model-00001-of-00004.safetensors",
275
+ "vision_model.encoder.layers.10.ls1": "model-00001-of-00004.safetensors",
276
+ "vision_model.encoder.layers.10.ls2": "model-00001-of-00004.safetensors",
277
+ "vision_model.encoder.layers.10.mlp.fc1.bias": "model-00001-of-00004.safetensors",
278
+ "vision_model.encoder.layers.10.mlp.fc1.weight": "model-00001-of-00004.safetensors",
279
+ "vision_model.encoder.layers.10.mlp.fc2.bias": "model-00001-of-00004.safetensors",
280
+ "vision_model.encoder.layers.10.mlp.fc2.weight": "model-00001-of-00004.safetensors",
281
+ "vision_model.encoder.layers.10.norm1.bias": "model-00001-of-00004.safetensors",
282
+ "vision_model.encoder.layers.10.norm1.weight": "model-00001-of-00004.safetensors",
283
+ "vision_model.encoder.layers.10.norm2.bias": "model-00001-of-00004.safetensors",
284
+ "vision_model.encoder.layers.10.norm2.weight": "model-00001-of-00004.safetensors",
285
+ "vision_model.encoder.layers.11.attn.proj.bias": "model-00001-of-00004.safetensors",
286
+ "vision_model.encoder.layers.11.attn.proj.weight": "model-00001-of-00004.safetensors",
287
+ "vision_model.encoder.layers.11.attn.qkv.bias": "model-00001-of-00004.safetensors",
288
+ "vision_model.encoder.layers.11.attn.qkv.weight": "model-00001-of-00004.safetensors",
289
+ "vision_model.encoder.layers.11.ls1": "model-00001-of-00004.safetensors",
290
+ "vision_model.encoder.layers.11.ls2": "model-00001-of-00004.safetensors",
291
+ "vision_model.encoder.layers.11.mlp.fc1.bias": "model-00001-of-00004.safetensors",
292
+ "vision_model.encoder.layers.11.mlp.fc1.weight": "model-00001-of-00004.safetensors",
293
+ "vision_model.encoder.layers.11.mlp.fc2.bias": "model-00001-of-00004.safetensors",
294
+ "vision_model.encoder.layers.11.mlp.fc2.weight": "model-00001-of-00004.safetensors",
295
+ "vision_model.encoder.layers.11.norm1.bias": "model-00001-of-00004.safetensors",
296
+ "vision_model.encoder.layers.11.norm1.weight": "model-00001-of-00004.safetensors",
297
+ "vision_model.encoder.layers.11.norm2.bias": "model-00001-of-00004.safetensors",
298
+ "vision_model.encoder.layers.11.norm2.weight": "model-00001-of-00004.safetensors",
299
+ "vision_model.encoder.layers.12.attn.proj.bias": "model-00001-of-00004.safetensors",
300
+ "vision_model.encoder.layers.12.attn.proj.weight": "model-00001-of-00004.safetensors",
301
+ "vision_model.encoder.layers.12.attn.qkv.bias": "model-00001-of-00004.safetensors",
302
+ "vision_model.encoder.layers.12.attn.qkv.weight": "model-00001-of-00004.safetensors",
303
+ "vision_model.encoder.layers.12.ls1": "model-00001-of-00004.safetensors",
304
+ "vision_model.encoder.layers.12.ls2": "model-00001-of-00004.safetensors",
305
+ "vision_model.encoder.layers.12.mlp.fc1.bias": "model-00001-of-00004.safetensors",
306
+ "vision_model.encoder.layers.12.mlp.fc1.weight": "model-00001-of-00004.safetensors",
307
+ "vision_model.encoder.layers.12.mlp.fc2.bias": "model-00001-of-00004.safetensors",
308
+ "vision_model.encoder.layers.12.mlp.fc2.weight": "model-00001-of-00004.safetensors",
309
+ "vision_model.encoder.layers.12.norm1.bias": "model-00001-of-00004.safetensors",
310
+ "vision_model.encoder.layers.12.norm1.weight": "model-00001-of-00004.safetensors",
311
+ "vision_model.encoder.layers.12.norm2.bias": "model-00001-of-00004.safetensors",
312
+ "vision_model.encoder.layers.12.norm2.weight": "model-00001-of-00004.safetensors",
313
+ "vision_model.encoder.layers.13.attn.proj.bias": "model-00001-of-00004.safetensors",
314
+ "vision_model.encoder.layers.13.attn.proj.weight": "model-00001-of-00004.safetensors",
315
+ "vision_model.encoder.layers.13.attn.qkv.bias": "model-00001-of-00004.safetensors",
316
+ "vision_model.encoder.layers.13.attn.qkv.weight": "model-00001-of-00004.safetensors",
317
+ "vision_model.encoder.layers.13.ls1": "model-00001-of-00004.safetensors",
318
+ "vision_model.encoder.layers.13.ls2": "model-00001-of-00004.safetensors",
319
+ "vision_model.encoder.layers.13.mlp.fc1.bias": "model-00001-of-00004.safetensors",
320
+ "vision_model.encoder.layers.13.mlp.fc1.weight": "model-00001-of-00004.safetensors",
321
+ "vision_model.encoder.layers.13.mlp.fc2.bias": "model-00001-of-00004.safetensors",
322
+ "vision_model.encoder.layers.13.mlp.fc2.weight": "model-00001-of-00004.safetensors",
323
+ "vision_model.encoder.layers.13.norm1.bias": "model-00001-of-00004.safetensors",
324
+ "vision_model.encoder.layers.13.norm1.weight": "model-00001-of-00004.safetensors",
325
+ "vision_model.encoder.layers.13.norm2.bias": "model-00001-of-00004.safetensors",
326
+ "vision_model.encoder.layers.13.norm2.weight": "model-00001-of-00004.safetensors",
327
+ "vision_model.encoder.layers.14.attn.proj.bias": "model-00001-of-00004.safetensors",
328
+ "vision_model.encoder.layers.14.attn.proj.weight": "model-00001-of-00004.safetensors",
329
+ "vision_model.encoder.layers.14.attn.qkv.bias": "model-00001-of-00004.safetensors",
330
+ "vision_model.encoder.layers.14.attn.qkv.weight": "model-00001-of-00004.safetensors",
331
+ "vision_model.encoder.layers.14.ls1": "model-00001-of-00004.safetensors",
332
+ "vision_model.encoder.layers.14.ls2": "model-00001-of-00004.safetensors",
333
+ "vision_model.encoder.layers.14.mlp.fc1.bias": "model-00001-of-00004.safetensors",
334
+ "vision_model.encoder.layers.14.mlp.fc1.weight": "model-00001-of-00004.safetensors",
335
+ "vision_model.encoder.layers.14.mlp.fc2.bias": "model-00001-of-00004.safetensors",
336
+ "vision_model.encoder.layers.14.mlp.fc2.weight": "model-00001-of-00004.safetensors",
337
+ "vision_model.encoder.layers.14.norm1.bias": "model-00001-of-00004.safetensors",
338
+ "vision_model.encoder.layers.14.norm1.weight": "model-00001-of-00004.safetensors",
339
+ "vision_model.encoder.layers.14.norm2.bias": "model-00001-of-00004.safetensors",
340
+ "vision_model.encoder.layers.14.norm2.weight": "model-00001-of-00004.safetensors",
341
+ "vision_model.encoder.layers.15.attn.proj.bias": "model-00001-of-00004.safetensors",
342
+ "vision_model.encoder.layers.15.attn.proj.weight": "model-00001-of-00004.safetensors",
343
+ "vision_model.encoder.layers.15.attn.qkv.bias": "model-00001-of-00004.safetensors",
344
+ "vision_model.encoder.layers.15.attn.qkv.weight": "model-00001-of-00004.safetensors",
345
+ "vision_model.encoder.layers.15.ls1": "model-00001-of-00004.safetensors",
346
+ "vision_model.encoder.layers.15.ls2": "model-00001-of-00004.safetensors",
347
+ "vision_model.encoder.layers.15.mlp.fc1.bias": "model-00001-of-00004.safetensors",
348
+ "vision_model.encoder.layers.15.mlp.fc1.weight": "model-00001-of-00004.safetensors",
349
+ "vision_model.encoder.layers.15.mlp.fc2.bias": "model-00001-of-00004.safetensors",
350
+ "vision_model.encoder.layers.15.mlp.fc2.weight": "model-00001-of-00004.safetensors",
351
+ "vision_model.encoder.layers.15.norm1.bias": "model-00001-of-00004.safetensors",
352
+ "vision_model.encoder.layers.15.norm1.weight": "model-00001-of-00004.safetensors",
353
+ "vision_model.encoder.layers.15.norm2.bias": "model-00001-of-00004.safetensors",
354
+ "vision_model.encoder.layers.15.norm2.weight": "model-00001-of-00004.safetensors",
355
+ "vision_model.encoder.layers.16.attn.proj.bias": "model-00001-of-00004.safetensors",
356
+ "vision_model.encoder.layers.16.attn.proj.weight": "model-00001-of-00004.safetensors",
357
+ "vision_model.encoder.layers.16.attn.qkv.bias": "model-00001-of-00004.safetensors",
358
+ "vision_model.encoder.layers.16.attn.qkv.weight": "model-00001-of-00004.safetensors",
359
+ "vision_model.encoder.layers.16.ls1": "model-00001-of-00004.safetensors",
360
+ "vision_model.encoder.layers.16.ls2": "model-00001-of-00004.safetensors",
361
+ "vision_model.encoder.layers.16.mlp.fc1.bias": "model-00001-of-00004.safetensors",
362
+ "vision_model.encoder.layers.16.mlp.fc1.weight": "model-00001-of-00004.safetensors",
363
+ "vision_model.encoder.layers.16.mlp.fc2.bias": "model-00001-of-00004.safetensors",
364
+ "vision_model.encoder.layers.16.mlp.fc2.weight": "model-00001-of-00004.safetensors",
365
+ "vision_model.encoder.layers.16.norm1.bias": "model-00001-of-00004.safetensors",
366
+ "vision_model.encoder.layers.16.norm1.weight": "model-00001-of-00004.safetensors",
367
+ "vision_model.encoder.layers.16.norm2.bias": "model-00001-of-00004.safetensors",
368
+ "vision_model.encoder.layers.16.norm2.weight": "model-00001-of-00004.safetensors",
369
+ "vision_model.encoder.layers.17.attn.proj.bias": "model-00001-of-00004.safetensors",
370
+ "vision_model.encoder.layers.17.attn.proj.weight": "model-00001-of-00004.safetensors",
371
+ "vision_model.encoder.layers.17.attn.qkv.bias": "model-00001-of-00004.safetensors",
372
+ "vision_model.encoder.layers.17.attn.qkv.weight": "model-00001-of-00004.safetensors",
373
+ "vision_model.encoder.layers.17.ls1": "model-00001-of-00004.safetensors",
374
+ "vision_model.encoder.layers.17.ls2": "model-00001-of-00004.safetensors",
375
+ "vision_model.encoder.layers.17.mlp.fc1.bias": "model-00001-of-00004.safetensors",
376
+ "vision_model.encoder.layers.17.mlp.fc1.weight": "model-00001-of-00004.safetensors",
377
+ "vision_model.encoder.layers.17.mlp.fc2.bias": "model-00001-of-00004.safetensors",
378
+ "vision_model.encoder.layers.17.mlp.fc2.weight": "model-00001-of-00004.safetensors",
379
+ "vision_model.encoder.layers.17.norm1.bias": "model-00001-of-00004.safetensors",
380
+ "vision_model.encoder.layers.17.norm1.weight": "model-00001-of-00004.safetensors",
381
+ "vision_model.encoder.layers.17.norm2.bias": "model-00001-of-00004.safetensors",
382
+ "vision_model.encoder.layers.17.norm2.weight": "model-00001-of-00004.safetensors",
383
+ "vision_model.encoder.layers.18.attn.proj.bias": "model-00001-of-00004.safetensors",
384
+ "vision_model.encoder.layers.18.attn.proj.weight": "model-00001-of-00004.safetensors",
385
+ "vision_model.encoder.layers.18.attn.qkv.bias": "model-00001-of-00004.safetensors",
386
+ "vision_model.encoder.layers.18.attn.qkv.weight": "model-00001-of-00004.safetensors",
387
+ "vision_model.encoder.layers.18.ls1": "model-00001-of-00004.safetensors",
388
+ "vision_model.encoder.layers.18.ls2": "model-00001-of-00004.safetensors",
389
+ "vision_model.encoder.layers.18.mlp.fc1.bias": "model-00001-of-00004.safetensors",
390
+ "vision_model.encoder.layers.18.mlp.fc1.weight": "model-00001-of-00004.safetensors",
391
+ "vision_model.encoder.layers.18.mlp.fc2.bias": "model-00001-of-00004.safetensors",
392
+ "vision_model.encoder.layers.18.mlp.fc2.weight": "model-00001-of-00004.safetensors",
393
+ "vision_model.encoder.layers.18.norm1.bias": "model-00001-of-00004.safetensors",
394
+ "vision_model.encoder.layers.18.norm1.weight": "model-00001-of-00004.safetensors",
395
+ "vision_model.encoder.layers.18.norm2.bias": "model-00001-of-00004.safetensors",
396
+ "vision_model.encoder.layers.18.norm2.weight": "model-00001-of-00004.safetensors",
397
+ "vision_model.encoder.layers.19.attn.proj.bias": "model-00001-of-00004.safetensors",
398
+ "vision_model.encoder.layers.19.attn.proj.weight": "model-00001-of-00004.safetensors",
399
+ "vision_model.encoder.layers.19.attn.qkv.bias": "model-00001-of-00004.safetensors",
400
+ "vision_model.encoder.layers.19.attn.qkv.weight": "model-00001-of-00004.safetensors",
401
+ "vision_model.encoder.layers.19.ls1": "model-00001-of-00004.safetensors",
402
+ "vision_model.encoder.layers.19.ls2": "model-00001-of-00004.safetensors",
403
+ "vision_model.encoder.layers.19.mlp.fc1.bias": "model-00001-of-00004.safetensors",
404
+ "vision_model.encoder.layers.19.mlp.fc1.weight": "model-00001-of-00004.safetensors",
405
+ "vision_model.encoder.layers.19.mlp.fc2.bias": "model-00001-of-00004.safetensors",
406
+ "vision_model.encoder.layers.19.mlp.fc2.weight": "model-00001-of-00004.safetensors",
407
+ "vision_model.encoder.layers.19.norm1.bias": "model-00001-of-00004.safetensors",
408
+ "vision_model.encoder.layers.19.norm1.weight": "model-00001-of-00004.safetensors",
409
+ "vision_model.encoder.layers.19.norm2.bias": "model-00001-of-00004.safetensors",
410
+ "vision_model.encoder.layers.19.norm2.weight": "model-00001-of-00004.safetensors",
411
+ "vision_model.encoder.layers.2.attn.proj.bias": "model-00001-of-00004.safetensors",
412
+ "vision_model.encoder.layers.2.attn.proj.weight": "model-00001-of-00004.safetensors",
413
+ "vision_model.encoder.layers.2.attn.qkv.bias": "model-00001-of-00004.safetensors",
414
+ "vision_model.encoder.layers.2.attn.qkv.weight": "model-00001-of-00004.safetensors",
415
+ "vision_model.encoder.layers.2.ls1": "model-00001-of-00004.safetensors",
416
+ "vision_model.encoder.layers.2.ls2": "model-00001-of-00004.safetensors",
417
+ "vision_model.encoder.layers.2.mlp.fc1.bias": "model-00001-of-00004.safetensors",
418
+ "vision_model.encoder.layers.2.mlp.fc1.weight": "model-00001-of-00004.safetensors",
419
+ "vision_model.encoder.layers.2.mlp.fc2.bias": "model-00001-of-00004.safetensors",
420
+ "vision_model.encoder.layers.2.mlp.fc2.weight": "model-00001-of-00004.safetensors",
421
+ "vision_model.encoder.layers.2.norm1.bias": "model-00001-of-00004.safetensors",
422
+ "vision_model.encoder.layers.2.norm1.weight": "model-00001-of-00004.safetensors",
423
+ "vision_model.encoder.layers.2.norm2.bias": "model-00001-of-00004.safetensors",
424
+ "vision_model.encoder.layers.2.norm2.weight": "model-00001-of-00004.safetensors",
425
+ "vision_model.encoder.layers.20.attn.proj.bias": "model-00001-of-00004.safetensors",
426
+ "vision_model.encoder.layers.20.attn.proj.weight": "model-00001-of-00004.safetensors",
427
+ "vision_model.encoder.layers.20.attn.qkv.bias": "model-00001-of-00004.safetensors",
428
+ "vision_model.encoder.layers.20.attn.qkv.weight": "model-00001-of-00004.safetensors",
429
+ "vision_model.encoder.layers.20.ls1": "model-00001-of-00004.safetensors",
430
+ "vision_model.encoder.layers.20.ls2": "model-00001-of-00004.safetensors",
431
+ "vision_model.encoder.layers.20.mlp.fc1.bias": "model-00001-of-00004.safetensors",
432
+ "vision_model.encoder.layers.20.mlp.fc1.weight": "model-00001-of-00004.safetensors",
433
+ "vision_model.encoder.layers.20.mlp.fc2.bias": "model-00001-of-00004.safetensors",
434
+ "vision_model.encoder.layers.20.mlp.fc2.weight": "model-00001-of-00004.safetensors",
435
+ "vision_model.encoder.layers.20.norm1.bias": "model-00001-of-00004.safetensors",
436
+ "vision_model.encoder.layers.20.norm1.weight": "model-00001-of-00004.safetensors",
437
+ "vision_model.encoder.layers.20.norm2.bias": "model-00001-of-00004.safetensors",
438
+ "vision_model.encoder.layers.20.norm2.weight": "model-00001-of-00004.safetensors",
439
+ "vision_model.encoder.layers.21.attn.proj.bias": "model-00001-of-00004.safetensors",
440
+ "vision_model.encoder.layers.21.attn.proj.weight": "model-00001-of-00004.safetensors",
441
+ "vision_model.encoder.layers.21.attn.qkv.bias": "model-00001-of-00004.safetensors",
442
+ "vision_model.encoder.layers.21.attn.qkv.weight": "model-00001-of-00004.safetensors",
443
+ "vision_model.encoder.layers.21.ls1": "model-00001-of-00004.safetensors",
444
+ "vision_model.encoder.layers.21.ls2": "model-00001-of-00004.safetensors",
445
+ "vision_model.encoder.layers.21.mlp.fc1.bias": "model-00001-of-00004.safetensors",
446
+ "vision_model.encoder.layers.21.mlp.fc1.weight": "model-00001-of-00004.safetensors",
447
+ "vision_model.encoder.layers.21.mlp.fc2.bias": "model-00001-of-00004.safetensors",
448
+ "vision_model.encoder.layers.21.mlp.fc2.weight": "model-00001-of-00004.safetensors",
449
+ "vision_model.encoder.layers.21.norm1.bias": "model-00001-of-00004.safetensors",
450
+ "vision_model.encoder.layers.21.norm1.weight": "model-00001-of-00004.safetensors",
451
+ "vision_model.encoder.layers.21.norm2.bias": "model-00001-of-00004.safetensors",
452
+ "vision_model.encoder.layers.21.norm2.weight": "model-00001-of-00004.safetensors",
453
+ "vision_model.encoder.layers.22.attn.proj.bias": "model-00001-of-00004.safetensors",
454
+ "vision_model.encoder.layers.22.attn.proj.weight": "model-00001-of-00004.safetensors",
455
+ "vision_model.encoder.layers.22.attn.qkv.bias": "model-00001-of-00004.safetensors",
456
+ "vision_model.encoder.layers.22.attn.qkv.weight": "model-00001-of-00004.safetensors",
457
+ "vision_model.encoder.layers.22.ls1": "model-00001-of-00004.safetensors",
458
+ "vision_model.encoder.layers.22.ls2": "model-00001-of-00004.safetensors",
459
+ "vision_model.encoder.layers.22.mlp.fc1.bias": "model-00001-of-00004.safetensors",
460
+ "vision_model.encoder.layers.22.mlp.fc1.weight": "model-00001-of-00004.safetensors",
461
+ "vision_model.encoder.layers.22.mlp.fc2.bias": "model-00001-of-00004.safetensors",
462
+ "vision_model.encoder.layers.22.mlp.fc2.weight": "model-00001-of-00004.safetensors",
463
+ "vision_model.encoder.layers.22.norm1.bias": "model-00001-of-00004.safetensors",
464
+ "vision_model.encoder.layers.22.norm1.weight": "model-00001-of-00004.safetensors",
465
+ "vision_model.encoder.layers.22.norm2.bias": "model-00001-of-00004.safetensors",
466
+ "vision_model.encoder.layers.22.norm2.weight": "model-00001-of-00004.safetensors",
467
+ "vision_model.encoder.layers.23.attn.proj.bias": "model-00001-of-00004.safetensors",
468
+ "vision_model.encoder.layers.23.attn.proj.weight": "model-00001-of-00004.safetensors",
469
+ "vision_model.encoder.layers.23.attn.qkv.bias": "model-00001-of-00004.safetensors",
470
+ "vision_model.encoder.layers.23.attn.qkv.weight": "model-00001-of-00004.safetensors",
471
+ "vision_model.encoder.layers.23.ls1": "model-00001-of-00004.safetensors",
472
+ "vision_model.encoder.layers.23.ls2": "model-00001-of-00004.safetensors",
473
+ "vision_model.encoder.layers.23.mlp.fc1.bias": "model-00001-of-00004.safetensors",
474
+ "vision_model.encoder.layers.23.mlp.fc1.weight": "model-00001-of-00004.safetensors",
475
+ "vision_model.encoder.layers.23.mlp.fc2.bias": "model-00001-of-00004.safetensors",
476
+ "vision_model.encoder.layers.23.mlp.fc2.weight": "model-00001-of-00004.safetensors",
477
+ "vision_model.encoder.layers.23.norm1.bias": "model-00001-of-00004.safetensors",
478
+ "vision_model.encoder.layers.23.norm1.weight": "model-00001-of-00004.safetensors",
479
+ "vision_model.encoder.layers.23.norm2.bias": "model-00001-of-00004.safetensors",
480
+ "vision_model.encoder.layers.23.norm2.weight": "model-00001-of-00004.safetensors",
481
+ "vision_model.encoder.layers.3.attn.proj.bias": "model-00001-of-00004.safetensors",
482
+ "vision_model.encoder.layers.3.attn.proj.weight": "model-00001-of-00004.safetensors",
483
+ "vision_model.encoder.layers.3.attn.qkv.bias": "model-00001-of-00004.safetensors",
484
+ "vision_model.encoder.layers.3.attn.qkv.weight": "model-00001-of-00004.safetensors",
485
+ "vision_model.encoder.layers.3.ls1": "model-00001-of-00004.safetensors",
486
+ "vision_model.encoder.layers.3.ls2": "model-00001-of-00004.safetensors",
487
+ "vision_model.encoder.layers.3.mlp.fc1.bias": "model-00001-of-00004.safetensors",
488
+ "vision_model.encoder.layers.3.mlp.fc1.weight": "model-00001-of-00004.safetensors",
489
+ "vision_model.encoder.layers.3.mlp.fc2.bias": "model-00001-of-00004.safetensors",
490
+ "vision_model.encoder.layers.3.mlp.fc2.weight": "model-00001-of-00004.safetensors",
491
+ "vision_model.encoder.layers.3.norm1.bias": "model-00001-of-00004.safetensors",
492
+ "vision_model.encoder.layers.3.norm1.weight": "model-00001-of-00004.safetensors",
493
+ "vision_model.encoder.layers.3.norm2.bias": "model-00001-of-00004.safetensors",
494
+ "vision_model.encoder.layers.3.norm2.weight": "model-00001-of-00004.safetensors",
495
+ "vision_model.encoder.layers.4.attn.proj.bias": "model-00001-of-00004.safetensors",
496
+ "vision_model.encoder.layers.4.attn.proj.weight": "model-00001-of-00004.safetensors",
497
+ "vision_model.encoder.layers.4.attn.qkv.bias": "model-00001-of-00004.safetensors",
498
+ "vision_model.encoder.layers.4.attn.qkv.weight": "model-00001-of-00004.safetensors",
499
+ "vision_model.encoder.layers.4.ls1": "model-00001-of-00004.safetensors",
500
+ "vision_model.encoder.layers.4.ls2": "model-00001-of-00004.safetensors",
501
+ "vision_model.encoder.layers.4.mlp.fc1.bias": "model-00001-of-00004.safetensors",
502
+ "vision_model.encoder.layers.4.mlp.fc1.weight": "model-00001-of-00004.safetensors",
503
+ "vision_model.encoder.layers.4.mlp.fc2.bias": "model-00001-of-00004.safetensors",
504
+ "vision_model.encoder.layers.4.mlp.fc2.weight": "model-00001-of-00004.safetensors",
505
+ "vision_model.encoder.layers.4.norm1.bias": "model-00001-of-00004.safetensors",
506
+ "vision_model.encoder.layers.4.norm1.weight": "model-00001-of-00004.safetensors",
507
+ "vision_model.encoder.layers.4.norm2.bias": "model-00001-of-00004.safetensors",
508
+ "vision_model.encoder.layers.4.norm2.weight": "model-00001-of-00004.safetensors",
509
+ "vision_model.encoder.layers.5.attn.proj.bias": "model-00001-of-00004.safetensors",
510
+ "vision_model.encoder.layers.5.attn.proj.weight": "model-00001-of-00004.safetensors",
511
+ "vision_model.encoder.layers.5.attn.qkv.bias": "model-00001-of-00004.safetensors",
512
+ "vision_model.encoder.layers.5.attn.qkv.weight": "model-00001-of-00004.safetensors",
513
+ "vision_model.encoder.layers.5.ls1": "model-00001-of-00004.safetensors",
514
+ "vision_model.encoder.layers.5.ls2": "model-00001-of-00004.safetensors",
515
+ "vision_model.encoder.layers.5.mlp.fc1.bias": "model-00001-of-00004.safetensors",
516
+ "vision_model.encoder.layers.5.mlp.fc1.weight": "model-00001-of-00004.safetensors",
517
+ "vision_model.encoder.layers.5.mlp.fc2.bias": "model-00001-of-00004.safetensors",
518
+ "vision_model.encoder.layers.5.mlp.fc2.weight": "model-00001-of-00004.safetensors",
519
+ "vision_model.encoder.layers.5.norm1.bias": "model-00001-of-00004.safetensors",
520
+ "vision_model.encoder.layers.5.norm1.weight": "model-00001-of-00004.safetensors",
521
+ "vision_model.encoder.layers.5.norm2.bias": "model-00001-of-00004.safetensors",
522
+ "vision_model.encoder.layers.5.norm2.weight": "model-00001-of-00004.safetensors",
523
+ "vision_model.encoder.layers.6.attn.proj.bias": "model-00001-of-00004.safetensors",
524
+ "vision_model.encoder.layers.6.attn.proj.weight": "model-00001-of-00004.safetensors",
525
+ "vision_model.encoder.layers.6.attn.qkv.bias": "model-00001-of-00004.safetensors",
526
+ "vision_model.encoder.layers.6.attn.qkv.weight": "model-00001-of-00004.safetensors",
527
+ "vision_model.encoder.layers.6.ls1": "model-00001-of-00004.safetensors",
528
+ "vision_model.encoder.layers.6.ls2": "model-00001-of-00004.safetensors",
529
+ "vision_model.encoder.layers.6.mlp.fc1.bias": "model-00001-of-00004.safetensors",
530
+ "vision_model.encoder.layers.6.mlp.fc1.weight": "model-00001-of-00004.safetensors",
531
+ "vision_model.encoder.layers.6.mlp.fc2.bias": "model-00001-of-00004.safetensors",
532
+ "vision_model.encoder.layers.6.mlp.fc2.weight": "model-00001-of-00004.safetensors",
533
+ "vision_model.encoder.layers.6.norm1.bias": "model-00001-of-00004.safetensors",
534
+ "vision_model.encoder.layers.6.norm1.weight": "model-00001-of-00004.safetensors",
535
+ "vision_model.encoder.layers.6.norm2.bias": "model-00001-of-00004.safetensors",
536
+ "vision_model.encoder.layers.6.norm2.weight": "model-00001-of-00004.safetensors",
537
+ "vision_model.encoder.layers.7.attn.proj.bias": "model-00001-of-00004.safetensors",
538
+ "vision_model.encoder.layers.7.attn.proj.weight": "model-00001-of-00004.safetensors",
539
+ "vision_model.encoder.layers.7.attn.qkv.bias": "model-00001-of-00004.safetensors",
540
+ "vision_model.encoder.layers.7.attn.qkv.weight": "model-00001-of-00004.safetensors",
541
+ "vision_model.encoder.layers.7.ls1": "model-00001-of-00004.safetensors",
542
+ "vision_model.encoder.layers.7.ls2": "model-00001-of-00004.safetensors",
543
+ "vision_model.encoder.layers.7.mlp.fc1.bias": "model-00001-of-00004.safetensors",
544
+ "vision_model.encoder.layers.7.mlp.fc1.weight": "model-00001-of-00004.safetensors",
545
+ "vision_model.encoder.layers.7.mlp.fc2.bias": "model-00001-of-00004.safetensors",
546
+ "vision_model.encoder.layers.7.mlp.fc2.weight": "model-00001-of-00004.safetensors",
547
+ "vision_model.encoder.layers.7.norm1.bias": "model-00001-of-00004.safetensors",
548
+ "vision_model.encoder.layers.7.norm1.weight": "model-00001-of-00004.safetensors",
549
+ "vision_model.encoder.layers.7.norm2.bias": "model-00001-of-00004.safetensors",
550
+ "vision_model.encoder.layers.7.norm2.weight": "model-00001-of-00004.safetensors",
551
+ "vision_model.encoder.layers.8.attn.proj.bias": "model-00001-of-00004.safetensors",
552
+ "vision_model.encoder.layers.8.attn.proj.weight": "model-00001-of-00004.safetensors",
553
+ "vision_model.encoder.layers.8.attn.qkv.bias": "model-00001-of-00004.safetensors",
554
+ "vision_model.encoder.layers.8.attn.qkv.weight": "model-00001-of-00004.safetensors",
555
+ "vision_model.encoder.layers.8.ls1": "model-00001-of-00004.safetensors",
556
+ "vision_model.encoder.layers.8.ls2": "model-00001-of-00004.safetensors",
557
+ "vision_model.encoder.layers.8.mlp.fc1.bias": "model-00001-of-00004.safetensors",
558
+ "vision_model.encoder.layers.8.mlp.fc1.weight": "model-00001-of-00004.safetensors",
559
+ "vision_model.encoder.layers.8.mlp.fc2.bias": "model-00001-of-00004.safetensors",
560
+ "vision_model.encoder.layers.8.mlp.fc2.weight": "model-00001-of-00004.safetensors",
561
+ "vision_model.encoder.layers.8.norm1.bias": "model-00001-of-00004.safetensors",
562
+ "vision_model.encoder.layers.8.norm1.weight": "model-00001-of-00004.safetensors",
563
+ "vision_model.encoder.layers.8.norm2.bias": "model-00001-of-00004.safetensors",
564
+ "vision_model.encoder.layers.8.norm2.weight": "model-00001-of-00004.safetensors",
565
+ "vision_model.encoder.layers.9.attn.proj.bias": "model-00001-of-00004.safetensors",
566
+ "vision_model.encoder.layers.9.attn.proj.weight": "model-00001-of-00004.safetensors",
567
+ "vision_model.encoder.layers.9.attn.qkv.bias": "model-00001-of-00004.safetensors",
568
+ "vision_model.encoder.layers.9.attn.qkv.weight": "model-00001-of-00004.safetensors",
569
+ "vision_model.encoder.layers.9.ls1": "model-00001-of-00004.safetensors",
570
+ "vision_model.encoder.layers.9.ls2": "model-00001-of-00004.safetensors",
571
+ "vision_model.encoder.layers.9.mlp.fc1.bias": "model-00001-of-00004.safetensors",
572
+ "vision_model.encoder.layers.9.mlp.fc1.weight": "model-00001-of-00004.safetensors",
573
+ "vision_model.encoder.layers.9.mlp.fc2.bias": "model-00001-of-00004.safetensors",
574
+ "vision_model.encoder.layers.9.mlp.fc2.weight": "model-00001-of-00004.safetensors",
575
+ "vision_model.encoder.layers.9.norm1.bias": "model-00001-of-00004.safetensors",
576
+ "vision_model.encoder.layers.9.norm1.weight": "model-00001-of-00004.safetensors",
577
+ "vision_model.encoder.layers.9.norm2.bias": "model-00001-of-00004.safetensors",
578
+ "vision_model.encoder.layers.9.norm2.weight": "model-00001-of-00004.safetensors"
579
+ }
580
+ }
modeling_intern_vit.py ADDED
@@ -0,0 +1,430 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # --------------------------------------------------------
2
+ # InternVL
3
+ # Copyright (c) 2024 OpenGVLab
4
+ # Licensed under The MIT License [see LICENSE for details]
5
+ # --------------------------------------------------------
6
+
7
+ from typing import Optional, Tuple, Union
8
+
9
+ import torch
10
+ import torch.nn.functional as F
11
+ import torch.utils.checkpoint
12
+ from einops import rearrange
13
+ from timm.models.layers import DropPath
14
+ from torch import nn
15
+ from transformers.activations import ACT2FN
16
+ from transformers.modeling_outputs import (BaseModelOutput,
17
+ BaseModelOutputWithPooling)
18
+ from transformers.modeling_utils import PreTrainedModel
19
+ from transformers.utils import logging
20
+
21
+ from .configuration_intern_vit import InternVisionConfig
22
+
23
+ try:
24
+ from flash_attn.bert_padding import pad_input, unpad_input
25
+ from flash_attn.flash_attn_interface import \
26
+ flash_attn_varlen_qkvpacked_func
27
+ has_flash_attn = True
28
+ except:
29
+ print('FlashAttention2 is not installed.')
