|
|
|
|
|
import torch |
|
import contextlib |
|
import os |
|
import math |
|
|
|
import ldm_patched.modules.utils |
|
import ldm_patched.modules.model_management |
|
from ldm_patched.modules.clip_vision import clip_preprocess |
|
from ldm_patched.ldm.modules.attention import optimized_attention |
|
from ldm_patched.utils import path_utils as folder_paths |
|
|
|
from torch import nn |
|
from PIL import Image |
|
import torch.nn.functional as F |
|
import torchvision.transforms as TT |
|
|
|
from lib_ipadapter.resampler import PerceiverAttention, FeedForward, Resampler |
|
|
|
|
|
GLOBAL_MODELS_DIR = os.path.join(folder_paths.models_dir, "ipadapter") |
|
MODELS_DIR = GLOBAL_MODELS_DIR if os.path.isdir(GLOBAL_MODELS_DIR) else os.path.join(os.path.dirname(os.path.realpath(__file__)), "models") |
|
if "ipadapter" not in folder_paths.folder_names_and_paths: |
|
current_paths = [MODELS_DIR] |
|
else: |
|
current_paths, _ = folder_paths.folder_names_and_paths["ipadapter"] |
|
folder_paths.folder_names_and_paths["ipadapter"] = (current_paths, folder_paths.supported_pt_extensions) |
|
|
|
INSIGHTFACE_DIR = os.path.join(folder_paths.models_dir, "insightface") |
|
|
|
class FacePerceiverResampler(torch.nn.Module): |
|
def __init__( |
|
self, |
|
*, |
|
dim=768, |
|
depth=4, |
|
dim_head=64, |
|
heads=16, |
|
embedding_dim=1280, |
|
output_dim=768, |
|
ff_mult=4, |
|
): |
|
super().__init__() |
|
|
|
self.proj_in = torch.nn.Linear(embedding_dim, dim) |
|
self.proj_out = torch.nn.Linear(dim, output_dim) |
|
self.norm_out = torch.nn.LayerNorm(output_dim) |
|
self.layers = torch.nn.ModuleList([]) |
|
for _ in range(depth): |
|
self.layers.append( |
|
torch.nn.ModuleList( |
|
[ |
|
PerceiverAttention(dim=dim, dim_head=dim_head, heads=heads), |
|
FeedForward(dim=dim, mult=ff_mult), |
|
] |
|
) |
|
) |
|
|
|
def forward(self, latents, x): |
|
x = self.proj_in(x) |
|
for attn, ff in self.layers: |
|
latents = attn(x, latents) + latents |
|
latents = ff(latents) + latents |
|
latents = self.proj_out(latents) |
|
return self.norm_out(latents) |
|
|
|
class MLPProjModel(torch.nn.Module): |
|
def __init__(self, cross_attention_dim=1024, clip_embeddings_dim=1024): |
|
super().__init__() |
|
|
|
self.proj = torch.nn.Sequential( |
|
torch.nn.Linear(clip_embeddings_dim, clip_embeddings_dim), |
|
torch.nn.GELU(), |
|
torch.nn.Linear(clip_embeddings_dim, cross_attention_dim), |
|
torch.nn.LayerNorm(cross_attention_dim) |
|
) |
|
|
|
def forward(self, image_embeds): |
|
clip_extra_context_tokens = self.proj(image_embeds) |
|
return clip_extra_context_tokens |
|
|
|
class MLPProjModelFaceId(torch.nn.Module): |
|
def __init__(self, cross_attention_dim=768, id_embeddings_dim=512, num_tokens=4): |
|
super().__init__() |
|
|
|
self.cross_attention_dim = cross_attention_dim |
|
self.num_tokens = num_tokens |
|
|
|
self.proj = torch.nn.Sequential( |
|
torch.nn.Linear(id_embeddings_dim, id_embeddings_dim*2), |
|
torch.nn.GELU(), |
|
torch.nn.Linear(id_embeddings_dim*2, cross_attention_dim*num_tokens), |
|
) |
|
self.norm = torch.nn.LayerNorm(cross_attention_dim) |
|
|
|
def forward(self, id_embeds): |
|
clip_extra_context_tokens = self.proj(id_embeds) |
|
clip_extra_context_tokens = clip_extra_context_tokens.reshape(-1, self.num_tokens, self.cross_attention_dim) |
|
clip_extra_context_tokens = self.norm(clip_extra_context_tokens) |
|
return clip_extra_context_tokens |
|
|
|
class ProjModelFaceIdPlus(torch.nn.Module): |
|
def __init__(self, cross_attention_dim=768, id_embeddings_dim=512, clip_embeddings_dim=1280, num_tokens=4): |
|
super().__init__() |
|
|
|
self.cross_attention_dim = cross_attention_dim |
|
self.num_tokens = num_tokens |
|
|
|
self.proj = torch.nn.Sequential( |
|
torch.nn.Linear(id_embeddings_dim, id_embeddings_dim*2), |
|
torch.nn.GELU(), |
|
torch.nn.Linear(id_embeddings_dim*2, cross_attention_dim*num_tokens), |
|
) |
|
self.norm = torch.nn.LayerNorm(cross_attention_dim) |
|
|
|
self.perceiver_resampler = FacePerceiverResampler( |
|
dim=cross_attention_dim, |
|
depth=4, |
|
dim_head=64, |
|
heads=cross_attention_dim // 64, |
|
embedding_dim=clip_embeddings_dim, |
|
output_dim=cross_attention_dim, |
|
ff_mult=4, |
|
) |
|
|
|
def forward(self, id_embeds, clip_embeds, scale=1.0, shortcut=False): |
|
x = self.proj(id_embeds) |
|
x = x.reshape(-1, self.num_tokens, self.cross_attention_dim) |
|
x = self.norm(x) |
|
out = self.perceiver_resampler(x, clip_embeds) |
|
if shortcut: |
|
out = x + scale * out |
|
return out |
|
|
|
class ImageProjModel(nn.Module): |
|
def __init__(self, cross_attention_dim=1024, clip_embeddings_dim=1024, clip_extra_context_tokens=4): |
|
super().__init__() |
|
|
|
self.cross_attention_dim = cross_attention_dim |
|
self.clip_extra_context_tokens = clip_extra_context_tokens |
|
self.proj = nn.Linear(clip_embeddings_dim, self.clip_extra_context_tokens * cross_attention_dim) |
|
self.norm = nn.LayerNorm(cross_attention_dim) |
|
|
|
def forward(self, image_embeds): |
|
embeds = image_embeds |
|
