File size: 8,379 Bytes
a7ef49b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 |
#./experiments/experiment1/train.py
import logging
import pickle
import sqlite3
import torch
import torchvision
import torch.optim as optim
import torch.nn as nn
import torch.nn.functional as F
import transformers
from model import RotationallyInvariantGPT, RotationallyInvariantGPTConfig
from prereqs.nanoGPT.model import GPTConfig, GPT, MLP
from datasets import load_from_disk
from torch.utils.data import DataLoader
from transformers import GPT2TokenizerFast
from torch.nn.utils.rnn import pad_sequence
def pad_collate(batch):
# Separating inputs and labels
inputs = [d['input_ids'] for d in batch]
labels = [d['labels'] for d in batch]
# Padding the input sequences
input_tensor = pad_sequence(inputs, batch_first=True)
# Padding the labels sequences
label_tensor = pad_sequence(labels, batch_first=True)
return {'input_ids': input_tensor, 'labels': label_tensor}
class DatabaseInterface(object):
def __init__(self, db_file):
self.db_file = db_file
def read(self, split):
conn = sqlite3.connect(self.db_file)
c = conn.cursor()
c.execute(f"SELECT * FROM plain_text WHERE split='{split}'")
col_names = [desc[0] for desc in c.description] # get column names
results = [dict(zip(col_names, row)) for row in c.fetchall()] # convert tuples to dictionaries
conn.close()
return results
class PlainTextDataset(torch.utils.data.Dataset):
def __init__(self, plain_text_dataset, tokenizer, device):
self.plain_text_dataset = plain_text_dataset
self.tokenizer = tokenizer
self.device = device
def __len__(self):
return len(self.plain_text_dataset)
def __getitem__(self, idx):
item = self.plain_text_dataset[idx]
tokens = self.tokenizer.encode_plus(item["text"], truncation=True, max_length=512, padding="max_length")
input_ids = tokens["input_ids"]
attention_mask = tokens["attention_mask"]
return {
'input_ids': torch.as_tensor(input_ids[:-1], dtype=torch.long).to(self.device),
'attention_mask': torch.as_tensor(attention_mask[:-1], dtype=torch.long).to(self.device),
'labels': torch.as_tensor(input_ids[1:], dtype=torch.long).to(self.device)
}
def train(model: nn.Module, optimizer: optim.Optimizer, train_loader: DataLoader) -> float:
model.train()
running_loss = 0
for i, batch in enumerate(train_loader):
inputs, targets = batch['input_ids'].to(device), batch['labels'].to(device)
optimizer.zero_grad()
outputs, loss = model(inputs, targets)
loss.backward()
optimizer.step()
running_loss += loss.item()
if i % 100 == 0:
logging.info(f"Batch {i}: Loss={loss.item()}")
return running_loss / len(train_loader)
def evaluate(model, valid_loader) -> float:
model.eval()
running_loss = 0
with torch.no_grad():
for i, batch in enumerate(valid_loader):
inputs, targets = batch['input_ids'].to(device), batch['labels'].to(device)
outputs = model(inputs, targets)
loss = outputs.loss
running_loss += loss.item()
if i % 100 == 0:
logging.info(f"Batch {i}: Validation Loss={loss.item()}")
return running_loss / len(valid_loader)
if __name__ == '__main__':
logging.basicConfig(
format='%(asctime)s - %(levelname)s - %(name)s - %(message)s',
datefmt='%m/%d/%Y %H:%M:%S',
level=logging.INFO
)
logging.info(f"PyTorch version: {torch.__version__}")
logging.info(f"Torchvision version: {torchvision.__version__}")
logging.info(f"Transformers version: {transformers.__version__}")
logging.info(f"CUDA version: {torch.version.cuda}")
logging.info(f"cuDNN version: {torch.backends.cudnn.version()}")
logging.info("Clearing cuda cache...")
torch.cuda.empty_cache()
logging.info("Setting num_threads to 1...")
torch.set_num_threads(1)
# Configs
d_model = 512
num_heads = 4
num_layers = 1
block_size = 512
dropout = 0.2
bias = True
rotational = True
batch_size = 32
eval_batch_size = 64
epochs = 10
lr = 0.001
vocab_size = 50304 # GPT-2 tokenizer vocab size
logging.info(f"Vocab size: {vocab_size}")
logging.info(f'''
Config:
d_model={d_model},
num_heads={num_heads},
num_layers={num_layers},
block_size={block_size},
dropout={dropout}, bias={bias}
'''
)
logging.info(
f"Training for {epochs} epochs with a learning rate of {lr}..."