30
+ has_flash_attn = False
31
+
32
+ logger = logging.get_logger(__name__)
33
+
34
+
35
+ class FlashAttention(nn.Module):
36
+ """Implement the scaled dot product attention with softmax.
37
+ Arguments
38
+ ---------
39
+ softmax_scale: The temperature to use for the softmax attention.
40
+ (default: 1/sqrt(d_keys) where d_keys is computed at
41
+ runtime)
42
+ attention_dropout: The dropout rate to apply to the attention
43
+ (default: 0.0)
44
+ """
45
+
46
+ def __init__(self, softmax_scale=None, attention_dropout=0.0, device=None, dtype=None):
47
+ super().__init__()
48
+ self.softmax_scale = softmax_scale
49
+ self.dropout_p = attention_dropout
50
+
51
+ def forward(self, qkv, key_padding_mask=None, causal=False, cu_seqlens=None,
52
+ max_s=None, need_weights=False):
53
+ """Implements the multihead softmax attention.
54
+ Arguments
55
+ ---------
56
+ qkv: The tensor containing the query, key, and value. (B, S, 3, H, D) if key_padding_mask is None
57
+ if unpadded: (nnz, 3, h, d)
58
+ key_padding_mask: a bool tensor of shape (B, S)
59
+ """
60
+ assert not need_weights
61
+ assert qkv.dtype in [torch.float16, torch.bfloat16]
62
+ assert qkv.is_cuda
63
+
64
+ if cu_seqlens is None:
65
+ batch_size = qkv.shape[0]
66
+ seqlen = qkv.shape[1]
67
+ if key_padding_mask is None:
68
+ qkv = rearrange(qkv, 'b s ... -> (b s) ...')
69
+ max_s = seqlen
70
+ cu_seqlens = torch.arange(0, (batch_size + 1) * seqlen, step=seqlen, dtype=torch.int32,
71
+ device=qkv.device)
72
+ output = flash_attn_varlen_qkvpacked_func(
73
+ qkv, cu_seqlens, max_s, self.dropout_p if self.training else 0.0,
74
+ softmax_scale=self.softmax_scale, causal=causal
75
+ )
76
+ output = rearrange(output, '(b s) ... -> b s ...', b=batch_size)
77
+ else:
78
+ nheads = qkv.shape[-2]
79
+ x = rearrange(qkv, 'b s three h d -> b s (three h d)')
80
+ x_unpad, indices, cu_seqlens, max_s = unpad_input(x, key_padding_mask)
81
+ x_unpad = rearrange(x_unpad, 'nnz (three h d) -> nnz three h d', three=3, h=nheads)
82
+ output_unpad = flash_attn_varlen_qkvpacked_func(
83
+ x_unpad, cu_seqlens, max_s, self.dropout_p if self.training else 0.0,
84
+ softmax_scale=self.softmax_scale, causal=causal
85
+ )
86
+ output = rearrange(pad_input(rearrange(output_unpad, 'nnz h d -> nnz (h d)'),
87
+ indices, batch_size, seqlen),
88
+ 'b s (h d) -> b s h d', h=nheads)
89
+ else:
90
+ assert max_s is not None
91
+ output = flash_attn_varlen_qkvpacked_func(
92
+ qkv, cu_seqlens, max_s, self.dropout_p if self.training else 0.0,
93
+ softmax_scale=self.softmax_scale, causal=causal
94
+ )
95
+
96
+ return output, None
97
+
98
+
99
+ class InternRMSNorm(nn.Module):
100
+ def __init__(self, hidden_size, eps=1e-6):
101
+ super().__init__()
102
+ self.weight = nn.Parameter(torch.ones(hidden_size))
103
+ self.variance_epsilon = eps
104
+
105
+ def forward(self, hidden_states):
106
+ input_dtype = hidden_states.dtype
107
+ hidden_states = hidden_states.to(torch.float32)
108
+ variance = hidden_states.pow(2).mean(-1, keepdim=True)
109
+ hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
110
+ return self.weight * hidden_states.to(input_dtype)
111
+
112
+
113
+ try:
114
+ from apex.normalization import FusedRMSNorm
115
+
116
+ InternRMSNorm = FusedRMSNorm # noqa
117
+
118
+ logger.info('Discovered apex.normalization.FusedRMSNorm - will use it instead of InternRMSNorm')
119
+ except ImportError:
120
+ # using the normal InternRMSNorm
121
+ pass
122
+ except Exception:
123
+ logger.warning('discovered apex but it failed to load, falling back to InternRMSNorm')
124
+ pass
125
+
126
+
127
+ NORM2FN = {
128
+ 'rms_norm': InternRMSNorm,
129
+ 'layer_norm': nn.LayerNorm,
130
+ }
131
+
132
+
133
+ class InternVisionEmbeddings(nn.Module):
134
+ def __init__(self, config: InternVisionConfig):
135
+ super().__init__()
136
+ self.config = config
137
+ self.embed_dim = config.hidden_size
138
+ self.image_size = config.image_size
139
+ self.patch_size = config.patch_size
140
+
141
+ self.class_embedding = nn.Parameter(
142
+ torch.randn(1, 1, self.embed_dim),
143
+ )
144
+
145
+ self.patch_embedding = nn.Conv2d(
146
+ in_channels=3, out_channels=self.embed_dim, kernel_size=self.patch_size, stride=self.patch_size
147
+ )
148
+
149
+ self.num_patches = (self.image_size // self.patch_size) ** 2
150
+ self.num_positions = self.num_patches + 1
151
+
152
+ self.position_embedding = nn.Parameter(torch.randn(1, self.num_positions, self.embed_dim))
153
+
154
+ def _get_pos_embed(self, pos_embed, H, W):
155
+ target_dtype = pos_embed.dtype
156
+ pos_embed = pos_embed.float().reshape(
157
+ 1, self.image_size // self.patch_size, self.image_size // self.patch_size, -1).permute(0, 3, 1, 2)
158
+ pos_embed = F.interpolate(pos_embed, size=(H, W), mode='bicubic', align_corners=False). \
159
+ reshape(1, -1, H * W).permute(0, 2, 1).to(target_dtype)
160
+ return pos_embed
161
+
162
+ def forward(self, pixel_values: torch.FloatTensor) -> torch.Tensor:
163
+ target_dtype = self.patch_embedding.weight.dtype
164
+ patch_embeds = self.patch_embedding(pixel_values) # shape = [*, channel, width, height]
165
+ batch_size, _, height, width = patch_embeds.shape
166
+ patch_embeds = patch_embeds.flatten(2).transpose(1, 2)
167
+ class_embeds = self.class_embedding.expand(batch_size, 1, -1).to(target_dtype)
168
+ embeddings = torch.cat([class_embeds, patch_embeds], dim=1)
169
+ position_embedding = torch.cat([
170
+ self.position_embedding[:, :1, :],
171
+ self._get_pos_embed(self.position_embedding[:, 1:, :], height, width)
172
+ ], dim=1)
173
+ embeddings = embeddings + position_embedding.to(target_dtype)
174
+ return embeddings
175
+
176
+
177
+ class InternAttention(nn.Module):
178
+ """Multi-headed attention from 'Attention Is All You Need' paper"""
179
+
180
+ def __init__(self, config: InternVisionConfig):
181
+ super().__init__()
182
+ self.config = config
183
+ self.embed_dim = config.hidden_size
184
+ self.num_heads = config.num_attention_heads
185
+ self.use_flash_attn = config.use_flash_attn and has_flash_attn
186
+ if config.use_flash_attn and not has_flash_attn:
187
+ print('Warning: Flash Attention is not available, use_flash_attn is set to False.')
188
+ self.head_dim = self.embed_dim // self.num_heads
189
+ if self.head_dim * self.num_heads != self.embed_dim:
190
+ raise ValueError(
191
+ f'embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:'
192
+ f' {self.num_heads}).'
193
+ )
194
+
195
+ self.scale = self.head_dim ** -0.5
196
+ self.qkv = nn.Linear(self.embed_dim, 3 * self.embed_dim, bias=config.qkv_bias)
197
+ self.attn_drop = nn.Dropout(config.attention_dropout)
198
+ self.proj_drop = nn.Dropout(config.dropout)
199
+
200
+ self.qk_normalization = config.qk_normalization
201
+
202
+ if self.qk_normalization:
203
+ self.q_norm = InternRMSNorm(self.embed_dim, eps=config.layer_norm_eps)
204
+ self.k_norm = InternRMSNorm(self.embed_dim, eps=config.layer_norm_eps)
205
+
206
+ if self.use_flash_attn:
207
+ self.inner_attn = FlashAttention(attention_dropout=config.attention_dropout)
208
+ self.proj = nn.Linear(self.embed_dim, self.embed_dim)
209
+
210
+ def _naive_attn(self, x):
211
+ B, N, C = x.shape
212
+ qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
213
+ q, k, v = qkv.unbind(0) # make torchscript happy (cannot use tensor as tuple)
214
+
215
+ if self.qk_normalization:
216
+ B_, H_, N_, D_ = q.shape
217
+ q = self.q_norm(q.transpose(1, 2).flatten(-2, -1)).view(B_, N_, H_, D_).transpose(1, 2)
218
+ k = self.k_norm(k.transpose(1, 2).flatten(-2, -1)).view(B_, N_, H_, D_).transpose(1, 2)
219
+
220
+ attn = ((q * self.scale) @ k.transpose(-2, -1))
221
+ attn = attn.softmax(dim=-1)
222
+ attn = self.attn_drop(attn)
223
+
224
+ x = (attn @ v).transpose(1, 2).reshape(B, N, C)
225
+ x = self.proj(x)
226
+ x = self.proj_drop(x)
227
+ return x
228
+
229
+ def _flash_attn(self, x, key_padding_mask=None, need_weights=False):
230
+ qkv = self.qkv(x)
231
+ qkv = rearrange(qkv, 'b s (three h d) -> b s three h d', three=3, h=self.num_heads)
232
+
233
+ if self.qk_normalization:
234
+ q, k, v = qkv.unbind(2)
235
+ q = self.q_norm(q.flatten(-2, -1)).view(q.shape)
236
+ k = self.k_norm(k.flatten(-2, -1)).view(k.shape)
237
+ qkv = torch.stack([q, k, v], dim=2)
238
+
239
+ context, _ = self.inner_attn(
240
+ qkv, key_padding_mask=key_padding_mask, need_weights=need_weights, causal=False
241
+ )
242
+ outs = self.proj(rearrange(context, 'b s h d -> b s (h d)'))
243
+ outs = self.proj_drop(outs)
244
+ return outs
245
+
246
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
247
+ x = self._naive_attn(hidden_states) if not self.use_flash_attn else self._flash_attn(hidden_states)
248
+ return x
249
+
250
+
251
+ class InternMLP(nn.Module):
252
+ def __init__(self, config: InternVisionConfig):
253
+ super().__init__()
254
+ self.config = config
255
+ self.act = ACT2FN[config.hidden_act]
256
+ self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
257
+ self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)
258
+
259
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
260
+ hidden_states = self.fc1(hidden_states)
261
+ hidden_states = self.act(hidden_states)
262
+ hidden_states = self.fc2(hidden_states)
263
+ return hidden_states
264
+
265
+
266
+ class InternVisionEncoderLayer(nn.Module):
267
+ def __init__(self, config: InternVisionConfig, drop_path_rate: float):
268
+ super().__init__()
269
+ self.embed_dim = config.hidden_size
270
+ self.intermediate_size = config.intermediate_size
271
+ self.norm_type = config.norm_type
272
+
273
+ self.attn = InternAttention(config)
274
+ self.mlp = InternMLP(config)
275
+ self.norm1 = NORM2FN[self.norm_type](self.embed_dim, eps=config.layer_norm_eps)
276
+ self.norm2 = NORM2FN[self.norm_type](self.embed_dim, eps=config.layer_norm_eps)
277
+
278
+ self.ls1 = nn.Parameter(config.initializer_factor * torch.ones(self.embed_dim))
279
+ self.ls2 = nn.Parameter(config.initializer_factor * torch.ones(self.embed_dim))
280
+ self.drop_path1 = DropPath(drop_path_rate) if drop_path_rate > 0. else nn.Identity()
281
+ self.drop_path2 = DropPath(drop_path_rate) if drop_path_rate > 0. else nn.Identity()
282
+
283
+ def forward(
284
+ self,
285
+ hidden_states: torch.Tensor,
286
+ ) -> Tuple[torch.FloatTensor, Optional[torch.FloatTensor], Optional[Tuple[torch.FloatTensor]]]:
287
+ """
288
+ Args:
289
+ hidden_states (`Tuple[torch.FloatTensor, Optional[torch.FloatTensor]]`): input to the layer of shape `(batch, seq_len, embed_dim)`
290
+ """
291
+ hidden_states = hidden_states + self.drop_path1(self.attn(self.norm1(hidden_states).to(hidden_states.dtype)) * self.ls1)
292
+
293
+ hidden_states = hidden_states + self.drop_path2(self.mlp(self.norm2(hidden_states).to(hidden_states.dtype)) * self.ls2)
294
+
295
+ return hidden_states
296
+
297
+
298
+ class InternVisionEncoder(nn.Module):
299
+ """
300
+ Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a
301
+ [`InternEncoderLayer`].
302
+
303
+ Args:
304
+ config (`InternConfig`):
305
+ The corresponding vision configuration for the `InternEncoder`.
306
+ """
307
+
308
+ def __init__(self, config: InternVisionConfig):
309
+ super().__init__()
310
+ self.config = config
311
+ # stochastic depth decay rule
312
+ dpr = [x.item() for x in torch.linspace(0, config.drop_path_rate, config.num_hidden_layers)]
313
+ self.layers = nn.ModuleList([
314
+ InternVisionEncoderLayer(config, dpr[idx]) for idx in range(config.num_hidden_layers)])
315
+ self.gradient_checkpointing = True
316
+
317
+ def forward(
318
+ self,
319
+ inputs_embeds,
320
+ output_hidden_states: Optional[bool] = None,
321
+ return_dict: Optional[bool] = None,
322
+ ) -> Union[Tuple, BaseModelOutput]:
323
+ r"""
324
+ Args:
325
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
326
+ Embedded representation of the inputs. Should be float, not int tokens.
327
+ output_hidden_states (`bool`, *optional*):
328
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
329
+ for more detail.
330
+ return_dict (`bool`, *optional*):
331
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
332
+ """
333
+ output_hidden_states = (
334
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
335
+ )
336
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
337
+
338
+ encoder_states = () if output_hidden_states else None
339
+ hidden_states = inputs_embeds
340
+
341
+ for idx, encoder_layer in enumerate(self.layers):
342
+ if output_hidden_states:
343
+ encoder_states = encoder_states + (hidden_states,)
344
+ if self.gradient_checkpointing and self.training:
345
+ layer_outputs = torch.utils.checkpoint.checkpoint(
346
+ encoder_layer,
347
+ hidden_states)
348
+ else:
349
+ layer_outputs = encoder_layer(
350
+ hidden_states,
351
+ )
352
+ hidden_states = layer_outputs
353
+
354
+ if output_hidden_states:
355
+ encoder_states = encoder_states + (hidden_states,)
356
+
357
+ if not return_dict:
358
+ return tuple(v for v in [hidden_states, encoder_states] if v is not None)
359
+ return BaseModelOutput(
360
+ last_hidden_state=hidden_states, hidden_states=encoder_states
361
+ )
362
+
363
+
364
+ class InternVisionModel(PreTrainedModel):
365
+ main_input_name = 'pixel_values'
366
+ _supports_flash_attn_2 = True
367
+ config_class = InternVisionConfig
368
+ _no_split_modules = ['InternVisionEncoderLayer']
369
+
370
+ def __init__(self, config: InternVisionConfig):
371
+ super().__init__(config)
372
+ self.config = config
373
+
374
+ self.embeddings = InternVisionEmbeddings(config)
375
+ self.encoder = InternVisionEncoder(config)
376
+
377
+ def resize_pos_embeddings(self, old_size, new_size, patch_size):
378
+ pos_emb = self.embeddings.position_embedding
379
+ _, num_positions, embed_dim = pos_emb.shape
380
+ cls_emb = pos_emb[:, :1, :]
381
+ pos_emb = pos_emb[:, 1:, :].reshape(1, old_size // patch_size, old_size // patch_size, -1).permute(0, 3, 1, 2)
382
+ pos_emb = F.interpolate(pos_emb.float(), size=new_size // patch_size, mode='bicubic', align_corners=False)
383
+ pos_emb = pos_emb.to(cls_emb.dtype).reshape(1, embed_dim, -1).permute(0, 2, 1)
384
+ pos_emb = torch.cat([cls_emb, pos_emb], dim=1)
385
+ self.embeddings.position_embedding = nn.Parameter(pos_emb)
386
+ self.embeddings.image_size = new_size
387
+ logger.info('Resized position embeddings from {} to {}'.format(old_size, new_size))
388
+
389
+ def get_input_embeddings(self):
390
+ return self.embeddings
391
+
392
+ def forward(
393
+ self,
394
+ pixel_values: Optional[torch.FloatTensor] = None,
395
+ output_hidden_states: Optional[bool] = None,
396
+ return_dict: Optional[bool] = None,
397
+ pixel_embeds: Optional[torch.FloatTensor] = None,
398
+ ) -> Union[Tuple, BaseModelOutputWithPooling]:
399
+ output_hidden_states = (
400
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
401
+ )
402
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
403
+
404
+ if pixel_values is None and pixel_embeds is None:
405
+ raise ValueError('You have to specify pixel_values or pixel_embeds')
406
+
407
+ if pixel_embeds is not None:
408
+ hidden_states = pixel_embeds
409
+ else:
410
+ if len(pixel_values.shape) == 4:
411
+ hidden_states = self.embeddings(pixel_values)
412
+ else:
413
+ raise ValueError(f'wrong pixel_values size: {pixel_values.shape}')
414
+ encoder_outputs = self.encoder(
415
+ inputs_embeds=hidden_states,
416
+ output_hidden_states=output_hidden_states,
417
+ return_dict=return_dict,
418
+ )
419
+ last_hidden_state = encoder_outputs.last_hidden_state
420
+ pooled_output = last_hidden_state[:, 0, :]
421
+
422
+ if not return_dict:
423
+ return (last_hidden_state, pooled_output) + encoder_outputs[1:]
424
+
425
+ return BaseModelOutputWithPooling(
426
+ last_hidden_state=last_hidden_state,
427
+ pooler_output=pooled_output,
428
+ hidden_states=encoder_outputs.hidden_states,
429
+ attentions=encoder_outputs.attentions,
430
+ )
modeling_internlm2.py ADDED
@@ -0,0 +1,1566 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) The InternLM team and The HuggingFace Inc. team. All rights reserved.
2
+ #
3
+ # This code is based on transformers/src/transformers/models/llama/modeling_llama.py
4
+ #
5
+ # Licensed under the Apache License, Version 2.0 (the "License");
6
+ # you may not use this file except in compliance with the License.
7
+ # You may obtain a copy of the License at
8
+ #
9
+ # http://www.apache.org/licenses/LICENSE-2.0
10
+ #
11
+ # Unless required by applicable law or agreed to in writing, software
12
+ # distributed under the License is distributed on an "AS IS" BASIS,
13
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14
+ # See the License for the specific language governing permissions and
15
+ # limitations under the License.
16
+ """ PyTorch InternLM2 model."""
17
+ import math
18
+ import queue
19
+ import threading
20
+ import warnings
21
+ from typing import List, Optional, Tuple, Union
22
+
23
+ import torch
24
+ import torch.nn.functional as F
25
+ import torch.utils.checkpoint
26
+ from einops import rearrange
27
+ from torch import nn
28
+ from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
29
+ from transformers.activations import ACT2FN
30
+ from transformers.modeling_outputs import (BaseModelOutputWithPast,
31
+ CausalLMOutputWithPast,
32
+ SequenceClassifierOutputWithPast)
33
+ from transformers.modeling_utils import PreTrainedModel
34
+ from transformers.utils import (add_start_docstrings,
35
+ add_start_docstrings_to_model_forward, logging,
36
+ replace_return_docstrings)
37
+
38
+ try:
39
+ from transformers.generation.streamers import BaseStreamer
40
+ except: # noqa # pylint: disable=bare-except
41
+ BaseStreamer = None
42
+
43
+ from .configuration_internlm2 import InternLM2Config
44
+ import os
45
+ logger = logging.get_logger(__name__)
46
+
47
+ _CONFIG_FOR_DOC = 'InternLM2Config'
48
+
49
+ flash_attn_func, flash_attn_varlen_func = None, None
50
+ pad_input, index_first_axis, unpad_input = None, None, None
51
+ try:
52
+ from flash_attn import flash_attn_func as _flash_attn_func
53
+ from flash_attn import flash_attn_varlen_func as _flash_attn_varlen_func
54
+ from flash_attn.bert_padding import index_first_axis as _index_first_axis
55
+ from flash_attn.bert_padding import pad_input as _pad_input
56
+ from flash_attn.bert_padding import unpad_input as _unpad_input
57
+
58
+ flash_attn_func, flash_attn_varlen_func = _flash_attn_func, _flash_attn_varlen_func
59
+ pad_input, index_first_axis, unpad_input = _pad_input, _index_first_axis, _unpad_input
60
+ has_flash_attn = True
61
+ except:
62
+ has_flash_attn = False
63
+
64
+
65
+ def _import_flash_attn():
66
+ global flash_attn_func, flash_attn_varlen_func
67
+ global pad_input, index_first_axis, unpad_input
68
+ try:
69
+ from flash_attn import flash_attn_func as _flash_attn_func
70
+ from flash_attn import \
71
+ flash_attn_varlen_func as _flash_attn_varlen_func
72
+ from flash_attn.bert_padding import \
73
+ index_first_axis as _index_first_axis
74
+ from flash_attn.bert_padding import pad_input as _pad_input
75
+ from flash_attn.bert_padding import unpad_input as _unpad_input
76
+ flash_attn_func, flash_attn_varlen_func = _flash_attn_func, _flash_attn_varlen_func
77
+ pad_input, index_first_axis, unpad_input = _pad_input, _index_first_axis, _unpad_input
78
+ except ImportError:
79
+ raise ImportError('flash_attn is not installed.')