clip_extra_context_tokens = self.proj(embeds).reshape(-1, self.clip_extra_context_tokens, self.cross_attention_dim) |
|
clip_extra_context_tokens = self.norm(clip_extra_context_tokens) |
|
return clip_extra_context_tokens |
|
|
|
class To_KV(nn.Module): |
|
def __init__(self, state_dict): |
|
super().__init__() |
|
|
|
self.to_kvs = nn.ModuleDict() |
|
for key, value in state_dict.items(): |
|
self.to_kvs[key.replace(".weight", "").replace(".", "_")] = nn.Linear(value.shape[1], value.shape[0], bias=False) |
|
self.to_kvs[key.replace(".weight", "").replace(".", "_")].weight.data = value |
|
|
|
def set_model_patch_replace(model, patch_kwargs, key): |
|
to = model.model_options["transformer_options"] |
|
if "patches_replace" not in to: |
|
to["patches_replace"] = {} |
|
if "attn2" not in to["patches_replace"]: |
|
to["patches_replace"]["attn2"] = {} |
|
if key not in to["patches_replace"]["attn2"]: |
|
patch = CrossAttentionPatch(**patch_kwargs) |
|
to["patches_replace"]["attn2"][key] = patch |
|
else: |
|
to["patches_replace"]["attn2"][key].set_new_condition(**patch_kwargs) |
|
|
|
def image_add_noise(image, noise): |
|
image = image.permute([0,3,1,2]) |
|
torch.manual_seed(0) |
|
transforms = TT.Compose([ |
|
TT.CenterCrop(min(image.shape[2], image.shape[3])), |
|
TT.Resize((224, 224), interpolation=TT.InterpolationMode.BICUBIC, antialias=True), |
|
TT.ElasticTransform(alpha=75.0, sigma=noise*3.5), |
|
TT.RandomVerticalFlip(p=1.0), |
|
TT.RandomHorizontalFlip(p=1.0), |
|
]) |
|
image = transforms(image.cpu()) |
|
image = image.permute([0,2,3,1]) |
|
image = image + ((0.25*(1-noise)+0.05) * torch.randn_like(image) ) |
|
return image |
|
|
|
def zeroed_hidden_states(clip_vision, batch_size): |
|
image = torch.zeros([batch_size, 224, 224, 3]) |
|
ldm_patched.modules.model_management.load_model_gpu(clip_vision.patcher) |
|
pixel_values = clip_preprocess(image.to(clip_vision.load_device)).float() |
|
outputs = clip_vision.model(pixel_values=pixel_values, output_hidden_states=True) |
|
outputs = outputs.hidden_states[-2].to(ldm_patched.modules.model_management.intermediate_device()) |
|
return outputs |
|
|
|
def min_(tensor_list): |
|
|
|
x = torch.stack(tensor_list) |
|
mn = x.min(axis=0)[0] |
|
return torch.clamp(mn, min=0) |
|
|
|
def max_(tensor_list): |
|
|
|
x = torch.stack(tensor_list) |
|
mx = x.max(axis=0)[0] |
|
return torch.clamp(mx, max=1) |
|
|
|
|
|
def contrast_adaptive_sharpening(image, amount): |
|
img = F.pad(image, pad=(1, 1, 1, 1)).cpu() |
|
|
|
a = img[..., :-2, :-2] |
|
b = img[..., :-2, 1:-1] |
|
c = img[..., :-2, 2:] |
|
d = img[..., 1:-1, :-2] |
|
e = img[..., 1:-1, 1:-1] |
|
f = img[..., 1:-1, 2:] |
|
g = img[..., 2:, :-2] |
|
h = img[..., 2:, 1:-1] |
|
i = img[..., 2:, 2:] |
|
|
|
|
|
cross = (b, d, e, f, h) |
|
mn = min_(cross) |
|
mx = max_(cross) |
|
|
|
diag = (a, c, g, i) |
|
mn2 = min_(diag) |
|
mx2 = max_(diag) |
|
mx = mx + mx2 |
|
mn = mn + mn2 |
|
|
|
|
|
inv_mx = torch.reciprocal(mx) |
|
amp = inv_mx * torch.minimum(mn, (2 - mx)) |
|
|
|
|
|
amp = torch.sqrt(amp) |
|
w = - amp * (amount * (1/5 - 1/8) + 1/8) |
|
div = torch.reciprocal(1 + 4*w) |
|
|
|
output = ((b + d + f + h)*w + e) * div |
|
output = output.clamp(0, 1) |
|
output = torch.nan_to_num(output) |
|
|
|
return (output) |
|
|
|
def tensorToNP(image): |
|
out = torch.clamp(255. * image.detach().cpu(), 0, 255).to(torch.uint8) |
|
out = out[..., [2, 1, 0]] |
|
out = out.numpy() |
|
|
|
return out |
|
|
|
def NPToTensor(image): |
|
out = torch.from_numpy(image) |
|
out = torch.clamp(out.to(torch.float)/255., 0.0, 1.0) |
|
out = out[..., [2, 1, 0]] |
|
|
|
return out |
|
|
|
class IPAdapter(nn.Module): |
|
def __init__(self, ipadapter_model, cross_attention_dim=1024, output_cross_attention_dim=1024, |
|
clip_embeddings_dim=1024, clip_extra_context_tokens=4, |
|
is_sdxl=False, is_plus=False, is_full=False, |
|
is_faceid=False, is_instant_id=False): |
|
super().__init__() |
|
|
|
self.clip_embeddings_dim = clip_embeddings_dim |
|
self.cross_attention_dim = cross_attention_dim |
|
self.output_cross_attention_dim = output_cross_attention_dim |
|
self.clip_extra_context_tokens = clip_extra_context_tokens |
|
self.is_sdxl = is_sdxl |
|
self.is_full = is_full |
|
self.is_plus = is_plus |
|
self.is_instant_id = is_instant_id |
|
|
|
if is_instant_id: |
|
self.image_proj_model = self.init_proj_instantid() |
|
elif is_faceid: |
|
self.image_proj_model = self.init_proj_faceid() |
|
elif is_plus: |
|
self.image_proj_model = self.init_proj_plus() |
|
else: |
|
self.image_proj_model = self.init_proj() |
|
|
|
self.image_proj_model.load_state_dict(ipadapter_model["image_proj"]) |
|
self.ip_layers = To_KV(ipadapter_model["ip_adapter"]) |
|
|
|
def init_proj(self): |
|
image_proj_model = ImageProjModel( |
|
cross_attention_dim=self.cross_attention_dim, |
|
clip_embeddings_dim=self.clip_embeddings_dim, |
|
clip_extra_context_tokens=self.clip_extra_context_tokens |
|
) |
|
return image_proj_model |
|
|
|
def init_proj_plus(self): |
|
if self.is_full: |
|
image_proj_model = MLPProjModel( |
|
cross_attention_dim=self.cross_attention_dim, |