)
logging.info(f"Batch size: {batch_size}")
logging.info(f"Eval batch size: {eval_batch_size}")
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# device = torch.device("cpu")
logging.info(f"Device: {device}")
logging.info("Loading tokenizer")
tokenizer = GPT2TokenizerFast.from_pretrained('gpt2')
tokenizer.add_special_tokens({'pad_token': '[PAD]'})
# Query the database for the tokenized data
logging.info("Querying plain text data...")
db_file_path = "data/experiment1.db"
plain_text_train = DatabaseInterface(db_file_path).read("train")
#logging.debug(f"Plain text train: {plain_text_train[:10]}")
plain_text_val = DatabaseInterface(db_file_path).read("val")
#logging.debug(f"Plain text val: {plain_text_val[:10]}")
# Create train/val dataset objects
train_dataset = PlainTextDataset(plain_text_train, tokenizer, device)
valid_dataset = PlainTextDataset(plain_text_val, tokenizer, device)
# DEBUG
#for idx, item in enumerate(train_dataset):
# input_ids = item["input_ids"]
# attention_mask = item["attention_mask"]
# if input_ids.size(0) == 0:
# print(f"Sample index with 0 length: {idx}")
# print(f"Input_ids: {input_ids}")
# print(f"Attention_mask: {attention_mask}")
# Calculate the number of batches
num_train_batches = len(train_dataset) // batch_size
num_eval_batches = len(valid_dataset) // eval_batch_size
logging.info(f"Number of train batches: {num_train_batches}")
logging.info(f"Number of eval batches: {num_eval_batches}")
train_loader = DataLoader(
train_dataset,
batch_size=batch_size,
shuffle=False,
collate_fn=pad_collate
)
valid_loader = DataLoader(
valid_dataset,
batch_size=eval_batch_size,
shuffle=False,
collate_fn=pad_collate
)
# gpt_config = GPTConfig(
# vocab_size=vocab_size,
# n_embd=d_model,
# n_head=num_heads,
# n_layer=num_layers,
# block_size=block_size,
# dropout=dropout,
# bias=bias
#)
rigpt_config = RotationallyInvariantGPTConfig(
vocab_size=vocab_size,
n_embd=d_model,
n_head=num_heads,
n_layer=num_layers,
block_size=block_size,
dropout=dropout,
bias=bias,
rotational_invariance=rotational
)
logging.info("Creating models...")
# gpt = GPT(gpt_config).to(device)
rigpt = RotationallyInvariantGPT(rigpt_config).to(device)
logging.info("Creating optimizers...")
# optimizer_gpt = optim.Adam(gpt.parameters(), lr=lr)
optimizer_rigpt = optim.Adam(rigpt.parameters(), lr=lr)
logging.info("Training...")
for model, optimizer, model_name in [
# (
# gpt,
# optimizer_gpt,
# 'GPT'
# ),
(
rigpt,
optimizer_rigpt,
'RotationallyInvariantGPT'
)
]:
print(f"Training {model_name}")
for epoch in range(1, epochs + 1):
print(f"Training epoch {epoch}")
train_loss = train(model, optimizer, train_loader)
print(f"Validating epoch {epoch}")
valid_loss = evaluate(model, num_eval_batches)
print(
f'''
{model_name} -
Epoch: {epoch},
Train loss: {train_loss:.3f},
Validation loss: {valid_loss:.3f}'
'''
)
# torch.save(gpt.state_dict(), "gpt.pt")
torch.save(rigpt.state_dict(), "rigpt.pt")
|