80
+
81
+
82
+ # Copied from transformers.models.llama.modeling_llama._get_unpad_data
83
+ def _get_unpad_data(attention_mask):
84
+ seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
85
+ indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
86
+ max_seqlen_in_batch = seqlens_in_batch.max().item()
87
+ cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.torch.int32), (1, 0))
88
+ return (
89
+ indices,
90
+ cu_seqlens,
91
+ max_seqlen_in_batch,
92
+ )
93
+
94
+
95
+ # Copied from transformers.models.bart.modeling_bart._make_causal_mask
96
+ def _make_causal_mask(
97
+ input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0
98
+ ):
99
+ """
100
+ Make causal mask used for bi-directional self-attention.
101
+ """
102
+ bsz, tgt_len = input_ids_shape
103
+ mask = torch.full((tgt_len, tgt_len), torch.tensor(torch.finfo(dtype).min, device=device), device=device)
104
+ mask_cond = torch.arange(mask.size(-1), device=device)
105
+ mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
106
+ mask = mask.to(dtype)
107
+
108
+ if past_key_values_length > 0:
109
+ mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1)
110
+ return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length)
111
+
112
+
113
+ # Copied from transformers.models.bart.modeling_bart._expand_mask
114
+ def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
115
+ """
116
+ Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
117
+ """
118
+ bsz, src_len = mask.size()
119
+ tgt_len = tgt_len if tgt_len is not None else src_len
120
+
121
+ expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
122
+
123
+ inverted_mask = 1.0 - expanded_mask
124
+
125
+ return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min)
126
+
127
+
128
+ # Copied from transformers.models.llama.modeling_llama.LlamaRMSNorm with Llama->InternLM2
129
+ class InternLM2RMSNorm(nn.Module):
130
+ def __init__(self, hidden_size, eps=1e-6):
131
+ """
132
+ InternLM2RMSNorm is equivalent to T5LayerNorm
133
+ """
134
+ super().__init__()
135
+ self.weight = nn.Parameter(torch.ones(hidden_size))
136
+ self.variance_epsilon = eps
137
+
138
+ def forward(self, hidden_states):
139
+ input_dtype = hidden_states.dtype
140
+ hidden_states = hidden_states.to(torch.float32)
141
+ variance = hidden_states.pow(2).mean(-1, keepdim=True)
142
+ hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
143
+ return self.weight * hidden_states.to(input_dtype)
144
+
145
+
146
+ # Copied from transformers.model.llama.modeling_llama.LlamaRotaryEmbedding with Llama->InternLM2
147
+ class InternLM2RotaryEmbedding(nn.Module):
148
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
149
+ super().__init__()
150
+
151
+ self.dim = dim
152
+ self.max_position_embeddings = max_position_embeddings
153
+ self.base = base
154
+ inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
155
+ self.register_buffer('inv_freq', inv_freq, persistent=False)
156
+
157
+ # Build here to make `torch.jit.trace` work.
158
+ self._set_cos_sin_cache(
159
+ seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype()
160
+ )
161
+
162
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
163
+ self.max_seq_len_cached = seq_len
164
+ t = torch.arange(self.max_seq_len_cached, device=device).to(dtype=self.inv_freq.dtype)
165
+
166
+ freqs = torch.einsum('i,j->ij', t, self.inv_freq)
167
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
168
+ emb = torch.cat((freqs, freqs), dim=-1)
169
+ self.register_buffer('cos_cached', emb.cos().to(dtype), persistent=False)
170
+ self.register_buffer('sin_cached', emb.sin().to(dtype), persistent=False)
171
+
172
+ def forward(self, x, seq_len=None):
173
+ # x: [bs, num_attention_heads, seq_len, head_size]
174
+ if seq_len > self.max_seq_len_cached:
175
+ self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=torch.float32)
176
+
177
+ return (
178
+ self.cos_cached[:seq_len].to(dtype=x.dtype),
179
+ self.sin_cached[:seq_len].to(dtype=x.dtype),
180
+ )
181
+
182
+
183
+ # Copied from transformers.model.llama.modeling_llama.LlamaLinearScalingRotaryEmbedding with Llama->InternLM2
184
+ class InternLM2LinearScalingRotaryEmbedding(InternLM2RotaryEmbedding):
185
+ """InternLM2RotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev"""
186
+
187
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
188
+ self.scaling_factor = scaling_factor
189
+ super().__init__(dim, max_position_embeddings, base, device)
190
+
191
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
192
+ self.max_seq_len_cached = seq_len
193
+ t = torch.arange(self.max_seq_len_cached, device=device).to(dtype=self.inv_freq.dtype)
194
+ t = t / self.scaling_factor
195
+
196
+ freqs = torch.einsum('i,j->ij', t, self.inv_freq)
197
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
198
+ emb = torch.cat((freqs, freqs), dim=-1)
199
+ self.register_buffer('cos_cached', emb.cos().to(dtype), persistent=False)
200
+ self.register_buffer('sin_cached', emb.sin().to(dtype), persistent=False)
201
+
202
+
203
+ # Copied from transformers.model.llama.modeling_llama.LlamaDynamicNTKScalingRotaryEmbedding with Llama->InternLM2
204
+ class InternLM2DynamicNTKScalingRotaryEmbedding(InternLM2RotaryEmbedding):
205
+ """InternLM2RotaryEmbedding extended with Dynamic NTK scaling.
206
+ Credits to the Reddit users /u/bloc97 and /u/emozilla.
207
+ """
208
+
209
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
210
+ self.scaling_factor = scaling_factor
211
+ super().__init__(dim, max_position_embeddings, base, device)
212
+
213
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
214
+ self.max_seq_len_cached = seq_len
215
+
216
+ if seq_len > self.max_position_embeddings:
217
+ base = self.base * (
218
+ (self.scaling_factor * seq_len / self.max_position_embeddings) - (self.scaling_factor - 1)
219
+ ) ** (self.dim / (self.dim - 2))
220
+ inv_freq = 1.0 / (base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
221
+ self.register_buffer('inv_freq', inv_freq, persistent=False)
222
+
223
+ t = torch.arange(self.max_seq_len_cached, device=device).to(dtype=self.inv_freq.dtype)
224
+
225
+ freqs = torch.einsum('i,j->ij', t, self.inv_freq)
226
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
227
+ emb = torch.cat((freqs, freqs), dim=-1)
228
+ self.register_buffer('cos_cached', emb.cos().to(dtype), persistent=False)
229
+ self.register_buffer('sin_cached', emb.sin().to(dtype), persistent=False)
230
+
231
+
232
+ # Copied from transformers.model.llama.modeling_llama.rotate_half
233
+ def rotate_half(x):
234
+ """Rotates half the hidden dims of the input."""
235
+ x1 = x[..., : x.shape[-1] // 2]
236
+ x2 = x[..., x.shape[-1] // 2 :]
237
+ return torch.cat((-x2, x1), dim=-1)
238
+
239
+
240
+ # Copied from transformers.model.llama.modeling_llama.apply_rotary_pos_emb
241
+ def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1):
242
+ """Applies Rotary Position Embedding to the query and key tensors."""
243
+ cos = cos[position_ids].unsqueeze(unsqueeze_dim)
244
+ sin = sin[position_ids].unsqueeze(unsqueeze_dim)
245
+ q_embed = (q * cos) + (rotate_half(q) * sin)
246
+ k_embed = (k * cos) + (rotate_half(k) * sin)
247
+ return q_embed, k_embed
248
+
249
+
250
+ class InternLM2MLP(nn.Module):
251
+ def __init__(self, config):
252
+ super().__init__()
253
+ self.config = config
254
+ self.hidden_size = config.hidden_size
255
+ self.intermediate_size = config.intermediate_size
256
+ self.w1 = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
257
+ self.w3 = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
258
+ self.w2 = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
259
+ self.act_fn = ACT2FN[config.hidden_act]
260
+
261
+ def forward(self, x):
262
+ down_proj = self.w2(self.act_fn(self.w1(x)) * self.w3(x))
263
+
264
+ return down_proj
265
+
266
+
267
+ # Copied from transformers.model.llama.modeling_llama.repeat_kv
268
+ def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
269
+ """
270
+ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
271
+ num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
272
+ """
273
+ batch, num_key_value_heads, slen, head_dim = hidden_states.shape
274
+ if n_rep == 1:
275
+ return hidden_states
276
+ hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
277
+ return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
278
+
279
+
280
+ # Modified from transformers.model.llama.modeling_llama.LlamaAttention
281
+ class InternLM2Attention(nn.Module):
282
+ """Multi-headed attention from 'Attention Is All You Need' paper"""
283
+
284
+ def __init__(self, config: InternLM2Config):
285
+ super().__init__()
286
+ self.config = config
287
+ self.hidden_size = config.hidden_size
288
+ self.num_heads = config.num_attention_heads
289
+ self.head_dim = self.hidden_size // self.num_heads
290
+ self.num_key_value_heads = config.num_key_value_heads
291
+ self.num_key_value_groups = self.num_heads // self.num_key_value_heads
292
+ self.max_position_embeddings = config.max_position_embeddings
293
+ self.is_causal = True
294
+
295
+ if (self.head_dim * self.num_heads) != self.hidden_size:
296
+ raise ValueError(
297
+ f'hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}'
298
+ f' and `num_heads`: {self.num_heads}).'
299
+ )
300
+
301
+ self.wqkv = nn.Linear(
302
+ self.hidden_size,
303
+ (self.num_heads + 2 * self.num_key_value_heads) * self.head_dim,
304
+ bias=config.bias,
305
+ )
306
+
307
+ self.wo = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=config.bias)
308
+ self._init_rope()
309
+
310
+ def _init_rope(self):
311
+ if self.config.rope_scaling is None:
312
+ self.rotary_emb = InternLM2RotaryEmbedding(
313
+ self.head_dim,
314
+ max_position_embeddings=self.max_position_embeddings,
315
+ base=self.config.rope_theta,
316
+ )
317
+ else:
318
+ scaling_type = self.config.rope_scaling['type']
319
+ scaling_factor = self.config.rope_scaling['factor']
320
+ if scaling_type == 'dynamic':
321
+ self.rotary_emb = InternLM2DynamicNTKScalingRotaryEmbedding(
322
+ self.head_dim,
323
+ max_position_embeddings=self.max_position_embeddings,
324
+ base=self.config.rope_theta,
325
+ scaling_factor=scaling_factor,
326
+ )
327
+ elif scaling_type == 'linear':
328
+ self.rotary_emb = InternLM2LinearScalingRotaryEmbedding(
329
+ self.head_dim,
330
+ max_position_embeddings=self.max_position_embeddings,
331
+ base=self.config.rope_theta,
332
+ scaling_factor=scaling_factor,
333
+ )
334
+ else:
335
+ raise ValueError("Currently we only support rotary embedding's type being 'dynamic' or 'linear'.")
336
+ return self.rotary_emb
337
+
338
+ def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
339
+ return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
340
+
341
+ def forward(
342
+ self,
343
+ hidden_states: torch.Tensor,
344
+ attention_mask: Optional[torch.Tensor] = None,
345
+ position_ids: Optional[torch.LongTensor] = None,
346
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
347
+ output_attentions: bool = False,
348
+ use_cache: bool = False,
349
+ **kwargs,
350
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
351
+ if 'padding_mask' in kwargs:
352
+ warnings.warn(
353
+ 'Passing `padding_mask` is deprecated and will be removed in v4.37. '
354
+ 'Please make sure use `attention_mask` instead.`'
355
+ )
356
+
357
+ bsz, q_len, _ = hidden_states.size()
358
+
359
+ qkv_states = self.wqkv(hidden_states)
360
+
361
+ qkv_states = rearrange(
362
+ qkv_states,
363
+ 'b q (h gs d) -> b q h gs d',
364
+ gs=2 + self.num_key_value_groups,
365
+ d=self.head_dim,
366
+ )
367
+
368
+ query_states = qkv_states[..., : self.num_key_value_groups, :]
369
+ query_states = rearrange(query_states, 'b q h gs d -> b q (h gs) d')
370
+ key_states = qkv_states[..., -2, :]
371
+ value_states = qkv_states[..., -1, :]
372
+
373
+ query_states = query_states.transpose(1, 2)
374
+ key_states = key_states.transpose(1, 2)
375
+ value_states = value_states.transpose(1, 2)
376
+
377
+ kv_seq_len = key_states.shape[-2]
378
+ if past_key_value is not None:
379
+ kv_seq_len += past_key_value[0].shape[-2]
380
+ cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
381
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
382
+
383
+ if past_key_value is not None:
384
+ # reuse k, v, self_attention
385
+ key_states = torch.cat([past_key_value[0], key_states], dim=2)
386
+ value_states = torch.cat([past_key_value[1], value_states], dim=2)
387
+
388
+ past_key_value = (key_states, value_states) if use_cache else None
389
+
390
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
391
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
392
+
393
+ attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
394
+
395
+ if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
396
+ raise ValueError(
397
+ f'Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is'
398
+ f' {attn_weights.size()}'
399
+ )
400
+
401
+ if attention_mask is not None:
402
+ if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
403
+ raise ValueError(
404
+ f'Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}'
405
+ )
406
+ attn_weights = attn_weights + attention_mask
407
+
408
+ # upcast attention to fp32
409
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
410
+ attn_output = torch.matmul(attn_weights, value_states)
411
+
412
+ if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
413
+ raise ValueError(
414
+ f'`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is'
415
+ f' {attn_output.size()}'
416
+ )
417
+ attn_output = attn_output.transpose(1, 2).contiguous()
418
+ attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
419
+
420
+ attn_output = self.wo(attn_output)
421
+
422
+ if not output_attentions:
423
+ attn_weights = None
424
+
425
+ return attn_output, attn_weights, past_key_value
426
+
427
+
428
+ # Modified from transformers.model.llama.modeling_llama.InternLM2FlashAttention2
429
+ class InternLM2FlashAttention2(InternLM2Attention):
430
+ """
431
+ InternLM2 flash attention module. This module inherits from `InternLM2Attention` as the weights of the module stays
432
+ untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
433
+ flash attention and deal with padding tokens in case the input contains any of them.
434
+ """
435
+
436
+ def quant(self, x, bits, per_channel=False, scale=1, debug=False):
437
+ quant_levels = 2 ** bits - 1
438
+ if per_channel:
439
+ x_min = x.amin(dim=(1), keepdim=True) * scale
440
+ x_max = x.amax(dim=(1), keepdim=True) * scale
441
+ else:
442
+ x_min = x.min() * scale
443
+ x_max = x.max() * scale
444
+
445
+ scale = (x_max - x_min) / quant_levels # [2, 3328, 1, 1]
446
+ zero_point = -x_min / scale # [2, 3328, 1, 1]
447
+ # quantize
448
+ x_q = torch.round(torch.clamp(x / scale + zero_point, 0, quant_levels))
449
+ # dequantize
450
+ x = scale * (x_q - zero_point)
451
+ return x
452
+ '''
453
+ def quant(self, x, bits, per_channel=False, scale=1, debug=False, percent=0.3):
454
+ quant_levels = 2 ** bits - 1
455
+ if per_channel:
456
+ # import pdb;pdb.set_trace()
457
+ # x_min = x.amin(dim=(0, 1), keepdim=True) * scale
458
+ # x_max = x.amax(dim=(0, 1), keepdim=True) * scale
459
+ x_min = torch.quantile(x.float(), percent, dim=1, keepdim=True)
460
+ x_max = torch.quantile(x.float(), 1-percent, dim=1, keepdim=True)
461
+ else:
462
+ x_min = x.min() * scale
463
+ x_max = x.max() * scale
464
+
465
+ scale = (x_max - x_min) / quant_levels # [2, 3328, 1, 1]
466
+ zero_point = -x_min / scale # [2, 3328, 1, 1]
467
+ # quantize
468
+ x_q = torch.round(torch.clamp(x / scale + zero_point, 0, quant_levels))
469
+ # dequantize
470
+ x = scale * (x_q - zero_point)
471
+ return x
472
+ '''
473
+ def forward(
474
+ self,
475
+ hidden_states: torch.Tensor,
476
+ attention_mask: Optional[torch.LongTensor] = None,
477
+ position_ids: Optional[torch.LongTensor] = None,
478
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
479
+ output_attentions: bool = False,
480
+ use_cache: bool = False,
481
+ idx: int = 0,
482
+ **kwargs,
483
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
484
+ # InternLM2FlashAttention2 attention does not support output_attentions
485
+ if 'padding_mask' in kwargs:
486
+ warnings.warn(
487
+ 'Passing `padding_mask` is deprecated and will be removed in v4.37. '
488
+ 'Please make sure use `attention_mask` instead.`'
489
+ )
490
+
491
+ # overwrite attention_mask with padding_mask
492
+ attention_mask = kwargs.pop('padding_mask')
493
+
494
+ output_attentions = False
495
+
496
+ bsz, q_len, _ = hidden_states.size()
497
+
498
+ qkv_states = self.wqkv(hidden_states)
499
+
500
+ qkv_states = rearrange(
501
+ qkv_states,
502
+ 'b q (h gs d) -> b q h gs d',
503
+ gs=2 + self.num_key_value_groups,
504
+ d=self.head_dim,
505
+ )
506
+
507
+ query_states = qkv_states[..., : self.num_key_value_groups, :]
508
+ query_states = rearrange(query_states, 'b q h gs d -> b q (h gs) d')
509
+ key_states = qkv_states[..., -2, :]
510
+ value_states = qkv_states[..., -1, :]
511
+
512
+ query_states = query_states.transpose(1, 2)
513
+ key_states = key_states.transpose(1, 2)
514
+ value_states = value_states.transpose(1, 2)
515
+
516
+ kv_seq_len = key_states.shape[-2]
517
+ if past_key_value is not None:
518
+ kv_seq_len += past_key_value[0].shape[-2]
519
+
520
+ cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
521
+
522
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
523
+
524
+ if past_key_value is not None:
525
+ # reuse k, v, self_attention
526
+ key_states = torch.cat([past_key_value[0], key_states], dim=2)
527
+ value_states = torch.cat([past_key_value[1], value_states], dim=2)
528
+
529
+ past_key_value = (key_states, value_states) if use_cache else None
530
+
531
+ query_states = query_states.transpose(1, 2)
532
+ key_states = key_states.transpose(1, 2)
533
+ value_states = value_states.transpose(1, 2)
534
+
535
+ if query_states.shape[1] > 1:
536
+ self.sprompt_len = 41
537
+ self.image_token_num=int(os.environ.get('IMAGE_TOKEN_NUM'))
538
+ query_states_ = query_states.transpose(1, 2)
539
+ key_states_ = key_states.transpose(1, 2)
540
+ key_states_ = repeat_kv(key_states_, self.num_key_value_groups)
541
+
542
+ if query_states.shape[1] == 1:
543
+ #if False:
544
+ self.sprompt_len = 41
545
+ self.image_token_num=int(os.environ.get('IMAGE_TOKEN_NUM'))
546
+ bits_v = 1
547
+ scale_v = 0.3
548
+ per_channel_v= True
549
+ bits_k = 1
550
+ scale_k = 0.5
551
+ per_channel_k=True
552
+ normalize = True
553
+ norm_offset = 3
554
+
555
+ value_states_v = value_states[:,self.sprompt_len:self.sprompt_len+self.image_token_num,:,:]
556
+ value_states_deq = self.quant(value_states_v, bits=bits_v, per_channel=per_channel_v,scale = scale_v, debug=True)
557
+ #print("value unique value: ",torch.numel(torch.unique(value_states_deq.float())))
558
+
559
+ value_states_quant = value_states.clone()
560
+ value_states_quant[:,self.sprompt_len:self.sprompt_len+self.image_token_num,:,:] = value_states_deq
561
+
562
+ key_states_v = key_states[:,self.sprompt_len:self.sprompt_len+self.image_token_num,:,:]
563
+ key_states_deq = self.quant(key_states_v, bits=bits_k, per_channel=per_channel_k, scale = scale_k, debug=False)
564
+ #print("key unique value: ",torch.numel(torch.unique(key_states_deq.float())))
565
+
566
+ key_states_quant = key_states.clone()
567
+ key_states_quant[:,self.sprompt_len:self.sprompt_len+self.image_token_num,:,:] = key_states_deq
568
+
569
+ query_states = query_states.transpose(1, 2)
570
+ key_states = key_states.transpose(1, 2)
571
+ key_states_quant = key_states_quant.transpose(1, 2)
572
+ value_states = value_states.transpose(1, 2)
573
+ value_states_quant = value_states_quant.transpose(1, 2)
574
+
575
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
576
+ key_states_quant = repeat_kv(key_states_quant, self.num_key_value_groups)
577
+
578
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
579
+ value_states_quant = repeat_kv(value_states_quant, self.num_key_value_groups)
580
+
581
+ if normalize:
582
+ attn_weights_quant = torch.matmul(query_states, key_states_quant.transpose(2, 3)) / math.sqrt(self.head_dim)
583
+ attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
584
+
585
+ current_max = attn_weights_quant[:, :, :, self.sprompt_len:self.sprompt_len+self.image_token_num].amax(dim=(2, 3), keepdim=True)
586
+ current_min = attn_weights_quant[:, :, :, self.sprompt_len:self.sprompt_len+self.image_token_num].amin(dim=(2, 3), keepdim=True)
587
+
588
+
589
+ #target_max = attn_weights[:, :, :, self.sprompt_len:self.sprompt_len+self.image_token_num].amax(dim=(2, 3), keepdim=True)
590
+ # target_max = attn_weights_quant[:, :, :, self.sprompt_len:self.sprompt_len+self.image_token_num].amax(dim=(2, 3), keepdim=True)
591
+ target_max = current_max - norm_offset
592
+
593
+ #target_min = attn_weights[:, :, :, self.sprompt_len:self.sprompt_len+self.image_token_num].amin(dim=(2, 3), keepdim=True)
594
+ target_min = attn_weights_quant[:, :, :, self.sprompt_len:self.sprompt_len+self.image_token_num].amin(dim=(2, 3), keepdim=True)
595
+
596
+ #target_max = torch.load("temp/max/"+str(idx)+".pth").detach().cpu().cuda().unsqueeze(1).unsqueeze(1).unsqueeze(0)
597
+ #target_min = torch.load("temp/min/"+str(idx)+".pth").detach().cpu().cuda().unsqueeze(1).unsqueeze(1).unsqueeze(0)
598
+
599
+
600
+
601
+ normalized_weights = (attn_weights_quant[:, :, :, self.sprompt_len:self.sprompt_len+self.image_token_num] - current_min) / (current_max - current_min + 1e-8)
602
+ normalized_weights = normalized_weights * (target_max - target_min) + target_min
603
+ attn_weights_quant[:, :, :, self.sprompt_len:self.sprompt_len+self.image_token_num] = normalized_weights
604
+
605
+ attn_weights = attn_weights_quant
606
+
607
+ else:
608
+ attn_weights = torch.matmul(query_states, key_states_quant.transpose(2, 3)) / math.sqrt(self.head_dim)
609
+ # attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
610
+
611
+
612
+ if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
613
+ raise ValueError(
614
+ f'Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is'
615
+ f' {attn_weights.size()}'
616
+ )
617
+
618
+ attn_weights_logits = attn_weights.clone()
619
+ if attention_mask is not None:
620
+ if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
621
+ raise ValueError(
622
+ f'Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}'
623
+ )
624
+ attn_weights = attn_weights + attention_mask
625
+
626
+ # upcast attention to fp32
627
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
628
+ #if idx == 15:
629
+ # import pdb; pdb.set_trace()
630
+ attn_output = torch.matmul(attn_weights, value_states_quant)
631
+
632
+ if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
633
+ raise ValueError(
634
+ f'`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is'
635
+ f' {attn_output.size()}'
636
+ )
637
+ attn_output = attn_output.transpose(1, 2).contiguous()
638
+ attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
639
+
640
+ attn_output = self.wo(attn_output)
641
+
642
+ if not output_attentions:
643
+ attn_weights = None
644
+
645
+ else:
646
+ attn_output = self._flash_attention_forward(
647
+ query_states, key_states, value_states, attention_mask, q_len
648
+ )
649
+ attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
650
+ attn_output = self.wo(attn_output)
651
+
652
+ if not output_attentions:
653
+ attn_weights = None
654
+
655
+ return attn_output, attn_weights, past_key_value
656
+
657
+ def _flash_attention_forward(
658
+ self, query_states, key_states, value_states, attention_mask, query_length, dropout=0.0, softmax_scale=None
659
+ ):
660
+ """
661
+ Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
662
+ first unpad the input, then computes the attention scores and pad the final attention scores.
663
+
664
+ Args:
665
+ query_states (`torch.Tensor`):
666
+ Input query states to be passed to Flash Attention API
667
+ key_states (`torch.Tensor`):
668
+ Input key states to be passed to Flash Attention API
669
+ value_states (`torch.Tensor`):
670
+ Input value states to be passed to Flash Attention API
671
+ attention_mask (`torch.Tensor`):
672
+ The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
673
+ position of padding tokens and 1 for the position of non-padding tokens.
674
+ dropout (`int`, *optional*):
675
+ Attention dropout
676
+ softmax_scale (`float`, *optional*):
677
+ The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
678
+ """
679
+ # Contains at least one padding token in the sequence
680
+ causal = self.is_causal and query_length != 1
681
+ if attention_mask is not None:
682
+ batch_size = query_states.shape[0]
683
+ query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._unpad_input(
684
+ query_states, key_states, value_states, attention_mask, query_length
685
+ )
686
+
687
+ cu_seqlens_q, cu_seqlens_k = cu_seq_lens
688
+ max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
689
+
690
+ attn_output_unpad = flash_attn_varlen_func(
691
+ query_states,
692
+ key_states,
693
+ value_states,
694
+ cu_seqlens_q=cu_seqlens_q,
695
+ cu_seqlens_k=cu_seqlens_k,
696
+ max_seqlen_q=max_seqlen_in_batch_q,
697
+ max_seqlen_k=max_seqlen_in_batch_k,
698
+ dropout_p=dropout,
699
+ softmax_scale=softmax_scale,
700
+ causal=causal,
701
+ )
702
+
703
+ attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
704
+ else:
705
+ attn_output = flash_attn_func(
706
+ query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=causal
707
+ )
708
+
709
+ return attn_output
710
+
711
+ def _unpad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
712
+ indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
713
+ batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
714
+
715
+ key_layer = index_first_axis(
716
+ key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
717
+ )
718
+ value_layer = index_first_axis(
719
+ value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
720
+ )
721
+
722
+ if query_length == kv_seq_len:
723
+ query_layer = index_first_axis(
724
+ query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim), indices_k
725
+ )
726
+ cu_seqlens_q = cu_seqlens_k
727
+ max_seqlen_in_batch_q = max_seqlen_in_batch_k
728
+ indices_q = indices_k
729
+ elif query_length == 1:
730
+ max_seqlen_in_batch_q = 1
731
+ cu_seqlens_q = torch.arange(
732
+ batch_size + 1, dtype=torch.int32, device=query_layer.device
733
+ ) # There is a memcpy here, that is very bad.
734
+ indices_q = cu_seqlens_q[:-1]
735
+ query_layer = query_layer.squeeze(1)
736
+ else:
737
+ # The -q_len: slice assumes left padding.