|
clip_embeddings_dim=self.clip_embeddings_dim |
|
) |
|
else: |
|
image_proj_model = Resampler( |
|
dim=self.cross_attention_dim, |
|
depth=4, |
|
dim_head=64, |
|
heads=20 if self.is_sdxl else 12, |
|
num_queries=self.clip_extra_context_tokens, |
|
embedding_dim=self.clip_embeddings_dim, |
|
output_dim=self.output_cross_attention_dim, |
|
ff_mult=4 |
|
) |
|
return image_proj_model |
|
|
|
def init_proj_faceid(self): |
|
if self.is_plus: |
|
image_proj_model = ProjModelFaceIdPlus( |
|
cross_attention_dim=self.cross_attention_dim, |
|
id_embeddings_dim=512, |
|
clip_embeddings_dim=1280, |
|
num_tokens=4, |
|
) |
|
else: |
|
image_proj_model = MLPProjModelFaceId( |
|
cross_attention_dim=self.cross_attention_dim, |
|
id_embeddings_dim=512, |
|
num_tokens=self.clip_extra_context_tokens, |
|
) |
|
return image_proj_model |
|
|
|
def init_proj_instantid(self, image_emb_dim=512, num_tokens=16): |
|
image_proj_model = Resampler( |
|
dim=1280, |
|
depth=4, |
|
dim_head=64, |
|
heads=20, |
|
num_queries=num_tokens, |
|
embedding_dim=image_emb_dim, |
|
output_dim=self.cross_attention_dim, |
|
ff_mult=4, |
|
) |
|
return image_proj_model |
|
|
|
def get_image_embeds(self, clip_embed, clip_embed_zeroed): |
|
image_prompt_embeds = self.image_proj_model(clip_embed) |
|
uncond_image_prompt_embeds = self.image_proj_model(clip_embed_zeroed) |
|
return image_prompt_embeds, uncond_image_prompt_embeds |
|
|
|
def get_image_embeds_faceid_plus(self, face_embed, clip_embed, s_scale, shortcut): |
|
embeds = self.image_proj_model(face_embed, clip_embed, scale=s_scale, shortcut=shortcut) |
|
return embeds |
|
|
|
def get_image_embeds_instantid(self, prompt_image_emb): |
|
c = self.image_proj_model(prompt_image_emb) |
|
uc = self.image_proj_model(torch.zeros_like(prompt_image_emb)) |
|
return c, uc |
|
|
|
class CrossAttentionPatch: |
|
|
|
def __init__(self, weight, ipadapter, number, cond, uncond, weight_type, mask=None, sigma_start=0.0, sigma_end=1.0, unfold_batch=False): |
|
self.weights = [weight] |
|
self.ipadapters = [ipadapter] |
|
self.conds = [cond] |
|
self.unconds = [uncond] |
|
self.number = number |
|
self.weight_type = [weight_type] |
|
self.masks = [mask] |
|
self.sigma_start = [sigma_start] |
|
self.sigma_end = [sigma_end] |
|
self.unfold_batch = [unfold_batch] |
|
|
|
self.k_key = str(self.number*2+1) + "_to_k_ip" |
|
self.v_key = str(self.number*2+1) + "_to_v_ip" |
|
|
|
def set_new_condition(self, weight, ipadapter, number, cond, uncond, weight_type, mask=None, sigma_start=0.0, sigma_end=1.0, unfold_batch=False): |
|
self.weights.append(weight) |
|
self.ipadapters.append(ipadapter) |
|
self.conds.append(cond) |
|
self.unconds.append(uncond) |
|
self.masks.append(mask) |
|
self.weight_type.append(weight_type) |
|
self.sigma_start.append(sigma_start) |
|
self.sigma_end.append(sigma_end) |
|
self.unfold_batch.append(unfold_batch) |
|
|
|
def __call__(self, n, context_attn2, value_attn2, extra_options): |
|
org_dtype = n.dtype |
|
cond_or_uncond = extra_options["cond_or_uncond"] |
|
|
|
sigma = extra_options["sigmas"][0] if 'sigmas' in extra_options else None |
|
sigma = sigma.item() if sigma is not None else 999999999.9 |
|
|
|
|
|
ad_params = extra_options['ad_params'] if "ad_params" in extra_options else None |
|
|
|
q = n |
|
k = context_attn2 |
|
v = value_attn2 |
|
b = q.shape[0] |
|
qs = q.shape[1] |
|
batch_prompt = b // len(cond_or_uncond) |
|
out = optimized_attention(q, k, v, extra_options["n_heads"]) |
|
_, _, lh, lw = extra_options["original_shape"] |
|
|
|
for weight, cond, uncond, ipadapter, mask, weight_type, sigma_start, sigma_end, unfold_batch in zip(self.weights, self.conds, self.unconds, self.ipadapters, self.masks, self.weight_type, self.sigma_start, self.sigma_end, self.unfold_batch): |
|
if sigma > sigma_start or sigma < sigma_end: |
|
continue |
|
|
|
if unfold_batch and cond.shape[0] > 1: |
|
|
|
if ad_params is not None and ad_params["sub_idxs"] is not None: |
|
|
|
if cond.shape[0] >= ad_params["full_length"]: |
|
cond = torch.Tensor(cond[ad_params["sub_idxs"]]) |
|
uncond = torch.Tensor(uncond[ad_params["sub_idxs"]]) |
|
|
|
else: |
|
|
|
if cond.shape[0] < ad_params["full_length"]: |
|
cond = torch.cat((cond, cond[-1:].repeat((ad_params["full_length"]-cond.shape[0], 1, 1))), dim=0) |
|
uncond = torch.cat((uncond, uncond[-1:].repeat((ad_params["full_length"]-uncond.shape[0], 1, 1))), dim=0) |
|
|
|
if cond.shape[0] > ad_params["full_length"]: |
|
cond = cond[:ad_params["full_length"]] |
|
uncond = uncond[:ad_params["full_length"]] |
|
cond = cond[ad_params["sub_idxs"]] |
|
uncond = uncond[ad_params["sub_idxs"]] |
|
|
|
|
|
if cond.shape[0] < batch_prompt: |
|
cond = torch.cat((cond, cond[-1:].repeat((batch_prompt-cond.shape[0], 1, 1))), dim=0) |
|
uncond = torch.cat((uncond, uncond[-1:].repeat((batch_prompt-uncond.shape[0], 1, 1))), dim=0) |
|
|
|
elif cond.shape[0] > batch_prompt: |
|
cond = cond[:batch_prompt] |
|
uncond = uncond[:batch_prompt] |
|
|
|
k_cond = ipadapter.ip_layers.to_kvs[self.k_key](cond) |
|
