|
import os |
|
from typing import Dict, Optional, Tuple, List, Union |
|
|
|
import cv2 |
|
import torch |
|
|
|
import modules.scripts as scripts |
|
from modules import shared, script_callbacks, masking, images |
|
from modules.ui_components import InputAccordion |
|
from modules.api.api import decode_base64_to_image |
|
import gradio as gr |
|
|
|
from lib_controlnet import global_state, external_code |
|
from lib_controlnet.external_code import ControlNetUnit |
|
from lib_controlnet.utils import align_dim_latent, set_numpy_seed, crop_and_resize_image, \ |
|
prepare_mask, judge_image_type |
|
from lib_controlnet.controlnet_ui.controlnet_ui_group import ControlNetUiGroup |
|
from lib_controlnet.controlnet_ui.photopea import Photopea |
|
from lib_controlnet.logging import logger |
|
from modules.processing import StableDiffusionProcessingImg2Img, StableDiffusionProcessingTxt2Img, \ |
|
StableDiffusionProcessing |
|
from lib_controlnet.infotext import Infotext |
|
from modules_forge.forge_util import HWC3, numpy_to_pytorch |
|
from lib_controlnet.enums import HiResFixOption |
|
from lib_controlnet.api import controlnet_api |
|
|
|
import numpy as np |
|
import functools |
|
|
|
from PIL import Image |
|
from modules_forge.shared import try_load_supported_control_model |
|
from modules_forge.supported_controlnet import ControlModelPatcher |
|
|
|
|
|
import tempfile |
|
|
|
gradio_tempfile_path = os.path.join(tempfile.gettempdir(), 'gradio') |
|
os.makedirs(gradio_tempfile_path, exist_ok=True) |
|
|
|
global_state.update_controlnet_filenames() |
|
|
|
|
|
@functools.lru_cache(maxsize=shared.opts.data.get("control_net_model_cache_size", 5)) |
|
def cached_controlnet_loader(filename): |
|
return try_load_supported_control_model(filename) |
|
|
|
|
|
class ControlNetCachedParameters: |
|
def __init__(self): |
|
self.preprocessor = None |
|
self.model = None |
|
self.control_cond = None |
|
self.control_cond_for_hr_fix = None |
|
self.control_mask = None |
|
self.control_mask_for_hr_fix = None |
|
|
|
|
|
class ControlNetForForgeOfficial(scripts.Script): |
|
sorting_priority = 10 |
|
|
|
def title(self): |
|
return "ControlNet" |
|
|
|
def show(self, is_img2img): |
|
return scripts.AlwaysVisible |
|
|
|
def ui(self, is_img2img): |
|
infotext = Infotext() |
|
ui_groups = [] |
|
controls = [] |
|
max_models = shared.opts.data.get("control_net_unit_count", 3) |
|
gen_type = "img2img" if is_img2img else "txt2img" |
|
elem_id_tabname = gen_type + "_controlnet" |
|
default_unit = ControlNetUnit(enabled=False, module="None", model="None") |
|
with gr.Group(elem_id=elem_id_tabname): |
|
with gr.Accordion(f"ControlNet Integrated", open=False, elem_id="controlnet", |
|
elem_classes=["controlnet"]): |
|
photopea = ( |
|
Photopea() |
|
if not shared.opts.data.get("controlnet_disable_photopea_edit", False) |
|
else None |
|
) |
|
with gr.Row(elem_id=elem_id_tabname + "_accordions", elem_classes="accordions"): |
|
for i in range(max_models): |
|
with InputAccordion( |
|
value=False, |
|
label=f"ControlNet Unit {i}", |
|
elem_classes=["cnet-unit-enabled-accordion"], |
|
): |
|
group = ControlNetUiGroup(is_img2img, default_unit, photopea) |