738
+ attention_mask = attention_mask[:, -query_length:]
739
+ query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
740
+
741
+ return (
742
+ query_layer,
743
+ key_layer,
744
+ value_layer,
745
+ indices_q.to(torch.int64),
746
+ (cu_seqlens_q, cu_seqlens_k),
747
+ (max_seqlen_in_batch_q, max_seqlen_in_batch_k),
748
+ )
749
+
750
+
751
+ INTERNLM2_ATTENTION_CLASSES = {
752
+ 'eager': InternLM2Attention,
753
+ 'flash_attention_2': InternLM2FlashAttention2,
754
+ }
755
+
756
+
757
+ # Modified from transformers.model.llama.modeling_llama.LlamaDecoderLayer
758
+ class InternLM2DecoderLayer(nn.Module):
759
+ def __init__(self, config: InternLM2Config):
760
+ super().__init__()
761
+ self.hidden_size = config.hidden_size
762
+
763
+ self.attention = INTERNLM2_ATTENTION_CLASSES[config.attn_implementation](config=config)
764
+
765
+ self.feed_forward = InternLM2MLP(config)
766
+ self.attention_norm = InternLM2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
767
+ self.ffn_norm = InternLM2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
768
+
769
+ def forward(
770
+ self,
771
+ hidden_states: torch.Tensor,
772
+ attention_mask: Optional[torch.Tensor] = None,
773
+ position_ids: Optional[torch.LongTensor] = None,
774
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
775
+ output_attentions: Optional[bool] = False,
776
+ use_cache: Optional[bool] = False,
777
+ idx: Optional[int] = 0,
778
+ **kwargs,
779
+ ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
780
+ """
781
+ Args:
782
+ hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
783
+ attention_mask (`torch.FloatTensor`, *optional*):
784
+ attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1,
785
+ query_sequence_length, key_sequence_length)` if default attention is used.
786
+ output_attentions (`bool`, *optional*):
787
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
788
+ returned tensors for more detail.
789
+ use_cache (`bool`, *optional*):
790
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
791
+ (see `past_key_values`).
792
+ past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
793
+ """
794
+ if 'padding_mask' in kwargs:
795
+ warnings.warn(
796
+ 'Passing `padding_mask` is deprecated and will be removed in v4.37. '
797
+ 'Please make sure use `attention_mask` instead.`'
798
+ )
799
+
800
+ residual = hidden_states
801
+
802
+ hidden_states = self.attention_norm(hidden_states)
803
+
804
+ # Self Attention
805
+ hidden_states, self_attn_weights, present_key_value = self.attention(
806
+ hidden_states=hidden_states,
807
+ attention_mask=attention_mask,
808
+ position_ids=position_ids,
809
+ past_key_value=past_key_value,
810
+ output_attentions=output_attentions,
811
+ use_cache=use_cache,
812
+ idx = idx,
813
+ **kwargs,
814
+ )
815
+ hidden_states = residual + hidden_states
816
+
817
+ # Fully Connected
818
+ residual = hidden_states
819
+ hidden_states = self.ffn_norm(hidden_states)
820
+ hidden_states = self.feed_forward(hidden_states)
821
+ hidden_states = residual + hidden_states
822
+
823
+ outputs = (hidden_states,)
824
+
825
+ if output_attentions:
826
+ outputs += (self_attn_weights,)
827
+
828
+ if use_cache:
829
+ outputs += (present_key_value,)
830
+
831
+ return outputs
832
+
833
+
834
+ InternLM2_START_DOCSTRING = r"""
835
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
836
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
837
+ etc.)
838
+
839
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
840
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
841
+ and behavior.
842
+
843
+ Parameters:
844
+ config ([`InternLM2Config`]):
845
+ Model configuration class with all the parameters of the model. Initializing with a config file does not
846
+ load the weights associated with the model, only the configuration. Check out the
847
+ [`~PreTrainedModel.from_pretrained`] method to load the model weights.
848
+ """
849
+
850
+
851
+ # Copied from transformers.models.llama.modeling_llama.LlamaPreTrainedModel with Llama->InternLM2
852
+ @add_start_docstrings(
853
+ 'The bare InternLM2 Model outputting raw hidden-states without any specific head on top.',
854
+ InternLM2_START_DOCSTRING,
855
+ )
856
+ class InternLM2PreTrainedModel(PreTrainedModel):
857
+ config_class = InternLM2Config
858
+ base_model_prefix = 'model'
859
+ supports_gradient_checkpointing = True
860
+ _no_split_modules = ['InternLM2DecoderLayer']
861
+ _skip_keys_device_placement = 'past_key_values'
862
+ _supports_flash_attn_2 = True
863
+
864
+ def _init_weights(self, module):
865
+ std = self.config.initializer_range
866
+ if isinstance(module, nn.Linear):
867
+ module.weight.data.normal_(mean=0.0, std=std)
868
+ if module.bias is not None:
869
+ module.bias.data.zero_()
870
+ elif isinstance(module, nn.Embedding):
871
+ module.weight.data.normal_(mean=0.0, std=std)
872
+ if module.padding_idx is not None:
873
+ module.weight.data[module.padding_idx].zero_()
874
+
875
+
876
+ InternLM2_INPUTS_DOCSTRING = r"""
877
+ Args:
878
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
879
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
880
+ it.
881
+
882
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
883
+ [`PreTrainedTokenizer.__call__`] for details.
884
+
885
+ [What are input IDs?](../glossary#input-ids)
886
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
887
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
888
+
889
+ - 1 for tokens that are **not masked**,
890
+ - 0 for tokens that are **masked**.
891
+
892
+ [What are attention masks?](../glossary#attention-mask)
893
+
894
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
895
+ [`PreTrainedTokenizer.__call__`] for details.
896
+
897
+ If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
898
+ `past_key_values`).
899
+
900
+ If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
901
+ and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
902
+ information on the default strategy.
903
+
904
+ - 1 indicates the head is **not masked**,
905
+ - 0 indicates the head is **masked**.
906
+ position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
907
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
908
+ config.n_positions - 1]`.
909
+
910
+ [What are position IDs?](../glossary#position-ids)
911
+ past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or
912
+ when `config.use_cache=True`):
913
+ Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
914
+ `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
915
+ `(batch_size, num_heads, decoder_sequence_length, embed_size_per_head)`.
916
+
917
+ Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
918
+ blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
919
+
920
+ If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
921
+ have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
922
+ of shape `(batch_size, sequence_length)`.
923
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
924
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
925
+ is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
926
+ model's internal embedding lookup matrix.
927
+ use_cache (`bool`, *optional*):
928
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
929
+ `past_key_values`).
930
+ output_attentions (`bool`, *optional*):
931
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
932
+ tensors for more detail.
933
+ output_hidden_states (`bool`, *optional*):
934
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
935
+ more detail.
936
+ return_dict (`bool`, *optional*):
937
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
938
+ """
939
+
940
+
941
+ # Modified from transformers.model.llama.modeling_llama.LlamaModel
942
+ @add_start_docstrings(
943
+ 'The bare InternLM2 Model outputting raw hidden-states without any specific head on top.',
944
+ InternLM2_START_DOCSTRING,
945
+ )
946
+ class InternLM2Model(InternLM2PreTrainedModel):
947
+ """
948
+ Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`InternLM2DecoderLayer`]
949
+
950
+ Args:
951
+ config: InternLM2Config
952
+ """
953
+
954
+ _auto_class = 'AutoModel'
955
+
956
+ def __init__(self, config: InternLM2Config):
957
+ super().__init__(config)
958
+ self.padding_idx = config.pad_token_id
959
+ self.vocab_size = config.vocab_size
960
+ self.config = config
961
+ if not has_flash_attn:
962
+ self.config.attn_implementation = 'eager'
963
+ print('Warning: Flash attention is not available, using eager attention instead.')
964
+
965
+ self.tok_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
966
+
967
+ self.layers = nn.ModuleList([InternLM2DecoderLayer(config) for _ in range(config.num_hidden_layers)])
968
+ self.norm = InternLM2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
969
+
970
+ self.gradient_checkpointing = False
971
+ # Initialize weights and apply final processing
972
+ self.post_init()
973
+
974
+ def get_input_embeddings(self):
975
+ return self.tok_embeddings
976
+
977
+ def set_input_embeddings(self, value):
978
+ self.tok_embeddings = value
979
+
980
+ def _prepare_decoder_attention_mask(self, attention_mask, input_shape, inputs_embeds, past_key_values_length):
981
+ # create causal mask
982
+ # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
983
+ combined_attention_mask = None
984
+ if input_shape[-1] > 1:
985
+ combined_attention_mask = _make_causal_mask(
986
+ input_shape,
987
+ inputs_embeds.dtype,
988
+ device=inputs_embeds.device,
989
+ past_key_values_length=past_key_values_length,
990
+ )
991
+
992
+ if attention_mask is not None:
993
+ # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
994
+ expanded_attn_mask = _expand_mask(attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]).to(
995
+ inputs_embeds.device
996
+ )
997
+ combined_attention_mask = (
998
+ expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask
999
+ )
1000
+
1001
+ return combined_attention_mask
1002
+
1003
+ @add_start_docstrings_to_model_forward(InternLM2_INPUTS_DOCSTRING)
1004
+ def forward(
1005
+ self,
1006
+ input_ids: torch.LongTensor = None,
1007
+ attention_mask: Optional[torch.Tensor] = None,
1008
+ position_ids: Optional[torch.LongTensor] = None,
1009
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1010
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1011
+ use_cache: Optional[bool] = None,
1012
+ output_attentions: Optional[bool] = None,
1013
+ output_hidden_states: Optional[bool] = None,
1014
+ return_dict: Optional[bool] = None,
1015
+ ) -> Union[Tuple, BaseModelOutputWithPast]:
1016
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
1017
+ output_hidden_states = (
1018
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
1019
+ )
1020
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
1021
+
1022
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1023
+
1024
+ if self.config.attn_implementation == 'flash_attention_2':
1025
+ _import_flash_attn()
1026
+
1027
+ # retrieve input_ids and inputs_embeds
1028
+ if input_ids is not None and inputs_embeds is not None:
1029
+ raise ValueError('You cannot specify both input_ids and inputs_embeds at the same time')
1030
+ elif input_ids is not None:
1031
+ batch_size, seq_length = input_ids.shape[:2]
1032
+ elif inputs_embeds is not None:
1033
+ batch_size, seq_length = inputs_embeds.shape[:2]
1034
+ else:
1035
+ raise ValueError('You have to specify either input_ids or inputs_embeds')
1036
+
1037
+ seq_length_with_past = seq_length
1038
+ past_key_values_length = 0
1039
+ if past_key_values is not None:
1040
+ past_key_values_length = past_key_values[0][0].shape[2]
1041
+ seq_length_with_past = seq_length_with_past + past_key_values_length
1042
+
1043
+ if position_ids is None:
1044
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
1045
+ position_ids = torch.arange(
1046
+ past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
1047
+ )
1048
+ position_ids = position_ids.unsqueeze(0)
1049
+
1050
+ if inputs_embeds is None:
1051
+ inputs_embeds = self.tok_embeddings(input_ids)
1052
+
1053
+ if self.config.attn_implementation == 'flash_attention_2':
1054
+ # 2d mask is passed through the layers
1055
+ attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
1056
+ else:
1057
+ if attention_mask is None:
1058
+ attention_mask = torch.ones(
1059
+ (batch_size, seq_length_with_past), dtype=torch.bool, device=inputs_embeds.device
1060
+ )
1061
+ attention_mask = self._prepare_decoder_attention_mask(
1062
+ attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length
1063
+ )
1064
+
1065
+ # embed positions
1066
+ hidden_states = inputs_embeds
1067
+
1068
+ if self.gradient_checkpointing and self.training:
1069
+ if use_cache:
1070
+ logger.warning_once(
1071
+ '`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`...'
1072
+ )
1073
+ use_cache = False
1074
+
1075
+ # decoder layers
1076
+ all_hidden_states = () if output_hidden_states else None
1077
+ all_self_attns = () if output_attentions else None
1078
+ next_decoder_cache = () if use_cache else None
1079
+
1080
+ for idx, decoder_layer in enumerate(self.layers):
1081
+ if output_hidden_states:
1082
+ all_hidden_states += (hidden_states,)
1083
+
1084
+ past_key_value = past_key_values[idx] if past_key_values is not None else None
1085
+
1086
+ if self.gradient_checkpointing and self.training:
1087
+
1088
+ def create_custom_forward(module):
1089
+ def custom_forward(*inputs):
1090
+ # None for past_key_value
1091
+ return module(*inputs, output_attentions, None)
1092
+
1093
+ return custom_forward
1094
+
1095
+ layer_outputs = torch.utils.checkpoint.checkpoint(
1096
+ create_custom_forward(decoder_layer),
1097
+ hidden_states,
1098
+ attention_mask,
1099
+ position_ids,
1100
+ None,
1101
+ )
1102
+ else:
1103
+ layer_outputs = decoder_layer(
1104
+ hidden_states,
1105
+ attention_mask=attention_mask,
1106
+ position_ids=position_ids,
1107
+ past_key_value=past_key_value,
1108
+ output_attentions=output_attentions,
1109
+ use_cache=use_cache,
1110
+ idx=idx,
1111
+ )
1112
+
1113
+ hidden_states = layer_outputs[0]
1114
+
1115
+ if use_cache:
1116
+ next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)
1117
+
1118
+ if output_attentions:
1119
+ all_self_attns += (layer_outputs[1],)
1120
+
1121
+ hidden_states = self.norm(hidden_states)
1122
+
1123
+ # add hidden states from the last decoder layer
1124
+ if output_hidden_states:
1125
+ all_hidden_states += (hidden_states,)
1126
+
1127
+ next_cache = next_decoder_cache if use_cache else None
1128
+ if not return_dict:
1129
+ return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
1130
+ return BaseModelOutputWithPast(
1131
+ last_hidden_state=hidden_states,
1132
+ past_key_values=next_cache,
1133
+ hidden_states=all_hidden_states,
1134
+ attentions=all_self_attns,
1135
+ )
1136
+
1137
+
1138
+ # Modified from transformers.model.llama.modeling_llama.LlamaForCausalLM
1139
+ class InternLM2ForCausalLM(InternLM2PreTrainedModel):
1140
+ _auto_class = 'AutoModelForCausalLM'
1141
+
1142
+ _tied_weights_keys = ['output.weight']
1143
+
1144
+ def __init__(self, config):
1145
+ super().__init__(config)
1146
+ self.model = InternLM2Model(config)
1147
+ self.vocab_size = config.vocab_size
1148
+ self.output = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
1149
+
1150
+ # Initialize weights and apply final processing
1151
+ self.post_init()
1152
+
1153
+ def get_input_embeddings(self):
1154
+ return self.model.tok_embeddings
1155
+
1156
+ def set_input_embeddings(self, value):
1157
+ self.model.tok_embeddings = value
1158
+
1159
+ def get_output_embeddings(self):
1160
+ return self.output
1161
+
1162
+ def set_output_embeddings(self, new_embeddings):
1163
+ self.output = new_embeddings
1164
+
1165
+ def set_decoder(self, decoder):
1166
+ self.model = decoder
1167
+
1168
+ def get_decoder(self):
1169
+ return self.model
1170
+
1171
+ @add_start_docstrings_to_model_forward(InternLM2_INPUTS_DOCSTRING)
1172
+ @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
1173
+ def forward(
1174
+ self,
1175
+ input_ids: torch.LongTensor = None,
1176
+ attention_mask: Optional[torch.Tensor] = None,
1177
+ position_ids: Optional[torch.LongTensor] = None,
1178
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1179
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1180
+ labels: Optional[torch.LongTensor] = None,
1181
+ use_cache: Optional[bool] = None,
1182
+ output_attentions: Optional[bool] = None,
1183
+ output_hidden_states: Optional[bool] = None,
1184
+ return_dict: Optional[bool] = None,
1185
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
1186
+ r"""
1187
+ Args:
1188
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
1189
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
1190
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
1191
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
1192
+
1193
+ Returns:
1194
+
1195
+ Example:
1196
+
1197
+ ```python
1198
+ >>> from transformers import AutoTokenizer, InternLM2ForCausalLM
1199
+
1200
+ >>> model = InternLM2ForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
1201
+ >>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
1202
+
1203
+ >>> prompt = "Hey, are you conscious? Can you talk to me?"
1204
+ >>> inputs = tokenizer(prompt, return_tensors="pt")
1205
+
1206
+ >>> # Generate
1207
+ >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
1208
+ >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
1209
+ "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
1210
+ ```"""
1211
+
1212
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
1213
+ output_hidden_states = (
1214
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
1215
+ )
1216
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1217
+
1218
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
1219
+ outputs = self.model(
1220
+ input_ids=input_ids,
1221
+ attention_mask=attention_mask,
1222
+ position_ids=position_ids,
1223
+ past_key_values=past_key_values,
1224
+ inputs_embeds=inputs_embeds,
1225
+ use_cache=use_cache,
1226
+ output_attentions=output_attentions,
1227
+ output_hidden_states=output_hidden_states,
1228
+ return_dict=return_dict,
1229
+ )
1230
+
1231
+ hidden_states = outputs[0]
1232
+ logits = self.output(hidden_states)
1233
+ logits = logits.float()
1234
+
1235
+ loss = None
1236
+ if labels is not None:
1237
+ # Shift so that tokens < n predict n
1238
+ shift_logits = logits[..., :-1, :].contiguous()
1239
+ shift_labels = labels[..., 1:].contiguous()
1240
+ # Flatten the tokens
1241
+ loss_fct = CrossEntropyLoss()
1242
+ shift_logits = shift_logits.view(-1, self.config.vocab_size)
1243
+ shift_labels = shift_labels.view(-1)
1244
+ # Enable model parallelism
1245
+ shift_labels = shift_labels.to(shift_logits.device)
1246
+ loss = loss_fct(shift_logits, shift_labels)
1247
+
1248
+ if not return_dict:
1249
+ output = (logits,) + outputs[1:]
1250
+ return (loss,) + output if loss is not None else output
1251
+
1252
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
1253
+ output = CausalLMOutputWithPast(
1254
+ loss=loss,
1255
+ logits=logits,
1256
+ past_key_values=outputs.past_key_values,
1257
+ hidden_states=outputs.hidden_states,
1258
+ attentions=outputs.attentions,
1259
+ )
1260
+ output['logits'] = output['logits'].to(device)
1261
+ return output
1262
+
1263
+ def prepare_inputs_for_generation(
1264
+ self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
1265
+ ):
1266
+ if past_key_values is not None:
1267
+ past_length = past_key_values[0][0].shape[2]
1268
+
1269
+ # Some generation methods already pass only the last input ID
1270
+ if input_ids.shape[1] > past_length:
1271
+ remove_prefix_length = past_length
1272
+ else:
1273
+ # Default to old behavior: keep only final ID
1274
+ remove_prefix_length = input_ids.shape[1] - 1
1275
+
1276
+ input_ids = input_ids[:, remove_prefix_length:]
1277
+
1278
+ position_ids = kwargs.get('position_ids', None)
1279
+ if attention_mask is not None and position_ids is None:
1280
+ # create position_ids on the fly for batch generation
1281
+ position_ids = attention_mask.long().cumsum(-1) - 1
1282
+ position_ids.masked_fill_(attention_mask == 0, 1)
1283
+ if past_key_values:
1284
+ position_ids = position_ids[:, -input_ids.shape[1] :]
1285
+
1286
+ # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
1287
+ if inputs_embeds is not None and past_key_values is None:
1288
+ model_inputs = {'inputs_embeds': inputs_embeds}
1289
+ else:
1290
+ model_inputs = {'input_ids': input_ids}
1291
+
1292
+ model_inputs.update(
1293
+ {
1294
+ 'position_ids': position_ids,
1295
+ 'past_key_values': past_key_values,
1296
+ 'use_cache': kwargs.get('use_cache'),
1297
+ 'attention_mask': attention_mask,
1298
+ }
1299
+ )
1300
+ return model_inputs
1301
+
1302
+ @staticmethod
1303
+ def _reorder_cache(past_key_values, beam_idx):
1304
+ reordered_past = ()
1305
+ for layer_past in past_key_values:
1306
+ reordered_past += (
1307
+ tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
1308
+ )
1309
+ return reordered_past
1310
+
1311
+ def build_inputs(self, tokenizer, query: str, history: List[Tuple[str, str]] = [], meta_instruction=''):
1312
+ if tokenizer.add_bos_token:
1313
+ prompt = ''
1314
+ else:
1315
+ prompt = tokenizer.bos_token
1316
+ if meta_instruction:
1317
+ prompt += f"""<|im_start|>system\n{meta_instruction}<|im_end|>\n"""
1318
+ for record in history:
1319
+ prompt += f"""<|im_start|>user\n{record[0]}<|im_end|>\n<|im_start|>assistant\n{record[1]}<|im_end|>\n"""
1320
+ prompt += f"""<|im_start|>user\n{query}<|im_end|>\n<|im_start|>assistant\n"""
1321
+ return tokenizer([prompt], return_tensors='pt')
1322
+
1323
+ @torch.no_grad()
1324
+ def chat(
1325
+ self,
1326
+ tokenizer,
1327
+ query: str,
1328
+ history: List[Tuple[str, str]] = [],
1329
+ streamer: Optional[BaseStreamer] = None,
1330
+ max_new_tokens: int = 1024,
1331
+ do_sample: bool = True,
1332
+ temperature: float = 0.8,
1333
+ top_p: float = 0.8,
1334
+ meta_instruction: str = 'You are an AI assistant whose name is InternLM (书生·浦语).\n'
1335
+ '- InternLM (书生·浦语) is a conversational language model that is developed by Shanghai AI Laboratory (上海人工智能实验室). It is designed to be helpful, honest, and harmless.\n'
1336
+ '- InternLM (书生·浦语) can understand and communicate fluently in the language chosen by the user such as English and 中文.',
1337
+ **kwargs,
1338
+ ):
1339
+ inputs = self.build_inputs(tokenizer, query, history, meta_instruction)
1340
+ inputs = {k: v.to(self.device) for k, v in inputs.items() if torch.is_tensor(v)}
1341
+ # also add end-of-assistant token in eos token id to avoid unnecessary generation
1342
+ eos_token_id = [tokenizer.eos_token_id, tokenizer.convert_tokens_to_ids(['<|im_end|>'])[0]]
1343
+ outputs = self.generate(
1344
+ **inputs,
1345
+ streamer=streamer,
1346
+ max_new_tokens=max_new_tokens,
1347
+ do_sample=do_sample,
1348
+ temperature=temperature,
1349
+ top_p=top_p,
1350
+ eos_token_id=eos_token_id,
1351
+ **kwargs,
1352
+ )
1353
+ outputs = outputs[0].cpu().tolist()[len(inputs['input_ids'][0]) :]
1354
+ response = tokenizer.decode(outputs, skip_special_tokens=True)
1355
+ response = response.split('<|im_end|>')[0]
1356
+ history = history + [(query, response)]
1357
+ return response, history
1358
+
1359
+ @torch.no_grad()
1360
+ def stream_chat(
1361
+ self,
1362
+ tokenizer,
1363
+ query: str,
1364
+ history: List[Tuple[str, str]] = [],
1365
+ max_new_tokens: int = 1024,
1366
+ do_sample: bool = True,
1367
+ temperature: float = 0.8,
1368
+ top_p: float = 0.8,
1369
+ **kwargs,
1370
+ ):
1371
+ """
1372
+ Return a generator in format: (response, history)
1373
+ Eg.
1374
+ ('你好,有什么可以帮助您的吗', [('你好', '你好,有什么可以帮助您的吗')])
1375
+ ('你好,有什么可以帮助您的吗?', [('你好', '你好,有什么可以帮助您的吗?')])
1376
+ """
1377
+ if BaseStreamer is None:
1378
+ raise ModuleNotFoundError(
1379
+ 'The version of `transformers` is too low. Please make sure '
1380
+ 'that you have installed `transformers>=4.28.0`.'
1381
+ )
1382
+
1383
+ response_queue = queue.Queue(maxsize=20)
1384
+
1385
+ class ChatStreamer(BaseStreamer):
1386
+ def __init__(self, tokenizer) -> None:
1387
+ super().__init__()
1388
+ self.tokenizer = tokenizer
1389
+ self.queue = response_queue
1390
+ self.query = query
1391
+ self.history = history
1392
+ self.response = ''
1393
+ self.cache = []
1394
+ self.received_inputs = False
1395
+ self.queue.put((self.response, history + [(self.query, self.response)]))
1396
+
1397
+ def put(self, value):
1398
+ if len(value.shape) > 1 and value.shape[0] > 1:
1399
+ raise ValueError('ChatStreamer only supports batch size 1')
1400
+ elif len(value.shape) > 1:
1401
+ value = value[0]
1402
+
1403
+ if not self.received_inputs:
1404
+ # The first received value is input_ids, ignore here
1405
+ self.received_inputs = True
1406
+ return
1407
+
1408
+ self.cache.extend(value.tolist())
1409
+ token = self.tokenizer.decode(self.cache, skip_special_tokens=True)
1410
+ if token.strip() != '<|im_end|>':
1411
+ self.response = self.response + token
1412
+ history = self.history + [(self.query, self.response)]
1413
+ self.queue.put((self.response, history))
1414
+ self.cache = []
1415
+ else:
1416
+ self.end()
1417
+
1418
+ def end(self):
1419
+ self.queue.put(None)
1420
+
1421
+ def stream_producer():
1422
+ return self.chat(
1423
+ tokenizer=tokenizer,
1424
+ query=query,
1425
+ streamer=ChatStreamer(tokenizer=tokenizer),
1426
+ history=history,
1427
+ max_new_tokens=max_new_tokens,
1428
+ do_sample=do_sample,
1429
+ temperature=temperature,
1430
+ top_p=top_p,
1431
+ **kwargs,
1432
+ )
1433
+
1434
+ def consumer():
1435
+ producer = threading.Thread(target=stream_producer)
1436
+ producer.start()
1437
+ while True:
1438
+ res = response_queue.get()
1439
+ if res is None:
1440
+ return
1441
+ yield res
1442
+
1443
+ return consumer()
1444
+
1445
+
1446
+ # Copied from transformers.model.llama.modeling_llama.LlamaForSequenceClassification with Llama->InternLM2
1447
+ @add_start_docstrings(
1448
+ """
1449
+ The InternLM2 Model transformer with a sequence classification head on top (linear layer).
1450
+
1451
+ [`InternLM2ForSequenceClassification`] uses the last token in order to do the classification,
1452
+ as other causal models (e.g. GPT-2) do.
1453
+
1454
+ Since it does classification on the last token, it requires to know the position of the last token. If a
1455
+ `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
1456
+ no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
1457
+ padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
1458
+ each row of the batch).