k_uncond = ipadapter.ip_layers.to_kvs[self.k_key](uncond) |
|
v_cond = ipadapter.ip_layers.to_kvs[self.v_key](cond) |
|
v_uncond = ipadapter.ip_layers.to_kvs[self.v_key](uncond) |
|
else: |
|
k_cond = ipadapter.ip_layers.to_kvs[self.k_key](cond).repeat(batch_prompt, 1, 1) |
|
k_uncond = ipadapter.ip_layers.to_kvs[self.k_key](uncond).repeat(batch_prompt, 1, 1) |
|
v_cond = ipadapter.ip_layers.to_kvs[self.v_key](cond).repeat(batch_prompt, 1, 1) |
|
v_uncond = ipadapter.ip_layers.to_kvs[self.v_key](uncond).repeat(batch_prompt, 1, 1) |
|
|
|
if weight_type.startswith("linear"): |
|
ip_k = torch.cat([(k_cond, k_uncond)[i] for i in cond_or_uncond], dim=0) * weight |
|
ip_v = torch.cat([(v_cond, v_uncond)[i] for i in cond_or_uncond], dim=0) * weight |
|
else: |
|
ip_k = torch.cat([(k_cond, k_uncond)[i] for i in cond_or_uncond], dim=0) |
|
ip_v = torch.cat([(v_cond, v_uncond)[i] for i in cond_or_uncond], dim=0) |
|
|
|
if weight_type.startswith("channel"): |
|
|
|
|
|
ip_v_mean = torch.mean(ip_v, dim=1, keepdim=True) |
|
ip_v_offset = ip_v - ip_v_mean |
|
_, _, C = ip_k.shape |
|
channel_penalty = float(C) / 1280.0 |
|
W = weight * channel_penalty |
|
ip_k = ip_k * W |
|
ip_v = ip_v_offset + ip_v_mean * W |
|
|
|
out_ip = optimized_attention(q, ip_k.to(org_dtype), ip_v.to(org_dtype), extra_options["n_heads"]) |
|
if weight_type.startswith("original"): |
|
out_ip = out_ip * weight |
|
|
|
if mask is not None: |
|
|
|
mask_h = lh / math.sqrt(lh * lw / qs) |
|
mask_h = int(mask_h) + int((qs % int(mask_h)) != 0) |
|
mask_w = qs // mask_h |
|
|
|
|
|
if (mask.shape[0] > 1 and ad_params is not None and ad_params["sub_idxs"] is not None): |
|
|
|
if mask.shape[0] >= ad_params["full_length"]: |
|
mask_downsample = torch.Tensor(mask[ad_params["sub_idxs"]]) |
|
mask_downsample = F.interpolate(mask_downsample.unsqueeze(1), size=(mask_h, mask_w), mode="bicubic").squeeze(1) |
|
|
|
else: |
|
|
|
mask_downsample = F.interpolate(mask.unsqueeze(1), size=(mask_h, mask_w), mode="bicubic").squeeze(1) |
|
|
|
if mask_downsample.shape[0] < ad_params["full_length"]: |
|
mask_downsample = torch.cat((mask_downsample, mask_downsample[-1:].repeat((ad_params["full_length"]-mask_downsample.shape[0], 1, 1))), dim=0) |
|
|
|
if mask_downsample.shape[0] > ad_params["full_length"]: |
|
mask_downsample = mask_downsample[:ad_params["full_length"]] |
|
|
|
mask_downsample = mask_downsample[ad_params["sub_idxs"]] |
|
|
|
else: |
|
mask_downsample = F.interpolate(mask.unsqueeze(1), size=(mask_h, mask_w), mode="bicubic").squeeze(1) |
|
|
|
|
|
if mask_downsample.shape[0] < batch_prompt: |
|
mask_downsample = torch.cat((mask_downsample, mask_downsample[-1:, :, :].repeat((batch_prompt-mask_downsample.shape[0], 1, 1))), dim=0) |
|
|
|
elif mask_downsample.shape[0] > batch_prompt: |
|
mask_downsample = mask_downsample[:batch_prompt, :, :] |
|
|
|
|
|
mask_downsample = mask_downsample.repeat(len(cond_or_uncond), 1, 1) |
|
mask_downsample = mask_downsample.view(mask_downsample.shape[0], -1, 1).repeat(1, 1, out.shape[2]) |
|
|
|
out_ip = out_ip * mask_downsample |
|
|
|
out = out + out_ip |
|
|
|
return out.to(dtype=org_dtype) |
|
|
|
class IPAdapterModelLoader: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return {"required": { "ipadapter_file": (folder_paths.get_filename_list("ipadapter"), )}} |
|
|
|
RETURN_TYPES = ("IPADAPTER",) |
|
FUNCTION = "load_ipadapter_model" |
|
CATEGORY = "ipadapter" |
|
|
|
def load_ipadapter_model(self, ipadapter_file): |
|
ckpt_path = folder_paths.get_full_path("ipadapter", ipadapter_file) |
|
|
|
model = ldm_patched.modules.utils.load_torch_file(ckpt_path, safe_load=True) |
|
|
|
if ckpt_path.lower().endswith(".safetensors"): |
|
st_model = {"image_proj": {}, "ip_adapter": {}} |
|
for key in model.keys(): |
|
if key.startswith("image_proj."): |
|
st_model["image_proj"][key.replace("image_proj.", "")] = model[key] |
|
elif key.startswith("ip_adapter."): |
|
st_model["ip_adapter"][key.replace("ip_adapter.", "")] = model[key] |
|
model = st_model |
|
|
|
if not "ip_adapter" in model.keys() or not model["ip_adapter"]: |
|
raise Exception("invalid IPAdapter model {}".format(ckpt_path)) |
|
|
|
return (model,) |
|
|
|
insightface_face_align = None |
|
class InsightFaceLoader: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return { |
|
"required": { |
|
"provider": (["CPU", "CUDA", "ROCM"], ), |
|
}, |
|
} |
|
|
|
RETURN_TYPES = ("INSIGHTFACE",) |
|
FUNCTION = "load_insight_face" |
|
CATEGORY = "ipadapter" |
|
|
|
def load_insight_face(self, name="buffalo_l", provider="CPU"): |
|
try: |
|
from insightface.app import FaceAnalysis |
|
except ImportError as e: |
|
raise Exception(e) |
|
|
|
if name == 'antelopev2': |
|
from modules.modelloader import load_file_from_url |
|
model_root = os.path.join(INSIGHTFACE_DIR, 'models', "antelopev2") |
|
if not model_root: |
|
os.makedirs(model_root, exist_ok=True) |
|
for local_file, url in ( |
|
("1k3d68.onnx", "https://huggingface.co/DIAMONIK7777/antelopev2/resolve/main/1k3d68.onnx"), |
|
("2d106det.onnx", "https://huggingface.co/DIAMONIK7777/antelopev2/resolve/main/2d106det.onnx"), |