|
ui_groups.append(group) |
|
controls.append(group.render(f"ControlNet-{i}", elem_id_tabname)) |
|
|
|
for i, ui_group in enumerate(ui_groups): |
|
infotext.register_unit(i, ui_group) |
|
if shared.opts.data.get("control_net_sync_field_args", True): |
|
self.infotext_fields = infotext.infotext_fields |
|
self.paste_field_names = infotext.paste_field_names |
|
return tuple(controls) |
|
|
|
def get_enabled_units(self, units): |
|
|
|
units = [ |
|
ControlNetUnit.from_dict(unit) if isinstance(unit, dict) else unit |
|
for unit in units |
|
] |
|
assert all(isinstance(unit, ControlNetUnit) for unit in units) |
|
enabled_units = [x for x in units if x.enabled] |
|
return enabled_units |
|
|
|
@staticmethod |
|
def try_crop_image_with_a1111_mask( |
|
p: StableDiffusionProcessing, |
|
unit: ControlNetUnit, |
|
input_image: np.ndarray, |
|
resize_mode: external_code.ResizeMode, |
|
preprocessor |
|
) -> np.ndarray: |
|
a1111_mask_image: Optional[Image.Image] = getattr(p, "image_mask", None) |
|
is_only_masked_inpaint = ( |
|
issubclass(type(p), StableDiffusionProcessingImg2Img) and |
|
p.inpaint_full_res and |
|
a1111_mask_image is not None |
|
) |
|
if ( |
|
preprocessor.corp_image_with_a1111_mask_when_in_img2img_inpaint_tab |
|
and is_only_masked_inpaint |
|
): |
|
logger.info("Crop input image based on A1111 mask.") |
|
input_image = [input_image[:, :, i] for i in range(input_image.shape[2])] |
|
input_image = [Image.fromarray(x) for x in input_image] |
|
|
|
mask = prepare_mask(a1111_mask_image, p) |
|
|
|
crop_region = masking.get_crop_region(np.array(mask), p.inpaint_full_res_padding) |
|
crop_region = masking.expand_crop_region(crop_region, p.width, p.height, mask.width, mask.height) |
|
|
|
input_image = [ |
|
images.resize_image(resize_mode.int_value(), i, mask.width, mask.height) |
|
for i in input_image |
|
] |
|
|
|
input_image = [x.crop(crop_region) for x in input_image] |
|
input_image = [ |
|
images.resize_image(external_code.ResizeMode.OUTER_FIT.int_value(), x, p.width, p.height) |
|
for x in input_image |
|
] |
|
|
|
input_image = [np.asarray(x)[:, :, 0] for x in input_image] |
|
input_image = np.stack(input_image, axis=2) |
|
return input_image |
|
|
|
def get_input_data(self, p, unit, preprocessor, h, w): |
|
logger.info(f'ControlNet Input Mode: {unit.input_mode}') |
|
image_list = [] |
|
resize_mode = external_code.resize_mode_from_value(unit.resize_mode) |
|
|
|
if unit.input_mode == external_code.InputMode.MERGE: |
|
for idx, item in enumerate(unit.batch_input_gallery): |
|
img_path = item['name'] |
|
logger.info(f'Try to read image: {img_path}') |
|
img = np.ascontiguousarray(cv2.imread(img_path)[:, :, ::-1]).copy() |
|
mask = None |
|
if len(unit.batch_mask_gallery) > 0: |
|
if len(unit.batch_mask_gallery) >= len(unit.batch_input_gallery): |
|
mask_path = unit.batch_mask_gallery[idx]['name'] |
|
else: |
|
mask_path = unit.batch_mask_gallery[0]['name'] |
|
mask = np.ascontiguousarray(cv2.imread(mask_path)[:, :, ::-1]).copy() |
|
if img is not None: |
|
image_list.append([img, mask]) |
|
elif unit.input_mode == external_code.InputMode.BATCH: |
|
image_list = [] |
|
image_extensions = ['.jpg', '.jpeg', '.png', '.bmp'] |