1459
+ """,
1460
+ InternLM2_START_DOCSTRING,
1461
+ )
1462
+ class InternLM2ForSequenceClassification(InternLM2PreTrainedModel):
1463
+ def __init__(self, config):
1464
+ super().__init__(config)
1465
+ self.num_labels = config.num_labels
1466
+ self.model = InternLM2Model(config)
1467
+ self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
1468
+
1469
+ # Initialize weights and apply final processing
1470
+ self.post_init()
1471
+
1472
+ def get_input_embeddings(self):
1473
+ return self.model.tok_embeddings
1474
+
1475
+ def set_input_embeddings(self, value):
1476
+ self.model.tok_embeddings = value
1477
+
1478
+ @add_start_docstrings_to_model_forward(InternLM2_INPUTS_DOCSTRING)
1479
+ def forward(
1480
+ self,
1481
+ input_ids: torch.LongTensor = None,
1482
+ attention_mask: Optional[torch.Tensor] = None,
1483
+ position_ids: Optional[torch.LongTensor] = None,
1484
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1485
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1486
+ labels: Optional[torch.LongTensor] = None,
1487
+ use_cache: Optional[bool] = None,
1488
+ output_attentions: Optional[bool] = None,
1489
+ output_hidden_states: Optional[bool] = None,
1490
+ return_dict: Optional[bool] = None,
1491
+ ) -> Union[Tuple, SequenceClassifierOutputWithPast]:
1492
+ r"""
1493
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1494
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
1495
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
1496
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
1497
+ """
1498
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1499
+
1500
+ transformer_outputs = self.model(
1501
+ input_ids,
1502
+ attention_mask=attention_mask,
1503
+ position_ids=position_ids,
1504
+ past_key_values=past_key_values,
1505
+ inputs_embeds=inputs_embeds,
1506
+ use_cache=use_cache,
1507
+ output_attentions=output_attentions,
1508
+ output_hidden_states=output_hidden_states,
1509
+ return_dict=return_dict,
1510
+ )
1511
+ hidden_states = transformer_outputs[0]
1512
+ logits = self.score(hidden_states)
1513
+
1514
+ if input_ids is not None:
1515
+ batch_size = input_ids.shape[0]
1516
+ else:
1517
+ batch_size = inputs_embeds.shape[0]
1518
+
1519
+ if self.config.pad_token_id is None and batch_size != 1:
1520
+ raise ValueError('Cannot handle batch sizes > 1 if no padding token is defined.')
1521
+ if self.config.pad_token_id is None:
1522
+ sequence_lengths = -1
1523
+ else:
1524
+ if input_ids is not None:
1525
+ sequence_lengths = (torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1).to(
1526
+ logits.device
1527
+ )
1528
+ else:
1529
+ sequence_lengths = -1
1530
+
1531
+ pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
1532
+
1533
+ loss = None
1534
+ if labels is not None:
1535
+ labels = labels.to(logits.device)
1536
+ if self.config.problem_type is None:
1537
+ if self.num_labels == 1:
1538
+ self.config.problem_type = 'regression'
1539
+ elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
1540
+ self.config.problem_type = 'single_label_classification'
1541
+ else:
1542
+ self.config.problem_type = 'multi_label_classification'
1543
+
1544
+ if self.config.problem_type == 'regression':
1545
+ loss_fct = MSELoss()
1546
+ if self.num_labels == 1:
1547
+ loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
1548
+ else:
1549
+ loss = loss_fct(pooled_logits, labels)
1550
+ elif self.config.problem_type == 'single_label_classification':
1551
+ loss_fct = CrossEntropyLoss()
1552
+ loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
1553
+ elif self.config.problem_type == 'multi_label_classification':
1554
+ loss_fct = BCEWithLogitsLoss()
1555
+ loss = loss_fct(pooled_logits, labels)
1556
+ if not return_dict:
1557
+ output = (pooled_logits,) + transformer_outputs[1:]
1558
+ return ((loss,) + output) if loss is not None else output
1559
+
1560
+ return SequenceClassifierOutputWithPast(
1561
+ loss=loss,
1562
+ logits=pooled_logits,
1563
+ past_key_values=transformer_outputs.past_key_values,
1564
+ hidden_states=transformer_outputs.hidden_states,
1565
+ attentions=transformer_outputs.attentions,
1566
+ )
modeling_internlm2_lb_quant_normalize_shift.py ADDED
@@ -0,0 +1,1566 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) The InternLM team and The HuggingFace Inc. team. All rights reserved.
2
+ #
3
+ # This code is based on transformers/src/transformers/models/llama/modeling_llama.py
4
+ #
5
+ # Licensed under the Apache License, Version 2.0 (the "License");
6
+ # you may not use this file except in compliance with the License.
7
+ # You may obtain a copy of the License at
8
+ #
9
+ # http://www.apache.org/licenses/LICENSE-2.0
10
+ #
11
+ # Unless required by applicable law or agreed to in writing, software
12
+ # distributed under the License is distributed on an "AS IS" BASIS,
13
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14
+ # See the License for the specific language governing permissions and
15
+ # limitations under the License.
16
+ """ PyTorch InternLM2 model."""
17
+ import math
18
+ import queue
19
+ import threading
20
+ import warnings
21
+ from typing import List, Optional, Tuple, Union
22
+
23
+ import torch
24
+ import torch.nn.functional as F
25
+ import torch.utils.checkpoint
26
+ from einops import rearrange
27
+ from torch import nn
28
+ from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
29
+ from transformers.activations import ACT2FN
30
+ from transformers.modeling_outputs import (BaseModelOutputWithPast,
31
+ CausalLMOutputWithPast,
32
+ SequenceClassifierOutputWithPast)
33
+ from transformers.modeling_utils import PreTrainedModel
34
+ from transformers.utils import (add_start_docstrings,
35
+ add_start_docstrings_to_model_forward, logging,
36
+ replace_return_docstrings)
37
+
38
+ try:
39
+ from transformers.generation.streamers import BaseStreamer
40
+ except: # noqa # pylint: disable=bare-except
41
+ BaseStreamer = None
42
+
43
+ from .configuration_internlm2 import InternLM2Config
44
+ import os
45
+ logger = logging.get_logger(__name__)
46
+
47
+ _CONFIG_FOR_DOC = 'InternLM2Config'
48
+
49
+ flash_attn_func, flash_attn_varlen_func = None, None
50
+ pad_input, index_first_axis, unpad_input = None, None, None
51
+ try:
52
+ from flash_attn import flash_attn_func as _flash_attn_func
53
+ from flash_attn import flash_attn_varlen_func as _flash_attn_varlen_func
54
+ from flash_attn.bert_padding import index_first_axis as _index_first_axis
55
+ from flash_attn.bert_padding import pad_input as _pad_input
56
+ from flash_attn.bert_padding import unpad_input as _unpad_input
57
+
58
+ flash_attn_func, flash_attn_varlen_func = _flash_attn_func, _flash_attn_varlen_func
59
+ pad_input, index_first_axis, unpad_input = _pad_input, _index_first_axis, _unpad_input
60
+ has_flash_attn = True
61
+ except:
62
+ has_flash_attn = False
63
+
64
+
65
+ def _import_flash_attn():
66
+ global flash_attn_func, flash_attn_varlen_func
67
+ global pad_input, index_first_axis, unpad_input
68
+ try:
69
+ from flash_attn import flash_attn_func as _flash_attn_func
70
+ from flash_attn import \
71
+ flash_attn_varlen_func as _flash_attn_varlen_func
72
+ from flash_attn.bert_padding import \
73
+ index_first_axis as _index_first_axis
74
+ from flash_attn.bert_padding import pad_input as _pad_input
75
+ from flash_attn.bert_padding import unpad_input as _unpad_input
76
+ flash_attn_func, flash_attn_varlen_func = _flash_attn_func, _flash_attn_varlen_func
77
+ pad_input, index_first_axis, unpad_input = _pad_input, _index_first_axis, _unpad_input
78
+ except ImportError:
79
+ raise ImportError('flash_attn is not installed.')
80
+
81
+
82
+ # Copied from transformers.models.llama.modeling_llama._get_unpad_data
83
+ def _get_unpad_data(attention_mask):
84
+ seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
85
+ indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
86
+ max_seqlen_in_batch = seqlens_in_batch.max().item()
87
+ cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.torch.int32), (1, 0))
88
+ return (
89
+ indices,
90
+ cu_seqlens,
91
+ max_seqlen_in_batch,
92
+ )
93
+
94
+
95
+ # Copied from transformers.models.bart.modeling_bart._make_causal_mask
96
+ def _make_causal_mask(
97
+ input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0
98
+ ):
99
+ """
100
+ Make causal mask used for bi-directional self-attention.
101
+ """
102
+ bsz, tgt_len = input_ids_shape
103
+ mask = torch.full((tgt_len, tgt_len), torch.tensor(torch.finfo(dtype).min, device=device), device=device)
104
+ mask_cond = torch.arange(mask.size(-1), device=device)
105
+ mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
106
+ mask = mask.to(dtype)
107
+
108
+ if past_key_values_length > 0:
109
+ mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1)
110
+ return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length)
111
+
112
+
113
+ # Copied from transformers.models.bart.modeling_bart._expand_mask
114
+ def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
115
+ """
116
+ Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
117
+ """
118
+ bsz, src_len = mask.size()
119
+ tgt_len = tgt_len if tgt_len is not None else src_len
120
+
121
+ expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
122
+
123
+ inverted_mask = 1.0 - expanded_mask
124
+
125
+ return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min)
126
+
127
+
128
+ # Copied from transformers.models.llama.modeling_llama.LlamaRMSNorm with Llama->InternLM2
129
+ class InternLM2RMSNorm(nn.Module):
130
+ def __init__(self, hidden_size, eps=1e-6):
131
+ """
132
+ InternLM2RMSNorm is equivalent to T5LayerNorm
133
+ """
134
+ super().__init__()
135
+ self.weight = nn.Parameter(torch.ones(hidden_size))
136
+ self.variance_epsilon = eps
137
+
138
+ def forward(self, hidden_states):
139
+ input_dtype = hidden_states.dtype
140
+ hidden_states = hidden_states.to(torch.float32)
141
+ variance = hidden_states.pow(2).mean(-1, keepdim=True)
142
+ hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
143
+ return self.weight * hidden_states.to(input_dtype)
144
+
145
+
146
+ # Copied from transformers.model.llama.modeling_llama.LlamaRotaryEmbedding with Llama->InternLM2
147
+ class InternLM2RotaryEmbedding(nn.Module):
148
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
149
+ super().__init__()
150
+
151
+ self.dim = dim
152
+ self.max_position_embeddings = max_position_embeddings
153
+ self.base = base
154
+ inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
155
+ self.register_buffer('inv_freq', inv_freq, persistent=False)
156
+
157
+ # Build here to make `torch.jit.trace` work.
158
+ self._set_cos_sin_cache(
159
+ seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype()
160
+ )
161
+
162
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
163
+ self.max_seq_len_cached = seq_len
164
+ t = torch.arange(self.max_seq_len_cached, device=device).to(dtype=self.inv_freq.dtype)
165
+
166
+ freqs = torch.einsum('i,j->ij', t, self.inv_freq)
167
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
168
+ emb = torch.cat((freqs, freqs), dim=-1)
169
+ self.register_buffer('cos_cached', emb.cos().to(dtype), persistent=False)
170
+ self.register_buffer('sin_cached', emb.sin().to(dtype), persistent=False)
171
+
172
+ def forward(self, x, seq_len=None):
173
+ # x: [bs, num_attention_heads, seq_len, head_size]
174
+ if seq_len > self.max_seq_len_cached:
175
+ self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=torch.float32)
176
+
177
+ return (
178
+ self.cos_cached[:seq_len].to(dtype=x.dtype),
179
+ self.sin_cached[:seq_len].to(dtype=x.dtype),
180
+ )
181
+
182
+
183
+ # Copied from transformers.model.llama.modeling_llama.LlamaLinearScalingRotaryEmbedding with Llama->InternLM2
184
+ class InternLM2LinearScalingRotaryEmbedding(InternLM2RotaryEmbedding):
185
+ """InternLM2RotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev"""
186
+
187
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
188
+ self.scaling_factor = scaling_factor
189
+ super().__init__(dim, max_position_embeddings, base, device)
190
+
191
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
192
+ self.max_seq_len_cached = seq_len
193
+ t = torch.arange(self.max_seq_len_cached, device=device).to(dtype=self.inv_freq.dtype)
194
+ t = t / self.scaling_factor
195
+
196
+ freqs = torch.einsum('i,j->ij', t, self.inv_freq)
197
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
198
+ emb = torch.cat((freqs, freqs), dim=-1)
199
+ self.register_buffer('cos_cached', emb.cos().to(dtype), persistent=False)
200
+ self.register_buffer('sin_cached', emb.sin().to(dtype), persistent=False)
201
+
202
+
203
+ # Copied from transformers.model.llama.modeling_llama.LlamaDynamicNTKScalingRotaryEmbedding with Llama->InternLM2
204
+ class InternLM2DynamicNTKScalingRotaryEmbedding(InternLM2RotaryEmbedding):
205
+ """InternLM2RotaryEmbedding extended with Dynamic NTK scaling.
206
+ Credits to the Reddit users /u/bloc97 and /u/emozilla.
207
+ """
208
+
209
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
210
+ self.scaling_factor = scaling_factor
211
+ super().__init__(dim, max_position_embeddings, base, device)
212
+
213
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
214
+ self.max_seq_len_cached = seq_len
215
+
216
+ if seq_len > self.max_position_embeddings:
217
+ base = self.base * (
218
+ (self.scaling_factor * seq_len / self.max_position_embeddings) - (self.scaling_factor - 1)
219
+ ) ** (self.dim / (self.dim - 2))
220
+ inv_freq = 1.0 / (base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
221
+ self.register_buffer('inv_freq', inv_freq, persistent=False)
222
+
223
+ t = torch.arange(self.max_seq_len_cached, device=device).to(dtype=self.inv_freq.dtype)
224
+
225
+ freqs = torch.einsum('i,j->ij', t, self.inv_freq)
226
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
227
+ emb = torch.cat((freqs, freqs), dim=-1)
228
+ self.register_buffer('cos_cached', emb.cos().to(dtype), persistent=False)
229
+ self.register_buffer('sin_cached', emb.sin().to(dtype), persistent=False)
230
+
231
+
232
+ # Copied from transformers.model.llama.modeling_llama.rotate_half
233
+ def rotate_half(x):
234
+ """Rotates half the hidden dims of the input."""
235
+ x1 = x[..., : x.shape[-1] // 2]
236
+ x2 = x[..., x.shape[-1] // 2 :]
237
+ return torch.cat((-x2, x1), dim=-1)
238
+
239
+
240
+ # Copied from transformers.model.llama.modeling_llama.apply_rotary_pos_emb
241
+ def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1):
242
+ """Applies Rotary Position Embedding to the query and key tensors."""
243
+ cos = cos[position_ids].unsqueeze(unsqueeze_dim)
244
+ sin = sin[position_ids].unsqueeze(unsqueeze_dim)
245
+ q_embed = (q * cos) + (rotate_half(q) * sin)
246
+ k_embed = (k * cos) + (rotate_half(k) * sin)
247
+ return q_embed, k_embed
248
+
249
+
250
+ class InternLM2MLP(nn.Module):
251
+ def __init__(self, config):
252
+ super().__init__()
253
+ self.config = config
254
+ self.hidden_size = config.hidden_size
255
+ self.intermediate_size = config.intermediate_size
256
+ self.w1 = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
257
+ self.w3 = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
258
+ self.w2 = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
259
+ self.act_fn = ACT2FN[config.hidden_act]
260
+
261
+ def forward(self, x):
262
+ down_proj = self.w2(self.act_fn(self.w1(x)) * self.w3(x))
263
+
264
+ return down_proj
265
+
266
+
267
+ # Copied from transformers.model.llama.modeling_llama.repeat_kv
268
+ def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
269
+ """
270
+ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
271
+ num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
272
+ """
273
+ batch, num_key_value_heads, slen, head_dim = hidden_states.shape
274
+ if n_rep == 1:
275
+ return hidden_states
276
+ hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
277
+ return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
278
+
279
+
280
+ # Modified from transformers.model.llama.modeling_llama.LlamaAttention
281
+ class InternLM2Attention(nn.Module):
282
+ """Multi-headed attention from 'Attention Is All You Need' paper"""
283
+
284
+ def __init__(self, config: InternLM2Config):
285
+ super().__init__()
286
+ self.config = config
287
+ self.hidden_size = config.hidden_size
288
+ self.num_heads = config.num_attention_heads
289
+ self.head_dim = self.hidden_size // self.num_heads
290
+ self.num_key_value_heads = config.num_key_value_heads
291
+ self.num_key_value_groups = self.num_heads // self.num_key_value_heads
292
+ self.max_position_embeddings = config.max_position_embeddings
293
+ self.is_causal = True
294
+
295
+ if (self.head_dim * self.num_heads) != self.hidden_size:
296
+ raise ValueError(
297
+ f'hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}'
298
+ f' and `num_heads`: {self.num_heads}).'
299
+ )
300
+
301
+ self.wqkv = nn.Linear(
302
+ self.hidden_size,
303
+ (self.num_heads + 2 * self.num_key_value_heads) * self.head_dim,
304
+ bias=config.bias,
305
+ )
306
+
307
+ self.wo = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=config.bias)
308
+ self._init_rope()
309
+
310
+ def _init_rope(self):
311
+ if self.config.rope_scaling is None:
312
+ self.rotary_emb = InternLM2RotaryEmbedding(
313
+ self.head_dim,
314
+ max_position_embeddings=self.max_position_embeddings,
315
+ base=self.config.rope_theta,
316
+ )
317
+ else:
318
+ scaling_type = self.config.rope_scaling['type']
319
+ scaling_factor = self.config.rope_scaling['factor']
320
+ if scaling_type == 'dynamic':
321
+ self.rotary_emb = InternLM2DynamicNTKScalingRotaryEmbedding(
322
+ self.head_dim,
323
+ max_position_embeddings=self.max_position_embeddings,
324
+ base=self.config.rope_theta,
325
+ scaling_factor=scaling_factor,
326
+ )
327
+ elif scaling_type == 'linear':
328
+ self.rotary_emb = InternLM2LinearScalingRotaryEmbedding(
329
+ self.head_dim,
330
+ max_position_embeddings=self.max_position_embeddings,
331
+ base=self.config.rope_theta,
332
+ scaling_factor=scaling_factor,
333
+ )
334
+ else:
335
+ raise ValueError("Currently we only support rotary embedding's type being 'dynamic' or 'linear'.")
336
+ return self.rotary_emb
337
+
338
+ def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
339
+ return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
340
+
341
+ def forward(
342
+ self,
343
+ hidden_states: torch.Tensor,
344
+ attention_mask: Optional[torch.Tensor] = None,
345
+ position_ids: Optional[torch.LongTensor] = None,
346
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
347
+ output_attentions: bool = False,
348
+ use_cache: bool = False,
349
+ **kwargs,
350
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
351
+ if 'padding_mask' in kwargs:
352
+ warnings.warn(
353
+ 'Passing `padding_mask` is deprecated and will be removed in v4.37. '
354
+ 'Please make sure use `attention_mask` instead.`'
355
+ )
356
+
357
+ bsz, q_len, _ = hidden_states.size()
358
+
359
+ qkv_states = self.wqkv(hidden_states)
360
+
361
+ qkv_states = rearrange(
362
+ qkv_states,
363
+ 'b q (h gs d) -> b q h gs d',
364
+ gs=2 + self.num_key_value_groups,
365
+ d=self.head_dim,
366
+ )
367
+
368
+ query_states = qkv_states[..., : self.num_key_value_groups, :]
369
+ query_states = rearrange(query_states, 'b q h gs d -> b q (h gs) d')
370
+ key_states = qkv_states[..., -2, :]
371
+ value_states = qkv_states[..., -1, :]
372
+
373
+ query_states = query_states.transpose(1, 2)
374
+ key_states = key_states.transpose(1, 2)
375
+ value_states = value_states.transpose(1, 2)
376
+
377
+ kv_seq_len = key_states.shape[-2]
378
+ if past_key_value is not None:
379
+ kv_seq_len += past_key_value[0].shape[-2]
380
+ cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
381
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
382
+
383
+ if past_key_value is not None:
384
+ # reuse k, v, self_attention
385
+ key_states = torch.cat([past_key_value[0], key_states], dim=2)
386
+ value_states = torch.cat([past_key_value[1], value_states], dim=2)
387
+
388
+ past_key_value = (key_states, value_states) if use_cache else None
389
+
390
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
391
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
392
+
393
+ attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
394
+
395
+ if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
396
+ raise ValueError(
397
+ f'Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is'
398
+ f' {attn_weights.size()}'
399
+ )
400
+
401
+ if attention_mask is not None:
402
+ if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
403
+ raise ValueError(
404
+ f'Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}'
405
+ )
406
+ attn_weights = attn_weights + attention_mask
407
+
408
+ # upcast attention to fp32
409
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
410
+ attn_output = torch.matmul(attn_weights, value_states)
411
+
412
+ if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
413
+ raise ValueError(
414
+ f'`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is'
415
+ f' {attn_output.size()}'
416
+ )
417
+ attn_output = attn_output.transpose(1, 2).contiguous()
418
+ attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
419
+
420
+ attn_output = self.wo(attn_output)
421
+
422
+ if not output_attentions:
423
+ attn_weights = None
424
+
425
+ return attn_output, attn_weights, past_key_value
426
+
427
+
428
+ # Modified from transformers.model.llama.modeling_llama.InternLM2FlashAttention2
429
+ class InternLM2FlashAttention2(InternLM2Attention):
430
+ """
431
+ InternLM2 flash attention module. This module inherits from `InternLM2Attention` as the weights of the module stays
432
+ untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
433
+ flash attention and deal with padding tokens in case the input contains any of them.
434
+ """
435
+
436
+ def quant(self, x, bits, per_channel=False, scale=1, debug=False):
437
+ quant_levels = 2 ** bits - 1
438
+ if per_channel:
439
+ x_min = x.amin(dim=(1), keepdim=True) * scale
440
+ x_max = x.amax(dim=(1), keepdim=True) * scale
441
+ else:
442
+ x_min = x.min() * scale
443
+ x_max = x.max() * scale
444
+
445
+ scale = (x_max - x_min) / quant_levels # [2, 3328, 1, 1]
446
+ zero_point = -x_min / scale # [2, 3328, 1, 1]
447
+ # quantize
448
+ x_q = torch.round(torch.clamp(x / scale + zero_point, 0, quant_levels))
449
+ # dequantize
450
+ x = scale * (x_q - zero_point)
451
+ return x
452
+ '''
453
+ def quant(self, x, bits, per_channel=False, scale=1, debug=False, percent=0.3):
454
+ quant_levels = 2 ** bits - 1
455
+ if per_channel:
456
+ # import pdb;pdb.set_trace()
457
+ # x_min = x.amin(dim=(0, 1), keepdim=True) * scale
458
+ # x_max = x.amax(dim=(0, 1), keepdim=True) * scale
459
+ x_min = torch.quantile(x.float(), percent, dim=1, keepdim=True)
460
+ x_max = torch.quantile(x.float(), 1-percent, dim=1, keepdim=True)
461
+ else:
462
+ x_min = x.min() * scale
463
+ x_max = x.max() * scale
464
+
465
+ scale = (x_max - x_min) / quant_levels # [2, 3328, 1, 1]
466
+ zero_point = -x_min / scale # [2, 3328, 1, 1]
467
+ # quantize
468
+ x_q = torch.round(torch.clamp(x / scale + zero_point, 0, quant_levels))
469
+ # dequantize
470
+ x = scale * (x_q - zero_point)
471
+ return x
472
+ '''
473
+ def forward(
474
+ self,
475
+ hidden_states: torch.Tensor,
476
+ attention_mask: Optional[torch.LongTensor] = None,
477
+ position_ids: Optional[torch.LongTensor] = None,
478
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
479
+ output_attentions: bool = False,
480
+ use_cache: bool = False,
481
+ idx: int = 0,
482
+ **kwargs,
483
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
484
+ # InternLM2FlashAttention2 attention does not support output_attentions
485
+ if 'padding_mask' in kwargs:
486
+ warnings.warn(
487
+ 'Passing `padding_mask` is deprecated and will be removed in v4.37. '
488
+ 'Please make sure use `attention_mask` instead.`'
489
+ )
490
+
491
+ # overwrite attention_mask with padding_mask
492
+ attention_mask = kwargs.pop('padding_mask')
493
+
494
+ output_attentions = False
495
+
496
+ bsz, q_len, _ = hidden_states.size()
497
+
498
+ qkv_states = self.wqkv(hidden_states)
499
+
500
+ qkv_states = rearrange(
501
+ qkv_states,
502
+ 'b q (h gs d) -> b q h gs d',
503
+ gs=2 + self.num_key_value_groups,
504
+ d=self.head_dim,
505
+ )
506
+
507
+ query_states = qkv_states[..., : self.num_key_value_groups, :]
508
+ query_states = rearrange(query_states, 'b q h gs d -> b q (h gs) d')
509
+ key_states = qkv_states[..., -2, :]
510
+ value_states = qkv_states[..., -1, :]
511
+
512
+ query_states = query_states.transpose(1, 2)
513
+ key_states = key_states.transpose(1, 2)
514
+ value_states = value_states.transpose(1, 2)
515
+
516
+ kv_seq_len = key_states.shape[-2]
517
+ if past_key_value is not None:
518
+ kv_seq_len += past_key_value[0].shape[-2]
519
+
520
+ cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
521
+
522
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
523
+
524
+ if past_key_value is not None:
525
+ # reuse k, v, self_attention
526
+ key_states = torch.cat([past_key_value[0], key_states], dim=2)
527
+ value_states = torch.cat([past_key_value[1], value_states], dim=2)
528
+
529
+ past_key_value = (key_states, value_states) if use_cache else None
530
+
531
+ query_states = query_states.transpose(1, 2)
532
+ key_states = key_states.transpose(1, 2)
533
+ value_states = value_states.transpose(1, 2)
534
+
535
+ if query_states.shape[1] > 1:
536
+ self.sprompt_len = 41
537
+ self.image_token_num=int(os.environ.get('IMAGE_TOKEN_NUM'))
538
+ query_states_ = query_states.transpose(1, 2)
539
+ key_states_ = key_states.transpose(1, 2)
540
+ key_states_ = repeat_kv(key_states_, self.num_key_value_groups)
541
+
542
+ if query_states.shape[1] == 1:
543
+ #if False:
544
+ self.sprompt_len = 41
545
+ self.image_token_num=int(os.environ.get('IMAGE_TOKEN_NUM'))
546
+ bits_v = 1
547
+ scale_v = 0.3
548
+ per_channel_v= True
549
+ bits_k = 1
550
+ scale_k = 0.5
551
+ per_channel_k=True
552
+ normalize = True
553
+ norm_offset = 3
554
+
555
+ value_states_v = value_states[:,self.sprompt_len:self.sprompt_len+self.image_token_num,:,:]
556
+ value_states_deq = self.quant(value_states_v, bits=bits_v, per_channel=per_channel_v,scale = scale_v, debug=True)
557
+ #print("value unique value: ",torch.numel(torch.unique(value_states_deq.float())))
558
+
559
+ value_states_quant = value_states.clone()
560
+ value_states_quant[:,self.sprompt_len:self.sprompt_len+self.image_token_num,:,:] = value_states_deq
561
+
562
+ key_states_v = key_states[:,self.sprompt_len:self.sprompt_len+self.image_token_num,:,:]
563
+ key_states_deq = self.quant(key_states_v, bits=bits_k, per_channel=per_channel_k, scale = scale_k, debug=False)
564
+ #print("key unique value: ",torch.numel(torch.unique(key_states_deq.float())))
565
+
566
+ key_states_quant = key_states.clone()
567
+ key_states_quant[:,self.sprompt_len:self.sprompt_len+self.image_token_num,:,:] = key_states_deq
568
+
569
+ query_states = query_states.transpose(1, 2)
570
+ key_states = key_states.transpose(1, 2)
571
+ key_states_quant = key_states_quant.transpose(1, 2)
572
+ value_states = value_states.transpose(1, 2)
573
+ value_states_quant = value_states_quant.transpose(1, 2)
574
+
575
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
576
+ key_states_quant = repeat_kv(key_states_quant, self.num_key_value_groups)
577
+
578
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
579
+ value_states_quant = repeat_kv(value_states_quant, self.num_key_value_groups)
580
+
581
+ if normalize:
582
+ attn_weights_quant = torch.matmul(query_states, key_states_quant.transpose(2, 3)) / math.sqrt(self.head_dim)
583
+ attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
584
+
585
+ current_max = attn_weights_quant[:, :, :, self.sprompt_len:self.sprompt_len+self.image_token_num].amax(dim=(2, 3), keepdim=True)
586
+ current_min = attn_weights_quant[:, :, :, self.sprompt_len:self.sprompt_len+self.image_token_num].amin(dim=(2, 3), keepdim=True)
587
+
588
+
589
+ #target_max = attn_weights[:, :, :, self.sprompt_len:self.sprompt_len+self.image_token_num].amax(dim=(2, 3), keepdim=True)
590
+ # target_max = attn_weights_quant[:, :, :, self.sprompt_len:self.sprompt_len+self.image_token_num].amax(dim=(2, 3), keepdim=True)
591
+ target_max = current_max - norm_offset
592
+
593
+ #target_min = attn_weights[:, :, :, self.sprompt_len:self.sprompt_len+self.image_token_num].amin(dim=(2, 3), keepdim=True)
594
+ target_min = attn_weights_quant[:, :, :, self.sprompt_len:self.sprompt_len+self.image_token_num].amin(dim=(2, 3), keepdim=True)
595
+
596
+ #target_max = torch.load("temp/max/"+str(idx)+".pth").detach().cpu().cuda().unsqueeze(1).unsqueeze(1).unsqueeze(0)
597
+ #target_min = torch.load("temp/min/"+str(idx)+".pth").detach().cpu().cuda().unsqueeze(1).unsqueeze(1).unsqueeze(0)
598
+
599
+
600
+
601
+ normalized_weights = (attn_weights_quant[:, :, :, self.sprompt_len:self.sprompt_len+self.image_token_num] - current_min) / (current_max - current_min + 1e-8)
602
+ normalized_weights = normalized_weights * (target_max - target_min) + target_min
603
+ attn_weights_quant[:, :, :, self.sprompt_len:self.sprompt_len+self.image_token_num] = normalized_weights
604
+
605
+ attn_weights = attn_weights_quant
606
+
607
+ else:
608
+ attn_weights = torch.matmul(query_states, key_states_quant.transpose(2, 3)) / math.sqrt(self.head_dim)
609
+ # attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
610
+
611
+
612
+ if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
613
+ raise ValueError(
614
+ f'Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is'
615
+ f' {attn_weights.size()}'
616
+ )
617
+
618
+ attn_weights_logits = attn_weights.clone()
619
+ if attention_mask is not None:
620
+ if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
621
+ raise ValueError(
622
+ f'Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}'
623
+ )
624
+ attn_weights = attn_weights + attention_mask
625
+
626
+ # upcast attention to fp32
627
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
628
+ #if idx == 15:
629
+ # import pdb; pdb.set_trace()
630
+ attn_output = torch.matmul(attn_weights, value_states_quant)
631
+
632
+ if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
633
+ raise ValueError(
634
+ f'`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is'
635
+ f' {attn_output.size()}'
636
+ )
637
+ attn_output = attn_output.transpose(1, 2).contiguous()
638
+ attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
639
+
640
+ attn_output = self.wo(attn_output)
641
+
642
+ if not output_attentions:
643
+ attn_weights = None
644
+
645
+ else:
646
+ attn_output = self._flash_attention_forward(
647
+ query_states, key_states, value_states, attention_mask, q_len
648
+ )
649
+ attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
650
+ attn_output = self.wo(attn_output)
651
+
652
+ if not output_attentions:
653
+ attn_weights = None
654
+
655
+ return attn_output, attn_weights, past_key_value
656
+
657
+ def _flash_attention_forward(
658
+ self, query_states, key_states, value_states, attention_mask, query_length, dropout=0.0, softmax_scale=None
659
+ ):
660
+ """
661
+ Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
662
+ first unpad the input, then computes the attention scores and pad the final attention scores.