|
("genderage.onnx", "https://huggingface.co/DIAMONIK7777/antelopev2/resolve/main/genderage.onnx"), |
|
("glintr100.onnx", "https://huggingface.co/DIAMONIK7777/antelopev2/resolve/main/glintr100.onnx"), |
|
("scrfd_10g_bnkps.onnx", |
|
"https://huggingface.co/DIAMONIK7777/antelopev2/resolve/main/scrfd_10g_bnkps.onnx"), |
|
): |
|
local_path = os.path.join(model_root, local_file) |
|
if not os.path.exists(local_path): |
|
load_file_from_url(url, model_dir=model_root) |
|
|
|
from insightface.utils import face_align |
|
global insightface_face_align |
|
insightface_face_align = face_align |
|
|
|
model = FaceAnalysis(name=name, root=INSIGHTFACE_DIR, providers=[provider + 'ExecutionProvider',]) |
|
model.prepare(ctx_id=0, det_size=(640, 640)) |
|
|
|
return (model,) |
|
|
|
class IPAdapterApply: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return { |
|
"required": { |
|
"ipadapter": ("IPADAPTER", ), |
|
"clip_vision": ("CLIP_VISION",), |
|
"image": ("IMAGE",), |
|
"model": ("MODEL", ), |
|
"weight": ("FLOAT", { "default": 1.0, "min": -1, "max": 3, "step": 0.05 }), |
|
"noise": ("FLOAT", { "default": 0.0, "min": 0.0, "max": 1.0, "step": 0.01 }), |
|
"weight_type": (["original", "linear", "channel penalty"], ), |
|
"start_at": ("FLOAT", { "default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001 }), |
|
"end_at": ("FLOAT", { "default": 1.0, "min": 0.0, "max": 1.0, "step": 0.001 }), |
|
"unfold_batch": ("BOOLEAN", { "default": False }), |
|
}, |
|
"optional": { |
|
"attn_mask": ("MASK",), |
|
} |
|
} |
|
|
|
RETURN_TYPES = ("MODEL", ) |
|
FUNCTION = "apply_ipadapter" |
|
CATEGORY = "ipadapter" |
|
|
|
def apply_ipadapter(self, ipadapter, model, weight, clip_vision=None, image=None, weight_type="original", |
|
noise=None, embeds=None, attn_mask=None, start_at=0.0, end_at=1.0, unfold_batch=False, |
|
insightface=None, faceid_v2=False, weight_v2=False, instant_id=False): |
|
|
|
self.dtype = torch.float16 if ldm_patched.modules.model_management.should_use_fp16() else torch.float32 |
|
self.device = ldm_patched.modules.model_management.get_torch_device() |
|
self.weight = weight |
|
self.is_full = "proj.3.weight" in ipadapter["image_proj"] |
|
self.is_portrait = "proj.2.weight" in ipadapter["image_proj"] and not "proj.3.weight" in ipadapter["image_proj"] and not "0.to_q_lora.down.weight" in ipadapter["ip_adapter"] |
|
self.is_faceid = self.is_portrait or "0.to_q_lora.down.weight" in ipadapter["ip_adapter"] |
|
self.is_plus = (self.is_full or "latents" in ipadapter["image_proj"] or "perceiver_resampler.proj_in.weight" in ipadapter["image_proj"]) |
|
self.is_instant_id = instant_id |
|
|
|
if self.is_faceid and not insightface: |
|
raise Exception('InsightFace must be provided for FaceID models.') |
|
|
|
output_cross_attention_dim = ipadapter["ip_adapter"]["1.to_k_ip.weight"].shape[1] |
|
self.is_sdxl = output_cross_attention_dim == 2048 |
|
cross_attention_dim = 1280 if self.is_plus and self.is_sdxl and not self.is_faceid else output_cross_attention_dim |
|
clip_extra_context_tokens = 16 if self.is_plus or self.is_portrait else 4 |
|
|
|
if self.is_instant_id: |
|
cross_attention_dim = output_cross_attention_dim |
|
|
|
if embeds is not None: |
|
embeds = torch.unbind(embeds) |
|
clip_embed = embeds[0].cpu() |
|
clip_embed_zeroed = embeds[1].cpu() |
|
else: |
|
if self.is_instant_id: |
|
insightface.det_model.input_size = (640, 640) |
|
face_img = tensorToNP(image) |
|
face_embed = [] |
|
|
|
for i in range(face_img.shape[0]): |
|
for size in [(size, size) for size in range(640, 128, -64)]: |
|
insightface.det_model.input_size = size |
|
face = insightface.get(face_img[i]) |
|
if face: |
|
face_embed.append(torch.from_numpy(face[0].embedding).unsqueeze(0)) |
|
|
|
if 640 not in size: |
|
print(f"\033[33mINFO: InsightFace detection resolution lowered to {size}.\033[0m") |
|
break |
|
else: |
|
raise Exception('InsightFace: No face detected.') |
|
|
|
face_embed = torch.stack(face_embed, dim=0) |
|
clip_embed = face_embed |
|
elif self.is_faceid: |
|
insightface.det_model.input_size = (640,640) |
|
face_img = tensorToNP(image) |
|
face_embed = [] |
|
face_clipvision = [] |
|
|
|
for i in range(face_img.shape[0]): |
|
for size in [(size, size) for size in range(640, 128, -64)]: |
|
insightface.det_model.input_size = size |
|
face = insightface.get(face_img[i]) |
|
if face: |
|
face_embed.append(torch.from_numpy(face[0].normed_embedding).unsqueeze(0)) |
|
face_clipvision.append(NPToTensor(insightface_face_align.norm_crop(face_img[i], landmark=face[0].kps, image_size=224))) |
|
|
|
if 640 not in size: |
|
print(f"\033[33mINFO: InsightFace detection resolution lowered to {size}.\033[0m") |
|
break |
|
else: |
|
raise Exception('InsightFace: No face detected.') |
|
|
|
face_embed = torch.stack(face_embed, dim=0) |
|
image = torch.stack(face_clipvision, dim=0) |
|
|
|
neg_image = image_add_noise(image, noise) if noise > 0 else None |
|
|
|
if self.is_plus: |
|
clip_embed = clip_vision.encode_image(image).penultimate_hidden_states |
