File size: 8,379 Bytes
a7ef49b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
#./experiments/experiment1/train.py
import logging
import pickle
import sqlite3
import torch
import torchvision
import torch.optim as optim
import torch.nn as nn
import torch.nn.functional as F
import transformers

from model import RotationallyInvariantGPT, RotationallyInvariantGPTConfig
from prereqs.nanoGPT.model import GPTConfig, GPT, MLP
from datasets import load_from_disk
from torch.utils.data import DataLoader


from transformers import GPT2TokenizerFast

from torch.nn.utils.rnn import pad_sequence

def pad_collate(batch):
    # Separating inputs and labels
    inputs = [d['input_ids'] for d in batch]
    labels = [d['labels'] for d in batch]

    # Padding the input sequences
    input_tensor = pad_sequence(inputs, batch_first=True)

    # Padding the labels sequences
    label_tensor = pad_sequence(labels, batch_first=True)

    return {'input_ids': input_tensor, 'labels': label_tensor}

class DatabaseInterface(object):
    def __init__(self, db_file):
        self.db_file = db_file

    def read(self, split):
        conn = sqlite3.connect(self.db_file)
        c = conn.cursor()
        c.execute(f"SELECT * FROM plain_text WHERE split='{split}'")
        col_names = [desc[0] for desc in c.description]  # get column names
        results = [dict(zip(col_names, row)) for row in c.fetchall()]  # convert tuples to dictionaries
        conn.close()
        return results


class PlainTextDataset(torch.utils.data.Dataset):
    def __init__(self, plain_text_dataset, tokenizer, device):
        self.plain_text_dataset = plain_text_dataset
        self.tokenizer = tokenizer
        self.device = device

    def __len__(self):
        return len(self.plain_text_dataset)

    def __getitem__(self, idx):
        item = self.plain_text_dataset[idx]
        tokens = self.tokenizer.encode_plus(item["text"], truncation=True, max_length=512, padding="max_length")
        input_ids = tokens["input_ids"]
        attention_mask = tokens["attention_mask"]
        return {
        'input_ids': torch.as_tensor(input_ids[:-1], dtype=torch.long).to(self.device),
        'attention_mask': torch.as_tensor(attention_mask[:-1], dtype=torch.long).to(self.device),
        'labels': torch.as_tensor(input_ids[1:], dtype=torch.long).to(self.device)
        }

def train(model: nn.Module, optimizer: optim.Optimizer, train_loader: DataLoader) -> float:
    model.train()
    running_loss = 0
    for i, batch in enumerate(train_loader):
        inputs, targets = batch['input_ids'].to(device), batch['labels'].to(device)
        optimizer.zero_grad()
        outputs, loss = model(inputs, targets)
        loss.backward()
        optimizer.step()
        running_loss += loss.item()
        if i % 100 == 0:
            logging.info(f"Batch {i}: Loss={loss.item()}")
    return running_loss / len(train_loader)


def evaluate(model, valid_loader) -> float:
    model.eval()
    running_loss = 0
    with torch.no_grad():
        for i, batch in enumerate(valid_loader):
            inputs, targets = batch['input_ids'].to(device), batch['labels'].to(device)
            outputs = model(inputs, targets)
            loss = outputs.loss
            running_loss += loss.item()
            if i % 100 == 0:
                logging.info(f"Batch {i}: Validation Loss={loss.item()}")
    return running_loss / len(valid_loader)

if __name__ == '__main__':
    logging.basicConfig(
        format='%(asctime)s - %(levelname)s - %(name)s -  %(message)s',
        datefmt='%m/%d/%Y %H:%M:%S',
        level=logging.INFO
    )
    logging.info(f"PyTorch version: {torch.__version__}")
    logging.info(f"Torchvision version: {torchvision.__version__}")
    logging.info(f"Transformers version: {transformers.__version__}")
    logging.info(f"CUDA version: {torch.version.cuda}")
    logging.info(f"cuDNN version: {torch.backends.cudnn.version()}")
    
    logging.info("Clearing cuda cache...")
    torch.cuda.empty_cache()
    
    logging.info("Setting num_threads to 1...")
    torch.set_num_threads(1)
    