663
+
664
+ Args:
665
+ query_states (`torch.Tensor`):
666
+ Input query states to be passed to Flash Attention API
667
+ key_states (`torch.Tensor`):
668
+ Input key states to be passed to Flash Attention API
669
+ value_states (`torch.Tensor`):
670
+ Input value states to be passed to Flash Attention API
671
+ attention_mask (`torch.Tensor`):
672
+ The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
673
+ position of padding tokens and 1 for the position of non-padding tokens.
674
+ dropout (`int`, *optional*):
675
+ Attention dropout
676
+ softmax_scale (`float`, *optional*):
677
+ The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
678
+ """
679
+ # Contains at least one padding token in the sequence
680
+ causal = self.is_causal and query_length != 1
681
+ if attention_mask is not None:
682
+ batch_size = query_states.shape[0]
683
+ query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._unpad_input(
684
+ query_states, key_states, value_states, attention_mask, query_length
685
+ )
686
+
687
+ cu_seqlens_q, cu_seqlens_k = cu_seq_lens
688
+ max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
689
+
690
+ attn_output_unpad = flash_attn_varlen_func(
691
+ query_states,
692
+ key_states,
693
+ value_states,
694
+ cu_seqlens_q=cu_seqlens_q,
695
+ cu_seqlens_k=cu_seqlens_k,
696
+ max_seqlen_q=max_seqlen_in_batch_q,
697
+ max_seqlen_k=max_seqlen_in_batch_k,
698
+ dropout_p=dropout,
699
+ softmax_scale=softmax_scale,
700
+ causal=causal,
701
+ )
702
+
703
+ attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
704
+ else:
705
+ attn_output = flash_attn_func(
706
+ query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=causal
707
+ )
708
+
709
+ return attn_output
710
+
711
+ def _unpad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
712
+ indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
713
+ batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
714
+
715
+ key_layer = index_first_axis(
716
+ key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
717
+ )
718
+ value_layer = index_first_axis(
719
+ value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
720
+ )
721
+
722
+ if query_length == kv_seq_len:
723
+ query_layer = index_first_axis(
724
+ query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim), indices_k
725
+ )
726
+ cu_seqlens_q = cu_seqlens_k
727
+ max_seqlen_in_batch_q = max_seqlen_in_batch_k
728
+ indices_q = indices_k
729
+ elif query_length == 1:
730
+ max_seqlen_in_batch_q = 1
731
+ cu_seqlens_q = torch.arange(
732
+ batch_size + 1, dtype=torch.int32, device=query_layer.device
733
+ ) # There is a memcpy here, that is very bad.
734
+ indices_q = cu_seqlens_q[:-1]
735
+ query_layer = query_layer.squeeze(1)
736
+ else:
737
+ # The -q_len: slice assumes left padding.
738
+ attention_mask = attention_mask[:, -query_length:]
739
+ query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
740
+
741
+ return (
742
+ query_layer,
743
+ key_layer,
744
+ value_layer,
745
+ indices_q.to(torch.int64),
746
+ (cu_seqlens_q, cu_seqlens_k),
747
+ (max_seqlen_in_batch_q, max_seqlen_in_batch_k),
748
+ )
749
+
750
+
751
+ INTERNLM2_ATTENTION_CLASSES = {
752
+ 'eager': InternLM2Attention,
753
+ 'flash_attention_2': InternLM2FlashAttention2,
754
+ }
755
+
756
+
757
+ # Modified from transformers.model.llama.modeling_llama.LlamaDecoderLayer
758
+ class InternLM2DecoderLayer(nn.Module):
759
+ def __init__(self, config: InternLM2Config):
760
+ super().__init__()
761
+ self.hidden_size = config.hidden_size
762
+
763
+ self.attention = INTERNLM2_ATTENTION_CLASSES[config.attn_implementation](config=config)
764
+
765
+ self.feed_forward = InternLM2MLP(config)
766
+ self.attention_norm = InternLM2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
767
+ self.ffn_norm = InternLM2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
768
+
769
+ def forward(
770
+ self,
771
+ hidden_states: torch.Tensor,
772
+ attention_mask: Optional[torch.Tensor] = None,
773
+ position_ids: Optional[torch.LongTensor] = None,
774
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
775
+ output_attentions: Optional[bool] = False,
776
+ use_cache: Optional[bool] = False,
777
+ idx: Optional[int] = 0,
778
+ **kwargs,
779
+ ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
780
+ """
781
+ Args:
782
+ hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
783
+ attention_mask (`torch.FloatTensor`, *optional*):
784
+ attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1,
785
+ query_sequence_length, key_sequence_length)` if default attention is used.
786
+ output_attentions (`bool`, *optional*):
787
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
788
+ returned tensors for more detail.
789
+ use_cache (`bool`, *optional*):
790
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
791
+ (see `past_key_values`).
792
+ past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
793
+ """
794
+ if 'padding_mask' in kwargs:
795
+ warnings.warn(
796
+ 'Passing `padding_mask` is deprecated and will be removed in v4.37. '
797
+ 'Please make sure use `attention_mask` instead.`'
798
+ )
799
+
800
+ residual = hidden_states
801
+
802
+ hidden_states = self.attention_norm(hidden_states)
803
+
804
+ # Self Attention
805
+ hidden_states, self_attn_weights, present_key_value = self.attention(
806
+ hidden_states=hidden_states,
807
+ attention_mask=attention_mask,
808
+ position_ids=position_ids,
809
+ past_key_value=past_key_value,
810
+ output_attentions=output_attentions,
811
+ use_cache=use_cache,
812
+ idx = idx,
813
+ **kwargs,
814
+ )
815
+ hidden_states = residual + hidden_states
816
+
817
+ # Fully Connected
818
+ residual = hidden_states
819
+ hidden_states = self.ffn_norm(hidden_states)
820
+ hidden_states = self.feed_forward(hidden_states)
821
+ hidden_states = residual + hidden_states
822
+
823
+ outputs = (hidden_states,)
824
+
825
+ if output_attentions:
826
+ outputs += (self_attn_weights,)
827
+
828
+ if use_cache:
829
+ outputs += (present_key_value,)
830
+
831
+ return outputs
832
+
833
+
834
+ InternLM2_START_DOCSTRING = r"""
835
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
836
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
837
+ etc.)
838
+
839
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
840
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
841
+ and behavior.
842
+
843
+ Parameters:
844
+ config ([`InternLM2Config`]):
845
+ Model configuration class with all the parameters of the model. Initializing with a config file does not
846
+ load the weights associated with the model, only the configuration. Check out the
847
+ [`~PreTrainedModel.from_pretrained`] method to load the model weights.
848
+ """
849
+
850
+
851
+ # Copied from transformers.models.llama.modeling_llama.LlamaPreTrainedModel with Llama->InternLM2
852
+ @add_start_docstrings(
853
+ 'The bare InternLM2 Model outputting raw hidden-states without any specific head on top.',
854
+ InternLM2_START_DOCSTRING,
855
+ )
856
+ class InternLM2PreTrainedModel(PreTrainedModel):
857
+ config_class = InternLM2Config
858
+ base_model_prefix = 'model'
859
+ supports_gradient_checkpointing = True
860
+ _no_split_modules = ['InternLM2DecoderLayer']
861
+ _skip_keys_device_placement = 'past_key_values'
862
+ _supports_flash_attn_2 = True
863
+
864
+ def _init_weights(self, module):
865
+ std = self.config.initializer_range
866
+ if isinstance(module, nn.Linear):
867
+ module.weight.data.normal_(mean=0.0, std=std)
868
+ if module.bias is not None:
869
+ module.bias.data.zero_()
870
+ elif isinstance(module, nn.Embedding):
871
+ module.weight.data.normal_(mean=0.0, std=std)
872
+ if module.padding_idx is not None:
873
+ module.weight.data[module.padding_idx].zero_()
874
+
875
+
876
+ InternLM2_INPUTS_DOCSTRING = r"""
877
+ Args:
878
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
879
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
880
+ it.
881
+
882
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
883
+ [`PreTrainedTokenizer.__call__`] for details.
884
+
885
+ [What are input IDs?](../glossary#input-ids)
886
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
887
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
888
+
889
+ - 1 for tokens that are **not masked**,
890
+ - 0 for tokens that are **masked**.
891
+
892
+ [What are attention masks?](../glossary#attention-mask)
893
+
894
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
895
+ [`PreTrainedTokenizer.__call__`] for details.
896
+
897
+ If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
898
+ `past_key_values`).
899
+
900
+ If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
901
+ and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
902
+ information on the default strategy.
903
+
904
+ - 1 indicates the head is **not masked**,
905
+ - 0 indicates the head is **masked**.
906
+ position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
907
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
908
+ config.n_positions - 1]`.
909
+
910
+ [What are position IDs?](../glossary#position-ids)
911
+ past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or
912
+ when `config.use_cache=True`):
913
+ Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
914
+ `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
915
+ `(batch_size, num_heads, decoder_sequence_length, embed_size_per_head)`.
916
+
917
+ Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
918
+ blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
919
+
920
+ If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
921
+ have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
922
+ of shape `(batch_size, sequence_length)`.
923
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
924
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
925
+ is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
926
+ model's internal embedding lookup matrix.
927
+ use_cache (`bool`, *optional*):
928
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
929
+ `past_key_values`).
930
+ output_attentions (`bool`, *optional*):
931
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
932
+ tensors for more detail.
933
+ output_hidden_states (`bool`, *optional*):
934
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
935
+ more detail.
936
+ return_dict (`bool`, *optional*):
937
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
938
+ """
939
+
940
+
941
+ # Modified from transformers.model.llama.modeling_llama.LlamaModel
942
+ @add_start_docstrings(
943
+ 'The bare InternLM2 Model outputting raw hidden-states without any specific head on top.',
944
+ InternLM2_START_DOCSTRING,
945
+ )
946
+ class InternLM2Model(InternLM2PreTrainedModel):
947
+ """
948
+ Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`InternLM2DecoderLayer`]
949
+
950
+ Args:
951
+ config: InternLM2Config
952
+ """
953
+
954
+ _auto_class = 'AutoModel'
955
+
956
+ def __init__(self, config: InternLM2Config):
957
+ super().__init__(config)
958
+ self.padding_idx = config.pad_token_id
959
+ self.vocab_size = config.vocab_size
960
+ self.config = config
961
+ if not has_flash_attn:
962
+ self.config.attn_implementation = 'eager'
963
+ print('Warning: Flash attention is not available, using eager attention instead.')
964
+
965
+ self.tok_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
966
+
967
+ self.layers = nn.ModuleList([InternLM2DecoderLayer(config) for _ in range(config.num_hidden_layers)])
968
+ self.norm = InternLM2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
969
+
970
+ self.gradient_checkpointing = False
971
+ # Initialize weights and apply final processing
972
+ self.post_init()
973
+
974
+ def get_input_embeddings(self):
975
+ return self.tok_embeddings
976
+
977
+ def set_input_embeddings(self, value):
978
+ self.tok_embeddings = value
979
+
980
+ def _prepare_decoder_attention_mask(self, attention_mask, input_shape, inputs_embeds, past_key_values_length):
981
+ # create causal mask
982
+ # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
983
+ combined_attention_mask = None
984
+ if input_shape[-1] > 1:
985
+ combined_attention_mask = _make_causal_mask(
986
+ input_shape,
987
+ inputs_embeds.dtype,
988
+ device=inputs_embeds.device,
989
+ past_key_values_length=past_key_values_length,
990
+ )
991
+
992
+ if attention_mask is not None:
993
+ # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
994
+ expanded_attn_mask = _expand_mask(attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]).to(
995
+ inputs_embeds.device
996
+ )
997
+ combined_attention_mask = (
998
+ expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask
999
+ )
1000
+
1001
+ return combined_attention_mask
1002
+
1003
+ @add_start_docstrings_to_model_forward(InternLM2_INPUTS_DOCSTRING)
1004
+ def forward(
1005
+ self,
1006
+ input_ids: torch.LongTensor = None,
1007
+ attention_mask: Optional[torch.Tensor] = None,
1008
+ position_ids: Optional[torch.LongTensor] = None,
1009
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1010
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1011
+ use_cache: Optional[bool] = None,
1012
+ output_attentions: Optional[bool] = None,
1013
+ output_hidden_states: Optional[bool] = None,
1014
+ return_dict: Optional[bool] = None,
1015
+ ) -> Union[Tuple, BaseModelOutputWithPast]:
1016
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
1017
+ output_hidden_states = (
1018
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
1019
+ )
1020
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
1021
+
1022
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1023
+
1024
+ if self.config.attn_implementation == 'flash_attention_2':
1025
+ _import_flash_attn()
1026
+
1027
+ # retrieve input_ids and inputs_embeds
1028
+ if input_ids is not None and inputs_embeds is not None:
1029
+ raise ValueError('You cannot specify both input_ids and inputs_embeds at the same time')
1030
+ elif input_ids is not None:
1031
+ batch_size, seq_length = input_ids.shape[:2]
1032
+ elif inputs_embeds is not None:
1033
+ batch_size, seq_length = inputs_embeds.shape[:2]
1034
+ else:
1035
+ raise ValueError('You have to specify either input_ids or inputs_embeds')
1036
+
1037
+ seq_length_with_past = seq_length
1038
+ past_key_values_length = 0
1039
+ if past_key_values is not None:
1040
+ past_key_values_length = past_key_values[0][0].shape[2]
1041
+ seq_length_with_past = seq_length_with_past + past_key_values_length
1042
+
1043
+ if position_ids is None:
1044
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
1045
+ position_ids = torch.arange(
1046
+ past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
1047
+ )
1048
+ position_ids = position_ids.unsqueeze(0)
1049
+
1050
+ if inputs_embeds is None:
1051
+ inputs_embeds = self.tok_embeddings(input_ids)
1052
+
1053
+ if self.config.attn_implementation == 'flash_attention_2':
1054
+ # 2d mask is passed through the layers
1055
+ attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
1056
+ else:
1057
+ if attention_mask is None:
1058
+ attention_mask = torch.ones(
1059
+ (batch_size, seq_length_with_past), dtype=torch.bool, device=inputs_embeds.device
1060
+ )
1061
+ attention_mask = self._prepare_decoder_attention_mask(
1062
+ attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length
1063
+ )
1064
+
1065
+ # embed positions
1066
+ hidden_states = inputs_embeds
1067
+
1068
+ if self.gradient_checkpointing and self.training:
1069
+ if use_cache:
1070
+ logger.warning_once(
1071
+ '`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`...'
1072
+ )
1073
+ use_cache = False
1074
+
1075
+ # decoder layers
1076
+ all_hidden_states = () if output_hidden_states else None
1077
+ all_self_attns = () if output_attentions else None
1078
+ next_decoder_cache = () if use_cache else None
1079
+
1080
+ for idx, decoder_layer in enumerate(self.layers):
1081
+ if output_hidden_states:
1082
+ all_hidden_states += (hidden_states,)
1083
+
1084
+ past_key_value = past_key_values[idx] if past_key_values is not None else None
1085
+
1086
+ if self.gradient_checkpointing and self.training:
1087
+
1088
+ def create_custom_forward(module):
1089
+ def custom_forward(*inputs):
1090
+ # None for past_key_value
1091
+ return module(*inputs, output_attentions, None)
1092
+
1093
+ return custom_forward
1094
+
1095
+ layer_outputs = torch.utils.checkpoint.checkpoint(
1096
+ create_custom_forward(decoder_layer),
1097
+ hidden_states,
1098
+ attention_mask,
1099
+ position_ids,
1100
+ None,
1101
+ )
1102
+ else:
1103
+ layer_outputs = decoder_layer(
1104
+ hidden_states,
1105
+ attention_mask=attention_mask,
1106
+ position_ids=position_ids,
1107
+ past_key_value=past_key_value,
1108
+ output_attentions=output_attentions,
1109
+ use_cache=use_cache,
1110
+ idx=idx,
1111
+ )
1112
+
1113
+ hidden_states = layer_outputs[0]
1114
+
1115
+ if use_cache:
1116
+ next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)
1117
+
1118
+ if output_attentions:
1119
+ all_self_attns += (layer_outputs[1],)
1120
+
1121
+ hidden_states = self.norm(hidden_states)
1122
+
1123
+ # add hidden states from the last decoder layer
1124
+ if output_hidden_states:
1125
+ all_hidden_states += (hidden_states,)
1126
+
1127
+ next_cache = next_decoder_cache if use_cache else None
1128
+ if not return_dict:
1129
+ return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
1130
+ return BaseModelOutputWithPast(
1131
+ last_hidden_state=hidden_states,
1132
+ past_key_values=next_cache,
1133
+ hidden_states=all_hidden_states,
1134
+ attentions=all_self_attns,
1135
+ )
1136
+
1137
+
1138
+ # Modified from transformers.model.llama.modeling_llama.LlamaForCausalLM
1139
+ class InternLM2ForCausalLM(InternLM2PreTrainedModel):
1140
+ _auto_class = 'AutoModelForCausalLM'
1141
+
1142
+ _tied_weights_keys = ['output.weight']
1143
+
1144
+ def __init__(self, config):
1145
+ super().__init__(config)
1146
+ self.model = InternLM2Model(config)
1147
+ self.vocab_size = config.vocab_size
1148
+ self.output = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
1149
+
1150
+ # Initialize weights and apply final processing
1151
+ self.post_init()
1152
+
1153
+ def get_input_embeddings(self):
1154
+ return self.model.tok_embeddings
1155
+
1156
+ def set_input_embeddings(self, value):
1157
+ self.model.tok_embeddings = value
1158
+
1159
+ def get_output_embeddings(self):
1160
+ return self.output
1161
+
1162
+ def set_output_embeddings(self, new_embeddings):
1163
+ self.output = new_embeddings
1164
+
1165
+ def set_decoder(self, decoder):
1166
+ self.model = decoder
1167
+
1168
+ def get_decoder(self):
1169
+ return self.model
1170
+
1171
+ @add_start_docstrings_to_model_forward(InternLM2_INPUTS_DOCSTRING)
1172
+ @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
1173
+ def forward(
1174
+ self,
1175
+ input_ids: torch.LongTensor = None,
1176
+ attention_mask: Optional[torch.Tensor] = None,
1177
+ position_ids: Optional[torch.LongTensor] = None,
1178
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1179
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1180
+ labels: Optional[torch.LongTensor] = None,
1181
+ use_cache: Optional[bool] = None,
1182
+ output_attentions: Optional[bool] = None,
1183
+ output_hidden_states: Optional[bool] = None,
1184
+ return_dict: Optional[bool] = None,
1185
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
1186
+ r"""
1187
+ Args:
1188
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
1189
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
1190
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
1191
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
1192
+
1193
+ Returns:
1194
+
1195
+ Example:
1196
+
1197
+ ```python
1198
+ >>> from transformers import AutoTokenizer, InternLM2ForCausalLM
1199
+
1200
+ >>> model = InternLM2ForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
1201
+ >>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
1202
+
1203
+ >>> prompt = "Hey, are you conscious? Can you talk to me?"
1204
+ >>> inputs = tokenizer(prompt, return_tensors="pt")
1205
+
1206
+ >>> # Generate
1207
+ >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
1208
+ >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
1209
+ "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
1210
+ ```"""
1211
+
1212
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
1213
+ output_hidden_states = (
1214
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
1215
+ )
1216
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1217
+
1218
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
1219
+ outputs = self.model(
1220
+ input_ids=input_ids,
1221
+ attention_mask=attention_mask,
1222
+ position_ids=position_ids,
1223
+ past_key_values=past_key_values,
1224
+ inputs_embeds=inputs_embeds,
1225
+ use_cache=use_cache,
1226
+ output_attentions=output_attentions,
1227
+ output_hidden_states=output_hidden_states,
1228
+ return_dict=return_dict,
1229
+ )
1230
+
1231
+ hidden_states = outputs[0]
1232
+ logits = self.output(hidden_states)
1233
+ logits = logits.float()
1234
+
1235
+ loss = None
1236
+ if labels is not None:
1237
+ # Shift so that tokens < n predict n
1238
+ shift_logits = logits[..., :-1, :].contiguous()
1239
+ shift_labels = labels[..., 1:].contiguous()
1240
+ # Flatten the tokens
1241
+ loss_fct = CrossEntropyLoss()
1242
+ shift_logits = shift_logits.view(-1, self.config.vocab_size)
1243
+ shift_labels = shift_labels.view(-1)
1244
+ # Enable model parallelism
1245
+ shift_labels = shift_labels.to(shift_logits.device)
1246
+ loss = loss_fct(shift_logits, shift_labels)
1247
+
1248
+ if not return_dict:
1249
+ output = (logits,) + outputs[1:]
1250
+ return (loss,) + output if loss is not None else output
1251
+
1252
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
1253
+ output = CausalLMOutputWithPast(
1254
+ loss=loss,
1255
+ logits=logits,
1256
+ past_key_values=outputs.past_key_values,
1257
+ hidden_states=outputs.hidden_states,
1258
+ attentions=outputs.attentions,
1259
+ )
1260
+ output['logits'] = output['logits'].to(device)
1261
+ return output
1262
+
1263
+ def prepare_inputs_for_generation(
1264
+ self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
1265
+ ):
1266
+ if past_key_values is not None:
1267
+ past_length = past_key_values[0][0].shape[2]
1268
+
1269
+ # Some generation methods already pass only the last input ID
1270
+ if input_ids.shape[1] > past_length:
1271
+ remove_prefix_length = past_length
1272
+ else:
1273
+ # Default to old behavior: keep only final ID
1274
+ remove_prefix_length = input_ids.shape[1] - 1
1275
+
1276
+ input_ids = input_ids[:, remove_prefix_length:]
1277
+
1278
+ position_ids = kwargs.get('position_ids', None)
1279
+ if attention_mask is not None and position_ids is None:
1280
+ # create position_ids on the fly for batch generation
1281
+ position_ids = attention_mask.long().cumsum(-1) - 1
1282
+ position_ids.masked_fill_(attention_mask == 0, 1)
1283
+ if past_key_values:
1284
+ position_ids = position_ids[:, -input_ids.shape[1] :]
1285
+
1286
+ # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
1287
+ if inputs_embeds is not None and past_key_values is None:
1288
+ model_inputs = {'inputs_embeds': inputs_embeds}
1289
+ else:
1290
+ model_inputs = {'input_ids': input_ids}
1291
+
1292
+ model_inputs.update(
1293
+ {
1294
+ 'position_ids': position_ids,
1295
+ 'past_key_values': past_key_values,
1296
+ 'use_cache': kwargs.get('use_cache'),
1297
+ 'attention_mask': attention_mask,
1298
+ }
1299
+ )
1300
+ return model_inputs
1301
+
1302
+ @staticmethod
1303
+ def _reorder_cache(past_key_values, beam_idx):
1304
+ reordered_past = ()
1305
+ for layer_past in past_key_values:
1306
+ reordered_past += (
1307
+ tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
1308
+ )
1309
+ return reordered_past
1310
+
1311
+ def build_inputs(self, tokenizer, query: str, history: List[Tuple[str, str]] = [], meta_instruction=''):
1312
+ if tokenizer.add_bos_token:
1313
+ prompt = ''
1314
+ else:
1315
+ prompt = tokenizer.bos_token
1316
+ if meta_instruction:
1317
+ prompt += f"""<|im_start|>system\n{meta_instruction}<|im_end|>\n"""
1318
+ for record in history:
1319
+ prompt += f"""<|im_start|>user\n{record[0]}<|im_end|>\n<|im_start|>assistant\n{record[1]}<|im_end|>\n"""
1320
+ prompt += f"""<|im_start|>user\n{query}<|im_end|>\n<|im_start|>assistant\n"""
1321
+ return tokenizer([prompt], return_tensors='pt')
1322
+
1323
+ @torch.no_grad()
1324
+ def chat(
1325
+ self,
1326
+ tokenizer,
1327
+ query: str,
1328
+ history: List[Tuple[str, str]] = [],
1329
+ streamer: Optional[BaseStreamer] = None,
1330
+ max_new_tokens: int = 1024,
1331
+ do_sample: bool = True,
1332
+ temperature: float = 0.8,
1333
+ top_p: float = 0.8,
1334
+ meta_instruction: str = 'You are an AI assistant whose name is InternLM (书生·浦语).\n'
1335
+ '- InternLM (书生·浦语) is a conversational language model that is developed by Shanghai AI Laboratory (上海人工智能实验室). It is designed to be helpful, honest, and harmless.\n'
1336
+ '- InternLM (书生·浦语) can understand and communicate fluently in the language chosen by the user such as English and 中文.',
1337
+ **kwargs,
1338
+ ):
1339
+ inputs = self.build_inputs(tokenizer, query, history, meta_instruction)
1340
+ inputs = {k: v.to(self.device) for k, v in inputs.items() if torch.is_tensor(v)}
1341
+ # also add end-of-assistant token in eos token id to avoid unnecessary generation
1342
+ eos_token_id = [tokenizer.eos_token_id, tokenizer.convert_tokens_to_ids(['<|im_end|>'])[0]]
1343
+ outputs = self.generate(
1344
+ **inputs,
1345
+ streamer=streamer,
1346
+ max_new_tokens=max_new_tokens,
1347
+ do_sample=do_sample,
1348
+ temperature=temperature,
1349
+ top_p=top_p,
1350
+ eos_token_id=eos_token_id,
1351
+ **kwargs,
1352
+ )
1353
+ outputs = outputs[0].cpu().tolist()[len(inputs['input_ids'][0]) :]
1354
+ response = tokenizer.decode(outputs, skip_special_tokens=True)
1355
+ response = response.split('<|im_end|>')[0]
1356
+ history = history + [(query, response)]
1357
+ return response, history
1358
+
1359
+ @torch.no_grad()
1360
+ def stream_chat(
1361
+ self,
1362
+ tokenizer,
1363
+ query: str,
1364
+ history: List[Tuple[str, str]] = [],
1365
+ max_new_tokens: int = 1024,
1366
+ do_sample: bool = True,
1367
+ temperature: float = 0.8,
1368
+ top_p: float = 0.8,
1369
+ **kwargs,
1370
+ ):
1371
+ """
1372
+ Return a generator in format: (response, history)
1373
+ Eg.