|
if noise > 0: |
|
clip_embed_zeroed = clip_vision.encode_image(neg_image).penultimate_hidden_states |
|
else: |
|
clip_embed_zeroed = zeroed_hidden_states(clip_vision, image.shape[0]) |
|
|
|
|
|
face_embed_zeroed = torch.zeros_like(face_embed) |
|
else: |
|
clip_embed = face_embed |
|
clip_embed_zeroed = torch.zeros_like(clip_embed) |
|
else: |
|
if image.shape[1] != image.shape[2]: |
|
print("\033[33mINFO: the IPAdapter reference image is not a square, CLIPImageProcessor will resize and crop it at the center. If the main focus of the picture is not in the middle the result might not be what you are expecting.\033[0m") |
|
|
|
clip_embed = clip_vision.encode_image(image) |
|
neg_image = image_add_noise(image, noise) if noise > 0 else None |
|
|
|
if self.is_plus: |
|
clip_embed = clip_embed.penultimate_hidden_states |
|
if noise > 0: |
|
clip_embed_zeroed = clip_vision.encode_image(neg_image).penultimate_hidden_states |
|
else: |
|
clip_embed_zeroed = zeroed_hidden_states(clip_vision, image.shape[0]) |
|
else: |
|
clip_embed = clip_embed.image_embeds |
|
if noise > 0: |
|
clip_embed_zeroed = clip_vision.encode_image(neg_image).image_embeds |
|
else: |
|
clip_embed_zeroed = torch.zeros_like(clip_embed) |
|
|
|
clip_embeddings_dim = clip_embed.shape[-1] |
|
|
|
self.ipadapter = IPAdapter( |
|
ipadapter, |
|
cross_attention_dim=cross_attention_dim, |
|
output_cross_attention_dim=output_cross_attention_dim, |
|
clip_embeddings_dim=clip_embeddings_dim, |
|
clip_extra_context_tokens=clip_extra_context_tokens, |
|
is_sdxl=self.is_sdxl, |
|
is_plus=self.is_plus, |
|
is_full=self.is_full, |
|
is_faceid=self.is_faceid, |
|
is_instant_id=self.is_instant_id |
|
) |
|
|
|
self.ipadapter.to(self.device, dtype=self.dtype) |
|
|
|
if self.is_instant_id: |
|
image_prompt_embeds, uncond_image_prompt_embeds = self.ipadapter.get_image_embeds_instantid(face_embed.to(self.device, dtype=self.dtype)) |
|
elif self.is_faceid and self.is_plus: |
|
image_prompt_embeds = self.ipadapter.get_image_embeds_faceid_plus(face_embed.to(self.device, dtype=self.dtype), clip_embed.to(self.device, dtype=self.dtype), weight_v2, faceid_v2) |
|
uncond_image_prompt_embeds = self.ipadapter.get_image_embeds_faceid_plus(face_embed_zeroed.to(self.device, dtype=self.dtype), clip_embed_zeroed.to(self.device, dtype=self.dtype), weight_v2, faceid_v2) |
|
else: |
|
image_prompt_embeds, uncond_image_prompt_embeds = self.ipadapter.get_image_embeds(clip_embed.to(self.device, dtype=self.dtype), clip_embed_zeroed.to(self.device, dtype=self.dtype)) |
|
|
|
image_prompt_embeds = image_prompt_embeds.to(self.device, dtype=self.dtype) |
|
uncond_image_prompt_embeds = uncond_image_prompt_embeds.to(self.device, dtype=self.dtype) |
|
|
|
work_model = model.clone() |
|
|
|
if self.is_instant_id: |
|
def modifier(cnet, x_noisy, t, cond, batched_number): |
|
cond_mark = cond['transformer_options']['cond_mark'][:, None, None].to(cond['c_crossattn']) |
|
c_crossattn = image_prompt_embeds * (1.0 - cond_mark) + uncond_image_prompt_embeds * cond_mark |
|
cond['c_crossattn'] = c_crossattn |
|
return x_noisy, t, cond, batched_number |
|
|
|
work_model.add_controlnet_conditioning_modifier(modifier) |
|
|
|
if attn_mask is not None: |
|
attn_mask = attn_mask.to(self.device) |
|
|
|
sigma_start = model.model.model_sampling.percent_to_sigma(start_at) |
|
sigma_end = model.model.model_sampling.percent_to_sigma(end_at) |
|
|
|
patch_kwargs = { |
|
"number": 0, |
|
"weight": self.weight, |
|
"ipadapter": self.ipadapter, |
|
"cond": image_prompt_embeds, |
|
"uncond": uncond_image_prompt_embeds, |
|
"weight_type": weight_type, |
|
"mask": attn_mask, |
|
"sigma_start": sigma_start, |
|
"sigma_end": sigma_end, |
|
"unfold_batch": unfold_batch, |
|
} |
|
|
|
if not self.is_sdxl: |
|
for id in [1,2,4,5,7,8]: |
|
set_model_patch_replace(work_model, patch_kwargs, ("input", id)) |
|
patch_kwargs["number"] += 1 |
|
for id in [3,4,5,6,7,8,9,10,11]: |
|
set_model_patch_replace(work_model, patch_kwargs, ("output", id)) |
|
patch_kwargs["number"] += 1 |
|
set_model_patch_replace(work_model, patch_kwargs, ("middle", 0)) |
|
else: |
|
for id in [4,5,7,8]: |
|
block_indices = range(2) if id in [4, 5] else range(10) |
|
for index in block_indices: |
|
set_model_patch_replace(work_model, patch_kwargs, ("input", id, index)) |
|
patch_kwargs["number"] += 1 |
|
for id in range(6): |
|
block_indices = range(2) if id in [3, 4, 5] else range(10) |
|
for index in block_indices: |
|
set_model_patch_replace(work_model, patch_kwargs, ("output", id, index)) |
|
patch_kwargs["number"] += 1 |
|
for index in range(10): |
|
set_model_patch_replace(work_model, patch_kwargs, ("middle", 0, index)) |
|
patch_kwargs["number"] += 1 |
|
|
|
return (work_model, ) |
|
|
|
class IPAdapterApplyFaceID(IPAdapterApply): |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return { |
|
"required": { |
|
"ipadapter": ("IPADAPTER", ), |
|
"clip_vision": ("CLIP_VISION",), |
|
"insightface": ("INSIGHTFACE",), |
|
"image": ("IMAGE",), |
|
"model": ("MODEL", ), |
|