    # Configs
    d_model = 512
    num_heads = 4
    num_layers = 1
    block_size = 512
    dropout = 0.2
    bias = True
    rotational = True
    batch_size = 32
    eval_batch_size = 64
    epochs = 10
    lr = 0.001
    
    vocab_size = 50304  # GPT-2 tokenizer vocab size
    logging.info(f"Vocab size: {vocab_size}")

    logging.info(f'''
    Config: 
        d_model={d_model},
        num_heads={num_heads}, 
        num_layers={num_layers},
        block_size={block_size}, 
        dropout={dropout}, bias={bias}
    '''
    )
    logging.info(
        f"Training for {epochs} epochs with a learning rate of {lr}..."
    )
    
    logging.info(f"Batch size: {batch_size}")
    logging.info(f"Eval batch size: {eval_batch_size}")
    
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    # device = torch.device("cpu")
    logging.info(f"Device: {device}")
    
    logging.info("Loading tokenizer")
    tokenizer = GPT2TokenizerFast.from_pretrained('gpt2')
    tokenizer.add_special_tokens({'pad_token': '[PAD]'})

    # Query the database for the tokenized data
    logging.info("Querying plain text data...")

    db_file_path = "data/experiment1.db"

    plain_text_train = DatabaseInterface(db_file_path).read("train")
    #logging.debug(f"Plain text train: {plain_text_train[:10]}")

    plain_text_val = DatabaseInterface(db_file_path).read("val")
    #logging.debug(f"Plain text val: {plain_text_val[:10]}")

    # Create train/val dataset objects
    train_dataset = PlainTextDataset(plain_text_train, tokenizer, device)
    valid_dataset = PlainTextDataset(plain_text_val, tokenizer, device)

    
    # DEBUG
    #for idx, item in enumerate(train_dataset):
    #    input_ids = item["input_ids"]
    #    attention_mask = item["attention_mask"]
    #    if input_ids.size(0) == 0:
    #        print(f"Sample index with 0 length: {idx}")
    #        print(f"Input_ids: {input_ids}")
    #        print(f"Attention_mask: {attention_mask}")

    # Calculate the number of batches
    num_train_batches = len(train_dataset) // batch_size
    num_eval_batches = len(valid_dataset) // eval_batch_size

    
    logging.info(f"Number of train batches: {num_train_batches}")
    logging.info(f"Number of eval batches: {num_eval_batches}")

    train_loader = DataLoader(
        train_dataset, 
        batch_size=batch_size, 
        shuffle=False,
        collate_fn=pad_collate
    )
    
    valid_loader = DataLoader(
        valid_dataset,
        batch_size=eval_batch_size,
        shuffle=False,
        collate_fn=pad_collate
    )
    
    # gpt_config = GPTConfig(
    #     vocab_size=vocab_size,
    #     n_embd=d_model, 
    #     n_head=num_heads, 
    #     n_layer=num_layers, 
    #     block_size=block_size, 
    #     dropout=dropout, 
    #     bias=bias
    #)
    
    rigpt_config = RotationallyInvariantGPTConfig(
        vocab_size=vocab_size, 
        n_embd=d_model, 
        n_head=num_heads,
        n_layer=num_layers, 
        block_size=block_size, 
        dropout=dropout, 
        bias=bias,
        rotational_invariance=rotational
    )
    
    logging.info("Creating models...")
    # gpt = GPT(gpt_config).to(device)
    rigpt = RotationallyInvariantGPT(rigpt_config).to(device)
    
    logging.info("Creating optimizers...")
    # optimizer_gpt = optim.Adam(gpt.parameters(), lr=lr)
    optimizer_rigpt = optim.Adam(rigpt.parameters(), lr=lr)
    
    logging.info("Training...")
    for model, optimizer, model_name in [
        # (
        #     gpt, 
        #     optimizer_gpt, 
        #     'GPT'
        # ), 
        (
            rigpt, 
            optimizer_rigpt, 
            'RotationallyInvariantGPT'
        )
    ]:
        print(f"Training {model_name}")
        for epoch in range(1, epochs + 1):
            print(f"Training epoch {epoch}")
            train_loss = train(model, optimizer, train_loader)
            print(f"Validating epoch {epoch}")
            valid_loss = evaluate(model, num_eval_batches)
            print(
                f'''
                {model_name} - 
                    Epoch: {epoch}, 
                    Train loss: {train_loss:.3f}, 
                    Validation loss: {valid_loss:.3f}'
                '''
            )

    # torch.save(gpt.state_dict(), "gpt.pt")
    torch.save(rigpt.state_dict(), "rigpt.pt")