1374
+ ('你好,有什么可以帮助您的吗', [('你好', '你好,有什么可以帮助您的吗')])
1375
+ ('你好,有什么可以帮助您的吗?', [('你好', '你好,有什么可以帮助您的吗?')])
1376
+ """
1377
+ if BaseStreamer is None:
1378
+ raise ModuleNotFoundError(
1379
+ 'The version of `transformers` is too low. Please make sure '
1380
+ 'that you have installed `transformers>=4.28.0`.'
1381
+ )
1382
+
1383
+ response_queue = queue.Queue(maxsize=20)
1384
+
1385
+ class ChatStreamer(BaseStreamer):
1386
+ def __init__(self, tokenizer) -> None:
1387
+ super().__init__()
1388
+ self.tokenizer = tokenizer
1389
+ self.queue = response_queue
1390
+ self.query = query
1391
+ self.history = history
1392
+ self.response = ''
1393
+ self.cache = []
1394
+ self.received_inputs = False
1395
+ self.queue.put((self.response, history + [(self.query, self.response)]))
1396
+
1397
+ def put(self, value):
1398
+ if len(value.shape) > 1 and value.shape[0] > 1:
1399
+ raise ValueError('ChatStreamer only supports batch size 1')
1400
+ elif len(value.shape) > 1:
1401
+ value = value[0]
1402
+
1403
+ if not self.received_inputs:
1404
+ # The first received value is input_ids, ignore here
1405
+ self.received_inputs = True
1406
+ return
1407
+
1408
+ self.cache.extend(value.tolist())
1409
+ token = self.tokenizer.decode(self.cache, skip_special_tokens=True)
1410
+ if token.strip() != '<|im_end|>':
1411
+ self.response = self.response + token
1412
+ history = self.history + [(self.query, self.response)]
1413
+ self.queue.put((self.response, history))
1414
+ self.cache = []
1415
+ else:
1416
+ self.end()
1417
+
1418
+ def end(self):
1419
+ self.queue.put(None)
1420
+
1421
+ def stream_producer():
1422
+ return self.chat(
1423
+ tokenizer=tokenizer,
1424
+ query=query,
1425
+ streamer=ChatStreamer(tokenizer=tokenizer),
1426
+ history=history,
1427
+ max_new_tokens=max_new_tokens,
1428
+ do_sample=do_sample,
1429
+ temperature=temperature,
1430
+ top_p=top_p,
1431
+ **kwargs,
1432
+ )
1433
+
1434
+ def consumer():
1435
+ producer = threading.Thread(target=stream_producer)
1436
+ producer.start()
1437
+ while True:
1438
+ res = response_queue.get()
1439
+ if res is None:
1440
+ return
1441
+ yield res
1442
+
1443
+ return consumer()
1444
+
1445
+
1446
+ # Copied from transformers.model.llama.modeling_llama.LlamaForSequenceClassification with Llama->InternLM2
1447
+ @add_start_docstrings(
1448
+ """
1449
+ The InternLM2 Model transformer with a sequence classification head on top (linear layer).
1450
+
1451
+ [`InternLM2ForSequenceClassification`] uses the last token in order to do the classification,
1452
+ as other causal models (e.g. GPT-2) do.
1453
+
1454
+ Since it does classification on the last token, it requires to know the position of the last token. If a
1455
+ `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
1456
+ no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
1457
+ padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
1458
+ each row of the batch).
1459
+ """,
1460
+ InternLM2_START_DOCSTRING,
1461
+ )
1462
+ class InternLM2ForSequenceClassification(InternLM2PreTrainedModel):
1463
+ def __init__(self, config):
1464
+ super().__init__(config)
1465
+ self.num_labels = config.num_labels
1466
+ self.model = InternLM2Model(config)
1467
+ self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
1468
+
1469
+ # Initialize weights and apply final processing
1470
+ self.post_init()
1471
+
1472
+ def get_input_embeddings(self):
1473
+ return self.model.tok_embeddings
1474
+
1475
+ def set_input_embeddings(self, value):
1476
+ self.model.tok_embeddings = value
1477
+
1478
+ @add_start_docstrings_to_model_forward(InternLM2_INPUTS_DOCSTRING)
1479
+ def forward(
1480
+ self,
1481
+ input_ids: torch.LongTensor = None,
1482
+ attention_mask: Optional[torch.Tensor] = None,
1483
+ position_ids: Optional[torch.LongTensor] = None,
1484
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1485
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1486
+ labels: Optional[torch.LongTensor] = None,
1487
+ use_cache: Optional[bool] = None,
1488
+ output_attentions: Optional[bool] = None,
1489
+ output_hidden_states: Optional[bool] = None,
1490
+ return_dict: Optional[bool] = None,
1491
+ ) -> Union[Tuple, SequenceClassifierOutputWithPast]:
1492
+ r"""
1493
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1494
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
1495
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
1496
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
1497
+ """
1498
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1499
+
1500
+ transformer_outputs = self.model(
1501
+ input_ids,
1502
+ attention_mask=attention_mask,
1503
+ position_ids=position_ids,
1504
+ past_key_values=past_key_values,
1505
+ inputs_embeds=inputs_embeds,
1506
+ use_cache=use_cache,
1507
+ output_attentions=output_attentions,
1508
+ output_hidden_states=output_hidden_states,
1509
+ return_dict=return_dict,
1510
+ )
1511
+ hidden_states = transformer_outputs[0]
1512
+ logits = self.score(hidden_states)
1513
+
1514
+ if input_ids is not None:
1515
+ batch_size = input_ids.shape[0]
1516
+ else:
1517
+ batch_size = inputs_embeds.shape[0]
1518
+
1519
+ if self.config.pad_token_id is None and batch_size != 1:
1520
+ raise ValueError('Cannot handle batch sizes > 1 if no padding token is defined.')
1521
+ if self.config.pad_token_id is None:
1522
+ sequence_lengths = -1
1523
+ else:
1524
+ if input_ids is not None:
1525
+ sequence_lengths = (torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1).to(
1526
+ logits.device
1527
+ )
1528
+ else:
1529
+ sequence_lengths = -1
1530
+
1531
+ pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
1532
+
1533
+ loss = None
1534
+ if labels is not None:
1535
+ labels = labels.to(logits.device)
1536
+ if self.config.problem_type is None:
1537
+ if self.num_labels == 1:
1538
+ self.config.problem_type = 'regression'
1539
+ elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
1540
+ self.config.problem_type = 'single_label_classification'
1541
+ else:
1542
+ self.config.problem_type = 'multi_label_classification'
1543
+
1544
+ if self.config.problem_type == 'regression':
1545
+ loss_fct = MSELoss()
1546
+ if self.num_labels == 1:
1547
+ loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
1548
+ else:
1549
+ loss = loss_fct(pooled_logits, labels)
1550
+ elif self.config.problem_type == 'single_label_classification':
1551
+ loss_fct = CrossEntropyLoss()
1552
+ loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
1553
+ elif self.config.problem_type == 'multi_label_classification':
1554
+ loss_fct = BCEWithLogitsLoss()
1555
+ loss = loss_fct(pooled_logits, labels)
1556
+ if not return_dict:
1557
+ output = (pooled_logits,) + transformer_outputs[1:]
1558
+ return ((loss,) + output) if loss is not None else output
1559
+
1560
+ return SequenceClassifierOutputWithPast(
1561
+ loss=loss,
1562
+ logits=pooled_logits,
1563
+ past_key_values=transformer_outputs.past_key_values,
1564
+ hidden_states=transformer_outputs.hidden_states,
1565
+ attentions=transformer_outputs.attentions,
1566
+ )
modeling_internvl_chat.py ADDED
@@ -0,0 +1,455 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # --------------------------------------------------------
2
+ # InternVL
3
+ # Copyright (c) 2024 OpenGVLab
4
+ # Licensed under The MIT License [see LICENSE for details]
5
+ # --------------------------------------------------------
6
+
7
+ import warnings
8
+ from typing import List, Optional, Tuple, Union
9
+
10
+ import torch.distributed as dist
11
+ import torch.utils.checkpoint
12
+ import transformers
13
+ from internvl.conversation import get_conv_template
14
+ from internvl.model.internlm2.modeling_internlm2 import InternLM2ForCausalLM
15
+ from internvl.model.phi3.modeling_phi3 import Phi3ForCausalLM
16
+ from peft import LoraConfig, get_peft_model
17
+ from torch import nn
18
+ from torch.nn import CrossEntropyLoss
19
+ from transformers import (AutoModel, GenerationConfig, LlamaForCausalLM,
20
+ LlamaTokenizer, Qwen2ForCausalLM)
21
+ from transformers.modeling_outputs import CausalLMOutputWithPast
22
+ from transformers.modeling_utils import PreTrainedModel
23
+ from transformers.utils import ModelOutput, logging
24
+
25
+ from .configuration_internvl_chat import InternVLChatConfig
26
+ from .modeling_intern_vit import InternVisionModel, has_flash_attn
27
+
28
+ logger = logging.get_logger(__name__)
29
+
30
+ import os
31
+ image_token_num = 0
32
+
33
+ def version_cmp(v1, v2, op='eq'):
34
+ import operator
35
+
36
+ from packaging import version
37
+ op_func = getattr(operator, op)
38
+ return op_func(version.parse(v1), version.parse(v2))
39
+
40
+
41
+ class InternVLChatModel(PreTrainedModel):
42
+ config_class = InternVLChatConfig
43
+ main_input_name = 'pixel_values'
44
+ base_model_prefix = 'language_model'
45
+ _no_split_modules = ['InternVisionModel', 'LlamaDecoderLayer', 'InternLM2DecoderLayer',
46
+ 'Phi3DecoderLayer', 'Qwen2DecoderLayer']
47
+ _supports_flash_attn_2 = True
48
+ supports_gradient_checkpointing = True
49
+
50
+ def __init__(self, config: InternVLChatConfig, vision_model=None, language_model=None, use_flash_attn=True):
51
+ super().__init__(config)
52
+
53
+ assert version_cmp(transformers.__version__, '4.37.0', 'ge')
54
+ image_size = config.force_image_size or config.vision_config.image_size
55
+ patch_size = config.vision_config.patch_size
56
+ self.patch_size = patch_size
57
+ self.select_layer = config.select_layer
58
+ self.template = config.template
59
+ self.num_image_token = int((image_size // patch_size) ** 2 * (config.downsample_ratio ** 2))
60
+ self.downsample_ratio = config.downsample_ratio
61
+ self.ps_version = config.ps_version
62
+ self.llm_arch_name = config.llm_config.architectures[0]
63
+ # Enable Flash Attention if supported, otherwise fall back to eager attention.
64
+ use_flash_attn = use_flash_attn if has_flash_attn else False
65
+ config.vision_config.use_flash_attn = True if use_flash_attn else False
66
+ config.llm_config.attn_implementation = 'flash_attention_2' if use_flash_attn else 'eager'
67
+
68
+ logger.info(f'num_image_token: {self.num_image_token}')
69
+ logger.info(f'ps_version: {self.ps_version}')
70
+ if vision_model is not None:
71
+ self.vision_model = vision_model
72
+ else:
73
+ self.vision_model = InternVisionModel(config.vision_config)
74
+ if language_model is not None:
75
+ self.language_model = language_model
76
+ else:
77
+ if config.llm_config.architectures[0] == 'LlamaForCausalLM':
78
+ self.language_model = LlamaForCausalLM(config.llm_config)
79
+ elif config.llm_config.architectures[0] == 'InternLM2ForCausalLM':
80
+ self.language_model = InternLM2ForCausalLM(config.llm_config)
81
+ elif config.llm_config.architectures[0] == 'Phi3ForCausalLM':
82
+ self.language_model = Phi3ForCausalLM(config.llm_config)
83
+ elif config.llm_config.architectures[0] == 'Qwen2ForCausalLM':
84
+ self.language_model = Qwen2ForCausalLM(config.llm_config)
85
+ else:
86
+ raise NotImplementedError(f'{config.llm_config.architectures[0]} is not implemented.')
87
+
88
+ vit_hidden_size = config.vision_config.hidden_size
89
+ llm_hidden_size = config.llm_config.hidden_size
90
+
91
+ self.mlp1 = nn.Sequential(
92
+ nn.LayerNorm(vit_hidden_size * int(1 / self.downsample_ratio) ** 2),
93
+ nn.Linear(vit_hidden_size * int(1 / self.downsample_ratio) ** 2, llm_hidden_size),
94
+ nn.GELU(),
95
+ nn.Linear(llm_hidden_size, llm_hidden_size)
96
+ )
97
+
98
+ self.img_context_token_id = None
99
+ self.conv_template = get_conv_template(self.template)
100
+ if hasattr(config, 'system_message'):
101
+ self.system_message = config.system_message
102
+ else:
103
+ self.system_message = self.conv_template.system_message
104
+ self.num_samples = 0
105
+
106
+ if config.use_backbone_lora:
107
+ self.wrap_backbone_lora(r=config.use_backbone_lora, lora_alpha=2 * config.use_backbone_lora)
108
+
109
+ if config.use_llm_lora:
110
+ self.wrap_llm_lora(r=config.use_llm_lora, lora_alpha=2 * config.use_llm_lora)
111
+
112
+ def wrap_backbone_lora(self, r=128, lora_alpha=256, lora_dropout=0.05):
113
+ lora_config = LoraConfig(
114
+ r=r,
115
+ target_modules=['attn.qkv', 'attn.proj', 'mlp.fc1', 'mlp.fc2'],
116
+ lora_alpha=lora_alpha,
117
+ lora_dropout=lora_dropout,
118
+ )
119
+ self.vision_model = get_peft_model(self.vision_model, lora_config)
120
+ self.vision_model.print_trainable_parameters()
121
+
122
+ def wrap_llm_lora(self, r=128, lora_alpha=256, lora_dropout=0.05):
123
+ # Determine the target modules based on the architecture of the language model
124
+ if self.llm_arch_name == 'InternLM2ForCausalLM':
125
+ target_modules = ['attention.wqkv', 'attention.wo', 'feed_forward.w1', 'feed_forward.w2', 'feed_forward.w3']
126
+ elif self.llm_arch_name == 'Phi3ForCausalLM':
127
+ target_modules = ['mlp.down_proj', 'mlp.gate_up_proj', 'self_attn.o_proj', 'self_attn.qkv_proj']
128
+ elif self.llm_arch_name in ['Qwen2ForCausalLM', 'LlamaForCausalLM']:
129
+ target_modules = ['self_attn.q_proj', 'self_attn.k_proj', 'self_attn.v_proj', 'self_attn.o_proj',
130
+ 'mlp.gate_proj', 'mlp.down_proj', 'mlp.up_proj']
131
+ else:
132
+ raise NotImplemented
133
+ lora_config = LoraConfig(
134
+ r=r,
135
+ target_modules=target_modules,
136
+ lora_alpha=lora_alpha,
137
+ lora_dropout=lora_dropout,
138
+ task_type='CAUSAL_LM'
139
+ )
140
+ self.language_model = get_peft_model(self.language_model, lora_config)
141
+ self.language_model.enable_input_require_grads()
142
+ self.language_model.print_trainable_parameters()
143
+
144
+ def forward(
145
+ self,
146
+ pixel_values: torch.FloatTensor,
147
+ input_ids: torch.LongTensor = None,
148
+ attention_mask: Optional[torch.Tensor] = None,
149
+ position_ids: Optional[torch.LongTensor] = None,
150
+ image_flags: Optional[torch.LongTensor] = None,
151
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
152
+ labels: Optional[torch.LongTensor] = None,
153
+ use_cache: Optional[bool] = None,
154
+ output_attentions: Optional[bool] = None,
155
+ output_hidden_states: Optional[bool] = None,
156
+ return_dict: Optional[bool] = None,
157
+ statistics: Optional[torch.LongTensor] = None,
158
+ loss_weight: Optional[List] = None,
159
+ loss_reduction_all_gather: Optional[bool] = False,
160
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
161
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
162
+
163
+ image_flags = image_flags.squeeze(-1)
164
+ input_embeds = self.language_model.get_input_embeddings()(input_ids).clone()
165
+
166
+ vit_embeds = self.extract_feature(pixel_values)
167
+ vit_embeds = vit_embeds[image_flags == 1]
168
+ vit_batch_size = pixel_values.shape[0]
169
+
170
+ B, N, C = input_embeds.shape
171
+ input_embeds = input_embeds.reshape(B * N, C)
172
+
173
+ if torch.distributed.is_initialized() and torch.distributed.get_rank() == 0:
174
+ print(f'dynamic ViT batch size: {vit_batch_size}, images per sample: {vit_batch_size / B}, dynamic token length: {N}')
175
+ if statistics is not None:
176
+ num_samples, num_padding_tokens, num_padding_images = statistics.tolist()
177
+ self.num_samples += num_samples
178
+ print(f'total_samples={self.num_samples}, {num_samples=}, {num_padding_tokens=}, {num_padding_images=}')
179
+
180
+ input_ids = input_ids.reshape(B * N)
181
+ selected = (input_ids == self.img_context_token_id)
182
+ try:
183
+ input_embeds[selected] = input_embeds[selected] * 0.0 + vit_embeds.reshape(-1, C)
184
+ ignore_flag = False
185
+ except Exception as e:
186
+ vit_embeds = vit_embeds.reshape(-1, C)
187
+ print(f'warning: {e}, input_embeds[selected].shape={input_embeds[selected].shape}, '
188
+ f'vit_embeds.shape={vit_embeds.shape}')
189
+ n_token = selected.sum()
190
+ input_embeds[selected] = input_embeds[selected] * 0.0 + vit_embeds[:n_token]
191
+ ignore_flag = True
192
+
193
+ input_embeds = input_embeds.reshape(B, N, C)
194
+
195
+ outputs = self.language_model(
196
+ inputs_embeds=input_embeds,
197
+ attention_mask=attention_mask,
198
+ position_ids=position_ids,
199
+ past_key_values=past_key_values,
200
+ use_cache=use_cache,
201
+ output_attentions=output_attentions,
202
+ output_hidden_states=output_hidden_states,
203
+ return_dict=return_dict,
204
+ )
205
+ logits = outputs.logits
206
+
207
+ loss = None
208
+ if labels is not None and loss_weight is not None:
209
+ loss_weight = torch.tensor(loss_weight, dtype=torch.float32, device=labels.device)
210
+ # Shift so that tokens < n predict n
211
+ shift_logits = logits[..., :-1, :].contiguous()
212
+ shift_labels = labels[..., 1:].contiguous()
213
+ shift_weights = loss_weight[..., 1:].contiguous()
214
+ # Flatten the tokens
215
+ loss_fct = CrossEntropyLoss(reduction='none')
216
+ shift_logits = shift_logits.view(-1, self.language_model.config.vocab_size)
217
+ shift_labels = shift_labels.view(-1)
218
+ shift_weights = shift_weights.view(-1)
219
+ # Enable model parallelism
220
+ shift_labels = shift_labels.to(shift_logits.device)
221
+ shift_weights = shift_weights.to(shift_logits.device)
222
+ loss = loss_fct(shift_logits, shift_labels)
223
+
224
+ shift_weights_sum = shift_weights.sum()
225
+ if loss_reduction_all_gather:
226
+ dist.all_reduce(shift_weights_sum, op=dist.ReduceOp.AVG)
227
+
228
+ loss = loss * shift_weights
229
+ loss = loss.sum() / shift_weights_sum
230
+ if ignore_flag:
231
+ loss = loss * 0.0
232
+ elif labels is not None:
233
+ # Shift so that tokens < n predict n
234
+ shift_logits = logits[..., :-1, :].contiguous()
235
+ shift_labels = labels[..., 1:].contiguous()
236
+ # Flatten the tokens
237
+ loss_fct = CrossEntropyLoss()
238
+ shift_logits = shift_logits.view(-1, self.language_model.config.vocab_size)
239
+ shift_labels = shift_labels.view(-1)
240
+ # Enable model parallelism
241
+ shift_labels = shift_labels.to(shift_logits.device)
242
+ loss = loss_fct(shift_logits, shift_labels)
243
+ if ignore_flag:
244
+ loss = loss * 0.0
245
+
246
+ if not return_dict:
247
+ output = (logits,) + outputs[1:]
248
+ return (loss,) + output if loss is not None else output
249
+
250
+ return CausalLMOutputWithPast(
251
+ loss=loss,
252
+ logits=logits,
253
+ past_key_values=outputs.past_key_values,
254
+ hidden_states=outputs.hidden_states,
255
+ attentions=outputs.attentions,
256
+ )
257
+
258
+ def pixel_shuffle(self, x, scale_factor=0.5):
259
+ n, w, h, c = x.size()
260
+ # N, W, H, C --> N, W, H * scale, C // scale
261
+ x = x.view(n, w, int(h * scale_factor), int(c / scale_factor))
262
+ # N, W, H * scale, C // scale --> N, H * scale, W, C // scale
263
+ x = x.permute(0, 2, 1, 3).contiguous()
264
+ # N, H * scale, W, C // scale --> N, H * scale, W * scale, C // (scale ** 2)
265
+ x = x.view(n, int(h * scale_factor), int(w * scale_factor),
266
+ int(c / (scale_factor * scale_factor)))
267
+ if self.ps_version == 'v1':
268
+ warnings.warn("In ps_version 'v1', the height and width have not been swapped back, "
269
+ 'which results in a transposed image.')
270
+ else:
271
+ x = x.permute(0, 2, 1, 3).contiguous()
272
+ return x
273
+
274
+ def extract_feature(self, pixel_values):
275
+ if self.select_layer == -1:
276
+ vit_embeds = self.vision_model(
277
+ pixel_values=pixel_values,
278
+ output_hidden_states=False,
279
+ return_dict=True).last_hidden_state
280
+ else:
281
+ vit_embeds = self.vision_model(
282
+ pixel_values=pixel_values,
283
+ output_hidden_states=True,
284
+ return_dict=True).hidden_states[self.select_layer]
285
+ vit_embeds = vit_embeds[:, 1:, :]
286
+
287
+ h = w = int(vit_embeds.shape[1] ** 0.5)
288
+ vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], h, w, -1)
289
+ vit_embeds = self.pixel_shuffle(vit_embeds, scale_factor=self.downsample_ratio)
290
+ vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], -1, vit_embeds.shape[-1])
291
+ vit_embeds = self.mlp1(vit_embeds)
292
+ return vit_embeds
293
+
294
+ def batch_chat(self, tokenizer, pixel_values, questions, generation_config, num_patches_list=None,
295
+ history=None, return_history=False, IMG_START_TOKEN='<img>', IMG_END_TOKEN='</img>',
296
+ IMG_CONTEXT_TOKEN='<IMG_CONTEXT>', verbose=False, image_counts=None):
297
+ if history is not None or return_history:
298
+ print('Now multi-turn chat is not supported in batch_chat.')
299
+ raise NotImplementedError
300
+
301
+ if image_counts is not None:
302
+ num_patches_list = image_counts
303
+ print('Warning: `image_counts` is deprecated. Please use `num_patches_list` instead.')