"weight": ("FLOAT", { "default": 1.0, "min": -1, "max": 3, "step": 0.05 }), |
|
"noise": ("FLOAT", { "default": 0.0, "min": 0.0, "max": 1.0, "step": 0.01 }), |
|
"weight_type": (["original", "linear", "channel penalty"], ), |
|
"start_at": ("FLOAT", { "default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001 }), |
|
"end_at": ("FLOAT", { "default": 1.0, "min": 0.0, "max": 1.0, "step": 0.001 }), |
|
"faceid_v2": ("BOOLEAN", { "default": False }), |
|
"weight_v2": ("FLOAT", { "default": 1.0, "min": -1, "max": 3, "step": 0.05 }), |
|
"unfold_batch": ("BOOLEAN", { "default": False }), |
|
}, |
|
"optional": { |
|
"attn_mask": ("MASK",), |
|
} |
|
} |
|
|
|
def prepImage(image, interpolation="LANCZOS", crop_position="center", size=(224,224), sharpening=0.0, padding=0): |
|
_, oh, ow, _ = image.shape |
|
output = image.permute([0,3,1,2]) |
|
|
|
if "pad" in crop_position: |
|
target_length = max(oh, ow) |
|
pad_l = (target_length - ow) // 2 |
|
pad_r = (target_length - ow) - pad_l |
|
pad_t = (target_length - oh) // 2 |
|
pad_b = (target_length - oh) - pad_t |
|
output = F.pad(output, (pad_l, pad_r, pad_t, pad_b), value=0, mode="constant") |
|
else: |
|
crop_size = min(oh, ow) |
|
x = (ow-crop_size) // 2 |
|
y = (oh-crop_size) // 2 |
|
if "top" in crop_position: |
|
y = 0 |
|
elif "bottom" in crop_position: |
|
y = oh-crop_size |
|
elif "left" in crop_position: |
|
x = 0 |
|
elif "right" in crop_position: |
|
x = ow-crop_size |
|
|
|
x2 = x+crop_size |
|
y2 = y+crop_size |
|
|
|
|
|
output = output[:, :, y:y2, x:x2] |
|
|
|
|
|
imgs = [] |
|
for i in range(output.shape[0]): |
|
img = TT.ToPILImage()(output[i]) |
|
img = img.resize(size, resample=Image.Resampling[interpolation]) |
|
imgs.append(TT.ToTensor()(img)) |
|
output = torch.stack(imgs, dim=0) |
|
imgs = None |
|
|
|
if sharpening > 0: |
|
output = contrast_adaptive_sharpening(output, sharpening) |
|
|
|
if padding > 0: |
|
output = F.pad(output, (padding, padding, padding, padding), value=255, mode="constant") |
|
|
|
output = output.permute([0,2,3,1]) |
|
|
|
return output |
|
|
|
class PrepImageForInsightFace: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return {"required": { |
|
"image": ("IMAGE",), |
|
"crop_position": (["center", "top", "bottom", "left", "right"],), |
|
"sharpening": ("FLOAT", {"default": 0.0, "min": 0, "max": 1, "step": 0.05}), |
|
"pad_around": ("BOOLEAN", { "default": True }), |
|
}, |
|
} |
|
|
|
RETURN_TYPES = ("IMAGE",) |
|
FUNCTION = "prep_image" |
|
|
|
CATEGORY = "ipadapter" |
|
|
|
def prep_image(self, image, crop_position, sharpening=0.0, pad_around=True): |
|
if pad_around: |
|
padding = 30 |
|
size = (580, 580) |
|
else: |
|
padding = 0 |
|
size = (640, 640) |
|
output = prepImage(image, "LANCZOS", crop_position, size, sharpening, padding) |
|
|
|
return (output, ) |
|
|
|
class PrepImageForClipVision: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return {"required": { |
|
"image": ("IMAGE",), |
|
"interpolation": (["LANCZOS", "BICUBIC", "HAMMING", "BILINEAR", "BOX", "NEAREST"],), |
|
"crop_position": (["top", "bottom", "left", "right", "center", "pad"],), |
|
"sharpening": ("FLOAT", {"default": 0.0, "min": 0, "max": 1, "step": 0.05}), |
|
}, |
|
} |
|
|
|
RETURN_TYPES = ("IMAGE",) |
|
FUNCTION = "prep_image" |
|
|
|
CATEGORY = "ipadapter" |
|
|
|
def prep_image(self, image, interpolation="LANCZOS", crop_position="center", sharpening=0.0): |
|
size = (224, 224) |
|
output = prepImage(image, interpolation, crop_position, size, sharpening, 0) |
|
return (output, ) |
|
|
|
class IPAdapterEncoder: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return {"required": { |
|
"clip_vision": ("CLIP_VISION",), |
|
"image_1": ("IMAGE",), |
|
"ipadapter_plus": ("BOOLEAN", { "default": False }), |
|
"noise": ("FLOAT", { "default": 0.0, "min": 0.0, "max": 1.0, "step": 0.01 }), |
|
"weight_1": ("FLOAT", { "default": 1.0, "min": 0, "max": 1.0, "step": 0.01 }), |
|
}, |
|
"optional": { |
|
"image_2": ("IMAGE",), |
|
"image_3": ("IMAGE",), |
|
"image_4": ("IMAGE",), |
|
"weight_2": ("FLOAT", { "default": 1.0, "min": 0, "max": 1.0, "step": 0.01 }), |
|
"weight_3": ("FLOAT", { "default": 1.0, "min": 0, "max": 1.0, "step": 0.01 }), |
|
"weight_4": ("FLOAT", { "default": 1.0, "min": 0, "max": 1.0, "step": 0.01 }), |
|
} |
|
} |
|
|
|
RETURN_TYPES = ("EMBEDS",) |
|
FUNCTION = "preprocess" |
|
CATEGORY = "ipadapter" |
|
|
|
def preprocess(self, clip_vision, image_1, ipadapter_plus, noise, weight_1, image_2=None, image_3=None, image_4=None, weight_2=1.0, weight_3=1.0, weight_4=1.0): |
|
weight_1 *= (0.1 + (weight_1 - 0.1)) |
|
weight_2 *= (0.1 + (weight_2 - 0.1)) |
|
weight_3 *= (0.1 + (weight_3 - 0.1)) |
|
weight_4 *= (0.1 + (weight_4 - 0.1)) |
|
|
|
image = image_1 |
|
weight = [weight_1]*image_1.shape[0] |
|
|
|
if image_2 is not None: |
|
if image_1.shape[1:] != image_2.shape[1:]: |
|
image_2 = ldm_patched.modules.utils.common_upscale(image_2.movedim(-1,1), image.shape[2], image.shape[1], "bilinear", "center").movedim(1,-1) |
|
image = torch.cat((image, image_2), dim=0) |
|