304
+
305
+ img_context_token_id = tokenizer.convert_tokens_to_ids(IMG_CONTEXT_TOKEN)
306
+ self.img_context_token_id = img_context_token_id
307
+
308
+ if verbose and pixel_values is not None:
309
+ image_bs = pixel_values.shape[0]
310
+ print(f'dynamic ViT batch size: {image_bs}')
311
+
312
+ queries = []
313
+ for idx, num_patches in enumerate(num_patches_list):
314
+ question = questions[idx]
315
+ if pixel_values is not None and '<image>' not in question:
316
+ question = '<image>\n' + question
317
+ template = get_conv_template(self.template)
318
+ template.system_message = self.system_message
319
+ template.append_message(template.roles[0], question)
320
+ template.append_message(template.roles[1], None)
321
+ query = template.get_prompt()
322
+
323
+ image_tokens = IMG_START_TOKEN + IMG_CONTEXT_TOKEN * self.num_image_token * num_patches + IMG_END_TOKEN
324
+ query = query.replace('<image>', image_tokens, 1)
325
+ queries.append(query)
326
+
327
+ tokenizer.padding_side = 'left'
328
+ model_inputs = tokenizer(queries, return_tensors='pt', padding=True)
329
+ device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
330
+ input_ids = model_inputs['input_ids'].to(device)
331
+ attention_mask = model_inputs['attention_mask'].to(device)
332
+ eos_token_id = tokenizer.convert_tokens_to_ids(template.sep.strip())
333
+ generation_config['eos_token_id'] = eos_token_id
334
+ generation_output = self.generate(
335
+ pixel_values=pixel_values,
336
+ input_ids=input_ids,
337
+ attention_mask=attention_mask,
338
+ **generation_config
339
+ )
340
+ responses = tokenizer.batch_decode(generation_output, skip_special_tokens=True)
341
+ responses = [response.split(template.sep.strip())[0].strip() for response in responses]
342
+ return responses
343
+
344
+ def chat(self, tokenizer, pixel_values, question, generation_config, history=None, return_history=False,
345
+ num_patches_list=None, IMG_START_TOKEN='<img>', IMG_END_TOKEN='</img>', IMG_CONTEXT_TOKEN='<IMG_CONTEXT>',
346
+ verbose=False):
347
+
348
+ if history is None and pixel_values is not None and '<image>' not in question:
349
+ question = '<image>\n' + question
350
+
351
+ if num_patches_list is None:
352
+ num_patches_list = [pixel_values.shape[0]] if pixel_values is not None else []
353
+ assert pixel_values is None or len(pixel_values) == sum(num_patches_list)
354
+
355
+ img_context_token_id = tokenizer.convert_tokens_to_ids(IMG_CONTEXT_TOKEN)
356
+ self.img_context_token_id = img_context_token_id
357
+
358
+ template = get_conv_template(self.template)
359
+ template.system_message = self.system_message
360
+ eos_token_id = tokenizer.convert_tokens_to_ids(template.sep.strip())
361
+
362
+ history = [] if history is None else history
363
+ for (old_question, old_answer) in history:
364
+ template.append_message(template.roles[0], old_question)
365
+ template.append_message(template.roles[1], old_answer)
366
+ template.append_message(template.roles[0], question)
367
+ template.append_message(template.roles[1], None)
368
+ query = template.get_prompt()
369
+
370
+ if verbose and pixel_values is not None:
371
+ image_bs = pixel_values.shape[0]
372
+ print(f'dynamic ViT batch size: {image_bs}')
373
+
374
+ for num_patches in num_patches_list:
375
+ image_tokens = IMG_START_TOKEN + IMG_CONTEXT_TOKEN * self.num_image_token * num_patches + IMG_END_TOKEN
376
+ query = query.replace('<image>', image_tokens, 1)
377
+
378
+ model_inputs = tokenizer(query, return_tensors='pt')
379
+ device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
380
+ input_ids = model_inputs['input_ids'].to(device)
381
+ attention_mask = model_inputs['attention_mask'].to(device)
382
+ generation_config['eos_token_id'] = eos_token_id
383
+ generation_output = self.generate(
384
+ pixel_values=pixel_values,
385
+ input_ids=input_ids,
386
+ attention_mask=attention_mask,
387
+ **generation_config
388
+ )
389
+ response = tokenizer.batch_decode(generation_output, skip_special_tokens=True)[0]
390
+ response = response.split(template.sep.strip())[0].strip()
391
+ history.append((question, response))
392
+ if return_history:
393
+ return response, history
394
+ else:
395
+ query_to_print = query.replace(IMG_CONTEXT_TOKEN, '')
396
+ query_to_print = query_to_print.replace(f'{IMG_START_TOKEN}{IMG_END_TOKEN}', '<image>')
397
+ if verbose:
398
+ print(query_to_print, response)
399
+ return response
400
+
401
+ @torch.no_grad()
402
+ def generate(
403
+ self,
404
+ pixel_values: Optional[torch.FloatTensor] = None,
405
+ input_ids: Optional[torch.FloatTensor] = None,
406
+ attention_mask: Optional[torch.LongTensor] = None,
407
+ visual_features: Optional[torch.FloatTensor] = None,
408
+ generation_config: Optional[GenerationConfig] = None,
409
+ output_hidden_states: Optional[bool] = None,
410
+ **generate_kwargs,
411
+ ) -> torch.LongTensor:
412
+
413
+ assert self.img_context_token_id is not None
414
+ if pixel_values is not None:
415
+ if visual_features is not None:
416
+ vit_embeds = visual_features
417
+ else:
418
+ vit_embeds = self.extract_feature(pixel_values)
419
+ input_embeds = self.language_model.get_input_embeddings()(input_ids)
420
+ B, N, C = input_embeds.shape
421
+ input_embeds = input_embeds.reshape(B * N, C)
422
+
423
+ input_ids = input_ids.reshape(B * N)
424
+ # import pdb; pdb.set_trace()
425
+ selected = (input_ids == self.img_context_token_id)
426
+ assert selected.sum() != 0
427
+ input_embeds[selected] = vit_embeds.reshape(-1, C).to(input_embeds.device)
428
+ # print("BS ", B)
429
+ assert B==1
430
+ image_token_num = int(vit_embeds.shape[0] * vit_embeds.shape[1]/B)
431
+ os.environ['IMAGE_TOKEN_NUM'] = str(image_token_num)
432
+ input_embeds = input_embeds.reshape(B, N, C)
433
+ else:
434
+ input_embeds = self.language_model.get_input_embeddings()(input_ids)
435
+
436
+ outputs = self.language_model.generate(
437
+ inputs_embeds=input_embeds,
438
+ attention_mask=attention_mask,
439
+ generation_config=generation_config,
440
+ output_hidden_states=output_hidden_states,
441
+ use_cache=True,
442
+ **generate_kwargs,
443
+ )
444
+
445
+ return outputs
446
+
447
+ @property
448
+ def lm_head(self):
449
+ return self.language_model.get_output_embeddings()
450
+
451
+ def get_input_embeddings(self):
452
+ return self.language_model.get_input_embeddings()
453
+
454
+ def get_output_embeddings(self):
455
+ return self.language_model.get_output_embeddings()
preprocessor_config.json ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "crop_size": 448,
3
+ "do_center_crop": true,
4
+ "do_normalize": true,
5
+ "do_resize": true,
6
+ "feature_extractor_type": "CLIPFeatureExtractor",
7
+ "image_mean": [
8
+ 0.485,
9
+ 0.456,
10
+ 0.406
11
+ ],
12
+ "image_std": [
13
+ 0.229,
14
+ 0.224,
15
+ 0.225
16
+ ],
17
+ "resample": 3,
18
+ "size": 448
19
+ }
runs/Nov18_19-03-50_HOST-10-140-60-23/events.out.tfevents.1731928182.HOST-10-140-60-23.129254.0 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e3dd92f5f96eb3e07774dc14ca9cbeedc6470c897e61c303ad5a48059f90a650
3
+ size 854243
special_tokens_map.json ADDED
@@ -0,0 +1,47 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>",
5
+ "<|action_start|>",
6
+ "<|action_end|>",
7
+ "<|interpreter|>",
8
+ "<|plugin|>",
9
+ "<img>",
10
+ "</img>",
11
+ "<IMG_CONTEXT>",
12
+ "<quad>",
13
+ "</quad>",
14
+ "<ref>",
15
+ "</ref>",
16
+ "<box>",
17
+ "</box>"
18
+ ],
19
+ "bos_token": {
20
+ "content": "<s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false
25
+ },
26
+ "eos_token": {
27
+ "content": "</s>",
28
+ "lstrip": false,
29
+ "normalized": false,
30
+ "rstrip": false,
31
+ "single_word": false
32
+ },
33
+ "pad_token": {
34
+ "content": "</s>",
35
+ "lstrip": false,
36
+ "normalized": false,
37
+ "rstrip": false,
38
+ "single_word": false
39
+ },
40
+ "unk_token": {
41
+ "content": "<unk>",
42
+ "lstrip": false,
43
+ "normalized": false,
44
+ "rstrip": false,
45
+ "single_word": false
46
+ }
47
+ }
tokenization_internlm2.py ADDED
@@ -0,0 +1,235 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) The InternLM team and The HuggingFace Inc. team. All rights reserved.
2
+ #
3
+ # This code is based on transformers/src/transformers/models/llama/tokenization_llama.py
4
+ #
5
+ # Licensed under the Apache License, Version 2.0 (the "License");
6
+ # you may not use this file except in compliance with the License.
7
+ # You may obtain a copy of the License at
8
+ #
9
+ # http://www.apache.org/licenses/LICENSE-2.0
10
+ #
11
+ # Unless required by applicable law or agreed to in writing, software
12
+ # distributed under the License is distributed on an "AS IS" BASIS,
13
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14
+ # See the License for the specific language governing permissions and
15
+ # limitations under the License.
16
+
17
+ """Tokenization classes for InternLM."""
18
+ import os
19
+ from shutil import copyfile
20
+ from typing import Any, Dict, List, Optional, Tuple
21
+
22
+ import sentencepiece as spm
23
+ from transformers.tokenization_utils import PreTrainedTokenizer
24
+ from transformers.utils import logging
25
+
26
+ logger = logging.get_logger(__name__)
27
+
28
+ VOCAB_FILES_NAMES = {'vocab_file': './tokenizer.model'}
29
+
30
+ PRETRAINED_VOCAB_FILES_MAP = {}
31
+
32
+
33
+ # Modified from transformers.model.llama.tokenization_llama.LlamaTokenizer
34
+ class InternLM2Tokenizer(PreTrainedTokenizer):
35
+ """
36
+ Construct a InternLM2 tokenizer. Based on byte-level Byte-Pair-Encoding.
37
+
38
+ Args:
39
+ vocab_file (`str`):
40
+ Path to the vocabulary file.
41
+ """
42
+
43
+ vocab_files_names = VOCAB_FILES_NAMES
44
+ pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
45
+ model_input_names = ['input_ids', 'attention_mask']
46
+ _auto_class = 'AutoTokenizer'
47
+
48
+ def __init__(
49
+ self,
50
+ vocab_file,
51
+ unk_token='<unk>',
52
+ bos_token='<s>',
53
+ eos_token='</s>',
54
+ pad_token='</s>',
55
+ sp_model_kwargs: Optional[Dict[str, Any]] = None,
56
+ add_bos_token=True,
57
+ add_eos_token=False,
58
+ decode_with_prefix_space=False,
59
+ clean_up_tokenization_spaces=False,
60
+ **kwargs,
61
+ ):
62
+ self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
63
+ self.vocab_file = vocab_file
64
+ self.add_bos_token = add_bos_token
65
+ self.add_eos_token = add_eos_token
66
+ self.decode_with_prefix_space = decode_with_prefix_space
67
+ self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
68
+ self.sp_model.Load(vocab_file)
69
+ self._no_prefix_space_tokens = None
70
+ super().__init__(
71
+ bos_token=bos_token,
72
+ eos_token=eos_token,
73
+ unk_token=unk_token,
74
+ pad_token=pad_token,
75
+ clean_up_tokenization_spaces=clean_up_tokenization_spaces,
76
+ **kwargs,
77
+ )
78
+
79
+ @property
80
+ def no_prefix_space_tokens(self):
81
+ if self._no_prefix_space_tokens is None:
82
+ vocab = self.convert_ids_to_tokens(list(range(self.vocab_size)))
83
+ self._no_prefix_space_tokens = {i for i, tok in enumerate(vocab) if not tok.startswith('▁')}
84
+ return self._no_prefix_space_tokens
85
+
86
+ @property
87
+ def vocab_size(self):
88
+ """Returns vocab size"""
89
+ return self.sp_model.get_piece_size()
90
+
91
+ @property
92
+ def bos_token_id(self) -> Optional[int]:
93
+ return self.sp_model.bos_id()
94
+
95
+ @property
96
+ def eos_token_id(self) -> Optional[int]:
97
+ return self.sp_model.eos_id()
98
+
99
+ def get_vocab(self):
100
+ """Returns vocab as a dict"""
101
+ vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
102
+ vocab.update(self.added_tokens_encoder)
103
+ return vocab
104
+
105
+ def _tokenize(self, text):
106
+ """Returns a tokenized string."""
107
+ return self.sp_model.encode(text, out_type=str)
108
+
109
+ def _convert_token_to_id(self, token):
110
+ """Converts a token (str) in an id using the vocab."""
111
+ return self.sp_model.piece_to_id(token)
112
+
113
+ def _convert_id_to_token(self, index):
114
+ """Converts an index (integer) in a token (str) using the vocab."""
115
+ token = self.sp_model.IdToPiece(index)
116
+ return token
117
+
118
+ def _maybe_add_prefix_space(self, tokens, decoded):
119
+ if tokens and tokens[0] not in self.no_prefix_space_tokens:
120
+ return ' ' + decoded
121
+ else:
122
+ return decoded
123
+
124
+ def convert_tokens_to_string(self, tokens):
125
+ """Converts a sequence of tokens (string) in a single string."""
126
+ current_sub_tokens = []
127
+ out_string = ''
128
+ prev_is_special = False
129
+ for token in tokens:
130
+ # make sure that special tokens are not decoded using sentencepiece model
131
+ if token in self.all_special_tokens:
132
+ if not prev_is_special:
133
+ out_string += ' '
134
+ out_string += self.sp_model.decode(current_sub_tokens) + token
135
+ prev_is_special = True
136
+ current_sub_tokens = []
137
+ else:
138
+ current_sub_tokens.append(token)
139
+ prev_is_special = False
140
+ out_string += self.sp_model.decode(current_sub_tokens)
141
+ out_string = self.clean_up_tokenization(out_string)
142
+ out_string = self._maybe_add_prefix_space(tokens=tokens, decoded=out_string)
143
+ return out_string[1:]
144
+
145
+ def save_vocabulary(self, save_directory, filename_prefix: Optional[str] = None) -> Tuple[str]:
146
+ """
147
+ Save the vocabulary and special tokens file to a directory.
148
+
149
+ Args:
150
+ save_directory (`str`):
151
+ The directory in which to save the vocabulary.
152
+
153
+ Returns:
154
+ `Tuple(str)`: Paths to the files saved.
155
+ """
156
+ if not os.path.isdir(save_directory):
157
+ logger.error(f'Vocabulary path ({save_directory}) should be a directory')
158
+ return
159
+ out_vocab_file = os.path.join(
160
+ save_directory, (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']
161
+ )
162
+
163
+ if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file):
164
+ copyfile(self.vocab_file, out_vocab_file)
165
+ elif not os.path.isfile(self.vocab_file):
166
+ with open(out_vocab_file, 'wb') as fi:
167
+ content_spiece_model = self.sp_model.serialized_model_proto()
168
+ fi.write(content_spiece_model)
169
+
170
+ return (out_vocab_file,)
171
+
172
+ def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
173
+ if self.add_bos_token:
174
+ bos_token_ids = [self.bos_token_id]
175
+ else:
176
+ bos_token_ids = []
177
+
178
+ output = bos_token_ids + token_ids_0
179
+
180
+ if token_ids_1 is not None:
181
+ output = output + token_ids_1
182
+
183
+ if self.add_eos_token:
184
+ output = output + [self.eos_token_id]
185
+
186
+ return output
187
+
188
+ def get_special_tokens_mask(
189
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
190
+ ) -> List[int]:
191
+ """
192
+ Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
193
+ special tokens using the tokenizer `prepare_for_model` method.
194
+
195
+ Args:
196
+ token_ids_0 (`List[int]`):
197
+ List of IDs.
198
+ token_ids_1 (`List[int]`, *optional*):
199
+ Optional second list of IDs for sequence pairs.
200
+ already_has_special_tokens (`bool`, *optional*, defaults to `False`):
201
+ Whether or not the token list is already formatted with special tokens for the model.
202
+
203
+ Returns:
204
+ `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
205
+ """
206
+ if already_has_special_tokens:
207
+ return super().get_special_tokens_mask(
208
+ token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
209
+ )
210
+
211
+ if token_ids_1 is None:
212
+ return [1] + ([0] * len(token_ids_0)) + [1]
213
+ return [1] + ([0] * len(token_ids_0)) + [1, 1] + ([0] * len(token_ids_1)) + [1]
214
+
215
+ def create_token_type_ids_from_sequences(
216
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
217
+ ) -> List[int]:
218
+ """
219
+ Create a mask from the two sequences passed to be used in a sequence-pair classification task. T5 does not make
220
+ use of token type ids, therefore a list of zeros is returned.
221
+
222
+ Args:
223
+ token_ids_0 (`List[int]`):
224
+ List of IDs.
225
+ token_ids_1 (`List[int]`, *optional*):
226
+ Optional second list of IDs for sequence pairs.
227
+
228
+ Returns:
229
+ `List[int]`: List of zeros.
230
+ """
231
+ eos = [self.eos_token_id]
232
+
233
+ if token_ids_1 is None:
234
+ return len(token_ids_0 + eos) * [0]
235
+ return len(token_ids_0 + eos + token_ids_1 + eos) * [0]
tokenization_internlm2_fast.py ADDED
@@ -0,0 +1,211 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) The InternLM team and The HuggingFace Inc. team. All rights reserved.
2
+ #
3
+ # This code is based on transformers/src/transformers/models/llama/tokenization_llama_fast.py
4
+ #
5
+ # Licensed under the Apache License, Version 2.0 (the "License");
6
+ # you may not use this file except in compliance with the License.
7
+ # You may obtain a copy of the License at
8
+ #
9
+ # http://www.apache.org/licenses/LICENSE-2.0
10
+ #
11
+ # Unless required by applicable law or agreed to in writing, software
12
+ # distributed under the License is distributed on an "AS IS" BASIS,
13
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14
+ # See the License for the specific language governing permissions and
15
+ # limitations under the License.
16
+
17
+ """Tokenization Fast class for InternLM."""
18
+ import os
19
+ from shutil import copyfile
20
+ from typing import Any, Dict, Optional, Tuple
21
+
22
+ from tokenizers import Tokenizer, decoders, normalizers, processors
23
+ from tokenizers.models import BPE
24
+ from transformers.convert_slow_tokenizer import (SLOW_TO_FAST_CONVERTERS,
25
+ SentencePieceExtractor,
26
+ SpmConverter)
27
+ from transformers.tokenization_utils_fast import PreTrainedTokenizerFast
28
+ from transformers.utils import logging
29
+
30
+ from .tokenization_internlm2 import InternLM2Tokenizer
31
+
32
+ logger = logging.get_logger(__name__)
33
+
34
+ VOCAB_FILES_NAMES = {'vocab_file': './tokenizer.model'}
35
+
36
+
37
+ # Modified from transformers.convert_slow_tokenizer.LlamaConverter
38
+ class InternLM2Converter(SpmConverter):
39
+ handle_byte_fallback = True
40
+
41
+ def vocab(self, proto):
42
+ vocab = [
43
+ ('<unk>', 0.0),
44
+ ('<s>', 0.0),
45
+ ('</s>', 0.0),
46
+ ]
47
+ vocab += [(piece.piece, piece.score) for piece in proto.pieces[3:]]
48
+ return vocab
49
+
50
+ def unk_id(self, proto):
51
+ unk_id = 0
52
+ return unk_id
53
+
54
+ def decoder(self, replacement, add_prefix_space):
55
+ return decoders.Sequence(
56
+ [
57
+ decoders.Replace('▁', ' '),
58
+ decoders.ByteFallback(),
59
+ decoders.Fuse(),
60
+ decoders.Strip(content=' ', left=1),
61
+ ]
62
+ )
63
+
64
+ def tokenizer(self, proto):
65
+ model_type = proto.trainer_spec.model_type
66
+ vocab_scores = self.vocab(proto)
67
+ # special tokens
68
+ added_tokens = self.original_tokenizer.added_tokens_decoder
69
+ for i in range(len(vocab_scores)):
70
+ piece, score = vocab_scores[i]
71
+ if i in added_tokens:
72
+ vocab_scores[i] = (added_tokens[i].content, score)
73
+ if model_type == 1:
74
+ raise RuntimeError('InternLM2 is supposed to be a BPE model!')
75
+
76
+ elif model_type == 2:
77
+ _, merges = SentencePieceExtractor(self.original_tokenizer.vocab_file).extract(vocab_scores)
78
+ bpe_vocab = {word: i for i, (word, _score) in enumerate(vocab_scores)}
79
+ tokenizer = Tokenizer(
80
+ BPE(bpe_vocab, merges, unk_token=proto.trainer_spec.unk_piece, fuse_unk=True, byte_fallback=True)
81
+ )
82
+ tokenizer.add_special_tokens(
83
+ [ added_token for index, added_token in added_tokens.items()]
84
+ )
85
+ else:
86
+ raise Exception(
87
+ "You're trying to run a `Unigram` model but you're file was trained with a different algorithm"
88
+ )
89
+
90
+ return tokenizer
91
+
92
+ def normalizer(self, proto):
93
+ normalizers_list = []
94
+ if proto.normalizer_spec.add_dummy_prefix:
95
+ normalizers_list.append(normalizers.Prepend(prepend='▁'))
96
+ normalizers_list.append(normalizers.Replace(pattern=' ', content='▁'))
97
+ return normalizers.Sequence(normalizers_list)
98
+
99
+ def pre_tokenizer(self, replacement, add_prefix_space):
100
+ return None
101
+
102
+
103
+ SLOW_TO_FAST_CONVERTERS['InternLM2Tokenizer'] = InternLM2Converter
104
+
105
+
106
+ # Modified from transformers.model.llama.tokenization_llama_fast.LlamaTokenizerFast -> InternLM2TokenizerFast
107
+ class InternLM2TokenizerFast(PreTrainedTokenizerFast):
108
+ vocab_files_names = VOCAB_FILES_NAMES
109
+ slow_tokenizer_class = InternLM2Tokenizer
110
+ padding_side = 'left'
111
+ model_input_names = ['input_ids', 'attention_mask']
112
+ _auto_class = 'AutoTokenizer'
113
+
114
+ def __init__(
115
+ self,
116
+ vocab_file,
117
+ unk_token='<unk>',
118
+ bos_token='<s>',
119
+ eos_token='</s>',
120
+ pad_token='</s>',
121
+ sp_model_kwargs: Optional[Dict[str, Any]] = None,
122
+ add_bos_token=True,
123
+ add_eos_token=False,
124
+ decode_with_prefix_space=False,
125
+ clean_up_tokenization_spaces=False,
126
+ **kwargs,
127
+ ):
128
+ super().__init__(
129
+ vocab_file=vocab_file,
130
+ unk_token=unk_token,
131
+ bos_token=bos_token,
132
+ eos_token=eos_token,
133
+ pad_token=pad_token,
134
+ sp_model_kwargs=sp_model_kwargs,
135
+ add_bos_token=add_bos_token,
136
+ add_eos_token=add_eos_token,
137
+ decode_with_prefix_space=decode_with_prefix_space,
138
+ clean_up_tokenization_spaces=clean_up_tokenization_spaces,
139
+ **kwargs,
140
+ )
141
+ self._add_bos_token = add_bos_token
142
+ self._add_eos_token = add_eos_token
143
+ self.update_post_processor()
144
+ self.vocab_file = vocab_file
145
+
146
+ @property
147
+ def can_save_slow_tokenizer(self) -> bool:
148
+ return os.path.isfile(self.vocab_file) if self.vocab_file else False
149
+
150
+ def update_post_processor(self):
151
+ """
152
+ Updates the underlying post processor with the current `bos_token` and `eos_token`.
153
+ """
154
+ bos = self.bos_token
155
+ bos_token_id = self.bos_token_id
156
+ if bos is None and self.add_bos_token:
157
+ raise ValueError('add_bos_token = True but bos_token = None')
158
+
159
+ eos = self.eos_token
160
+ eos_token_id = self.eos_token_id
161
+ if eos is None and self.add_eos_token:
162
+ raise ValueError('add_eos_token = True but eos_token = None')
163
+
164
+ single = f"{(bos+':0 ') if self.add_bos_token else ''}$A:0{(' '+eos+':0') if self.add_eos_token else ''}"
165
+ pair = f"{single}{(' '+bos+':1') if self.add_bos_token else ''} $B:1{(' '+eos+':1') if self.add_eos_token else ''}"
166
+
167
+ special_tokens = []
168
+ if self.add_bos_token:
169
+ special_tokens.append((bos, bos_token_id))
170
+ if self.add_eos_token:
171
+ special_tokens.append((eos, eos_token_id))
172
+ self._tokenizer.post_processor = processors.TemplateProcessing(
173
+ single=single, pair=pair, special_tokens=special_tokens
174
+ )
175
+
176
+ @property
177
+ def add_eos_token(self):
178
+ return self._add_eos_token
179
+
180
+ @property
181
+ def add_bos_token(self):
182
+ return self._add_bos_token
183
+
184
+ @add_eos_token.setter
185
+ def add_eos_token(self, value):
186
+ self._add_eos_token = value
187
+ self.update_post_processor()
188
+
189
+ @add_bos_token.setter
190
+ def add_bos_token(self, value):
191
+ self._add_bos_token = value
192
+ self.update_post_processor()
193
+
194
+ def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
195
+ if not self.can_save_slow_tokenizer:
196
+ raise ValueError(
197
+ 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow '
198
+ 'tokenizer.'
199
+ )
200
+
201
+ if not os.path.isdir(save_directory):
202
+ logger.error(f'Vocabulary path ({save_directory}) should be a directory')
203
+ return
204
+ out_vocab_file = os.path.join(
205
+ save_directory, (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']
206
+ )
207
+
208
+ if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file):
209
+ copyfile(self.vocab_file, out_vocab_file)
210
+
211
+ return (out_vocab_file,)
tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f868398fc4e05ee1e8aeba95ddf18ddcc45b8bce55d5093bead5bbf80429b48b
3
+ size 1477754
tokenizer_config.json ADDED
@@ -0,0 +1,179 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<unk>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<s>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "92538": {
28
+ "content": "<|plugin|>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "92539": {
36
+ "content": "<|interpreter|>",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ },
43
+ "92540": {
44
+ "content": "<|action_end|>",
45
+ "lstrip": false,
46
+ "normalized": false,
47
+ "rstrip": false,
48
+ "single_word": false,
49
+ "special": true
50
+ },
51
+ "92541": {
52
+ "content": "<|action_start|>",
53
+ "lstrip": false,
54
+ "normalized": false,
55
+ "rstrip": false,
56
+ "single_word": false,
57
+ "special": true
58
+ },
59
+ "92542": {
60
+ "content": "<|im_end|>",
61
+ "lstrip": false,
62
+ "normalized": false,
63
+ "rstrip": false,
64
+ "single_word": false,
65
+ "special": true
66
+ },
67
+ "92543": {
68
+ "content": "<|im_start|>",
69
+ "lstrip": false,
70
+ "normalized": false,
71
+ "rstrip": false,
72
+ "single_word": false,
73
+ "special": true
74
+ },
75
+ "92544": {
76
+ "content": "<img>",
77
+ "lstrip": false,
78
+ "normalized": false,
79
+ "rstrip": false,
80
+ "single_word": false,
81
+ "special": true
82
+ },
83
+ "92545": {
84
+ "content": "</img>",
85
+ "lstrip": false,
86
+ "normalized": false,
87
+ "rstrip": false,
88
+ "single_word": false,
89
+ "special": true
90
+ },
91
+ "92546": {
92
+ "content": "<IMG_CONTEXT>",
93
+ "lstrip": false,
94
+ "normalized": false,
95
+ "rstrip": false,
96
+ "single_word": false,
97
+ "special": true
98
+ },
99
+ "92547": {
100
+ "content": "<quad>",
101
+ "lstrip": false,
102
+ "normalized": false,
103
+ "rstrip": false,
104
+ "single_word": false,
105
+ "special": true
106
+ },
107
+ "92548": {
108
+ "content": "</quad>",
109
+ "lstrip": false,
110
+ "normalized": false,
111
+ "rstrip": false,
112
+ "single_word": false,
113
+ "special": true
114
+ },
115
+ "92549": {
116
+ "content": "<ref>",
117
+ "lstrip": false,
118
+ "normalized": false,
119
+ "rstrip": false,
120
+ "single_word": false,
121
+ "special": true
122
+ },
123
+ "92550": {
124
+ "content": "</ref>",
125
+ "lstrip": false,
126
+ "normalized": false,
127
+ "rstrip": false,
128
+ "single_word": false,
129
+ "special": true
130
+ },
131
+ "92551": {
132
+ "content": "<box>",
133
+ "lstrip": false,
134
+ "normalized": false,
135
+ "rstrip": false,
136
+ "single_word": false,
137
+ "special": true
138
+ },
139
+ "92552": {
140
+ "content": "</box>",
141
+ "lstrip": false,
142
+ "normalized": false,
143
+ "rstrip": false,
144
+ "single_word": false,
145
+ "special": true
146
+ }
147
+ },
148
+ "additional_special_tokens": [
149
+ "<|im_start|>",
150
+ "<|im_end|>",
151
+ "<|action_start|>",
152
+ "<|action_end|>",
153
+ "<|interpreter|>",
154
+ "<|plugin|>",
155
+ "<img>",
156
+ "</img>",
157
+ "<IMG_CONTEXT>",
158
+ "<quad>",
159
+ "</quad>",
160
+ "<ref>",
161
+ "</ref>",
162
+ "<box>",
163
+ "</box>"
164
+ ],
165
+ "auto_map": {
166
+ "AutoTokenizer": [
167
+ "tokenization_internlm2.InternLM2Tokenizer",
168
+ null
169
+ ]
170
+ },
171
+ "bos_token": "<s>",
172
+ "chat_template": "{{ bos_token }}{% for message in messages %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n' }}{% endif %}",
173
+ "clean_up_tokenization_spaces": false,
174
+ "eos_token": "</s>",
175
+ "model_max_length": 16384,
176
+ "pad_token": "</s>",
177
+ "tokenizer_class": "InternLM2Tokenizer",
178
+ "unk_token": "<unk>"
179
+ }