weight += [weight_2]*image_2.shape[0] |
|
if image_3 is not None: |
|
if image.shape[1:] != image_3.shape[1:]: |
|
image_3 = ldm_patched.modules.utils.common_upscale(image_3.movedim(-1,1), image.shape[2], image.shape[1], "bilinear", "center").movedim(1,-1) |
|
image = torch.cat((image, image_3), dim=0) |
|
weight += [weight_3]*image_3.shape[0] |
|
if image_4 is not None: |
|
if image.shape[1:] != image_4.shape[1:]: |
|
image_4 = ldm_patched.modules.utils.common_upscale(image_4.movedim(-1,1), image.shape[2], image.shape[1], "bilinear", "center").movedim(1,-1) |
|
image = torch.cat((image, image_4), dim=0) |
|
weight += [weight_4]*image_4.shape[0] |
|
|
|
clip_embed = clip_vision.encode_image(image) |
|
neg_image = image_add_noise(image, noise) if noise > 0 else None |
|
|
|
if ipadapter_plus: |
|
clip_embed = clip_embed.penultimate_hidden_states |
|
if noise > 0: |
|
clip_embed_zeroed = clip_vision.encode_image(neg_image).penultimate_hidden_states |
|
else: |
|
clip_embed_zeroed = zeroed_hidden_states(clip_vision, image.shape[0]) |
|
else: |
|
clip_embed = clip_embed.image_embeds |
|
if noise > 0: |
|
clip_embed_zeroed = clip_vision.encode_image(neg_image).image_embeds |
|
else: |
|
clip_embed_zeroed = torch.zeros_like(clip_embed) |
|
|
|
if any(e != 1.0 for e in weight): |
|
weight = torch.tensor(weight).unsqueeze(-1) if not ipadapter_plus else torch.tensor(weight).unsqueeze(-1).unsqueeze(-1) |
|
clip_embed = clip_embed * weight |
|
|
|
output = torch.stack((clip_embed, clip_embed_zeroed)) |
|
|
|
return( output, ) |
|
|
|
class IPAdapterApplyEncoded(IPAdapterApply): |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return { |
|
"required": { |
|
"ipadapter": ("IPADAPTER", ), |
|
"embeds": ("EMBEDS",), |
|
"model": ("MODEL", ), |
|
"weight": ("FLOAT", { "default": 1.0, "min": -1, "max": 3, "step": 0.05 }), |
|
"weight_type": (["original", "linear", "channel penalty"], ), |
|
"start_at": ("FLOAT", { "default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001 }), |
|
"end_at": ("FLOAT", { "default": 1.0, "min": 0.0, "max": 1.0, "step": 0.001 }), |
|
"unfold_batch": ("BOOLEAN", { "default": False }), |
|
}, |
|
"optional": { |
|
"attn_mask": ("MASK",), |
|
} |
|
} |
|
|
|
class IPAdapterSaveEmbeds: |
|
def __init__(self): |
|
self.output_dir = folder_paths.get_output_directory() |
|
|
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return {"required": { |
|
"embeds": ("EMBEDS",), |
|
"filename_prefix": ("STRING", {"default": "embeds/IPAdapter"}) |
|
}, |
|
} |
|
|
|
RETURN_TYPES = () |
|
FUNCTION = "save" |
|
OUTPUT_NODE = True |
|
CATEGORY = "ipadapter" |
|
|
|
def save(self, embeds, filename_prefix): |
|
full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(filename_prefix, self.output_dir) |
|
file = f"{filename}_{counter:05}_.ipadpt" |
|
file = os.path.join(full_output_folder, file) |
|
|
|
torch.save(embeds, file) |
|
return (None, ) |
|
|
|
|
|
class IPAdapterLoadEmbeds: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
input_dir = folder_paths.get_input_directory() |
|
files = [os.path.relpath(os.path.join(root, file), input_dir) for root, dirs, files in os.walk(input_dir) for file in files if file.endswith('.ipadpt')] |
|
return {"required": {"embeds": [sorted(files), ]}, } |
|
|
|
RETURN_TYPES = ("EMBEDS", ) |
|
FUNCTION = "load" |
|
CATEGORY = "ipadapter" |
|
|
|
def load(self, embeds): |
|
path = folder_paths.get_annotated_filepath(embeds) |
|
output = torch.load(path).cpu() |
|
|
|
return (output, ) |
|
|
|
|
|
class IPAdapterBatchEmbeds: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return {"required": { |
|
"embed1": ("EMBEDS",), |
|
"embed2": ("EMBEDS",), |
|
}} |
|
|
|
RETURN_TYPES = ("EMBEDS",) |
|
FUNCTION = "batch" |
|
CATEGORY = "ipadapter" |
|
|
|
def batch(self, embed1, embed2): |
|
return (torch.cat((embed1, embed2), dim=1), ) |
|
|
|
NODE_CLASS_MAPPINGS = { |
|
"IPAdapterModelLoader": IPAdapterModelLoader, |
|
"IPAdapterApply": IPAdapterApply, |
|
"IPAdapterApplyFaceID": IPAdapterApplyFaceID, |
|
"IPAdapterApplyEncoded": IPAdapterApplyEncoded, |
|
"PrepImageForClipVision": PrepImageForClipVision, |
|
"IPAdapterEncoder": IPAdapterEncoder, |
|
"IPAdapterSaveEmbeds": IPAdapterSaveEmbeds, |
|
"IPAdapterLoadEmbeds": IPAdapterLoadEmbeds, |
|
"IPAdapterBatchEmbeds": IPAdapterBatchEmbeds, |
|
"InsightFaceLoader": InsightFaceLoader, |
|
"PrepImageForInsightFace": PrepImageForInsightFace, |
|
} |
|
|
|
NODE_DISPLAY_NAME_MAPPINGS = { |
|
"IPAdapterModelLoader": "Load IPAdapter Model", |
|
"IPAdapterApply": "Apply IPAdapter", |
|
"IPAdapterApplyFaceID": "Apply IPAdapter FaceID", |
|
"IPAdapterApplyEncoded": "Apply IPAdapter from Encoded", |
|
"PrepImageForClipVision": "Prepare Image For Clip Vision", |
|
"IPAdapterEncoder": "Encode IPAdapter Image", |
|
"IPAdapterSaveEmbeds": "Save IPAdapter Embeds", |
|
"IPAdapterLoadEmbeds": "Load IPAdapter Embeds", |
|
"IPAdapterBatchEmbeds": "IPAdapter Batch Embeds", |
|
"InsightFaceLoader": "Load InsightFace", |
|
"PrepImageForInsightFace": "Prepare Image For InsightFace", |
|
} |