|
batch_image_files = shared.listfiles(unit.batch_image_dir) |
|
for batch_modifier in getattr(unit, 'batch_modifiers', []): |
|
batch_image_files = batch_modifier(batch_image_files, p) |
|
for idx, filename in enumerate(batch_image_files): |
|
if any(filename.lower().endswith(ext) for ext in image_extensions): |
|
img_path = os.path.join(unit.batch_image_dir, filename) |
|
logger.info(f'Try to read image: {img_path}') |
|
img = np.ascontiguousarray(cv2.imread(img_path)[:, :, ::-1]).copy() |
|
mask = None |
|
if unit.batch_mask_dir: |
|
batch_mask_files = shared.listfiles(unit.batch_mask_dir) |
|
if len(batch_mask_files) >= len(batch_image_files): |
|
mask_path = batch_mask_files[idx] |
|
else: |
|
mask_path = batch_mask_files[0] |
|
mask_path = os.path.join(unit.batch_mask_dir, mask_path) |
|
mask = np.ascontiguousarray(cv2.imread(mask_path)[:, :, ::-1]).copy() |
|
if img is not None: |
|
image_list.append([img, mask]) |
|
else: |
|
a1111_i2i_image = getattr(p, "init_images", [None])[0] |
|
a1111_i2i_mask = getattr(p, "image_mask", None) |
|
|
|
using_a1111_data = False |
|
|
|
if unit.use_preview_as_input and unit.generated_image is not None: |
|
image = unit.generated_image |
|
elif unit.image is None: |
|
resize_mode = external_code.resize_mode_from_value(p.resize_mode) |
|
image = HWC3(np.asarray(a1111_i2i_image)) |
|
using_a1111_data = True |
|
elif (unit.image['image'] < 5).all() and (unit.image['mask'] > 5).any(): |
|
image = unit.image['mask'] |
|
else: |
|
image = unit.image['image'] |
|
|
|
if not isinstance(image, np.ndarray): |
|
raise ValueError("controlnet is enabled but no input image is given") |
|
|
|
image = HWC3(image) |
|
|
|
if using_a1111_data: |
|
mask = HWC3(np.asarray(a1111_i2i_mask)) if a1111_i2i_mask is not None else None |
|
elif unit.mask_image is not None and (unit.mask_image['image'] > 5).any(): |
|
mask = unit.mask_image['image'] |
|
elif unit.mask_image is not None and (unit.mask_image['mask'] > 5).any(): |
|
mask = unit.mask_image['mask'] |
|
elif unit.image is not None and (unit.image['mask'] > 5).any(): |
|
mask = unit.image['mask'] |
|
else: |
|
mask = None |
|
|
|
image = self.try_crop_image_with_a1111_mask(p, unit, image, resize_mode, preprocessor) |
|
|
|
if mask is not None: |
|
mask = cv2.resize(HWC3(mask), (image.shape[1], image.shape[0]), interpolation=cv2.INTER_NEAREST) |
|
mask = self.try_crop_image_with_a1111_mask(p, unit, mask, resize_mode, preprocessor) |
|
|
|
image_list = [[image, mask]] |
|
|
|
if resize_mode == external_code.ResizeMode.OUTER_FIT and preprocessor.expand_mask_when_resize_and_fill: |
|
new_image_list = [] |
|
for input_image, input_mask in image_list: |
|
if input_mask is None: |
|
input_mask = np.zeros_like(input_image) |
|
input_mask = crop_and_resize_image( |
|
input_mask, |
|
external_code.ResizeMode.OUTER_FIT, h, w, |
|
fill_border_with_255=True, |
|
) |
|
input_image = crop_and_resize_image( |
|
input_image, |
|
external_code.ResizeMode.OUTER_FIT, h, w, |
|
fill_border_with_255=False, |
|
) |
|
new_image_list.append((input_image, input_mask)) |
|
image_list = new_image_list |
|
|
|
return image_list, resize_mode |
|
|
|
@staticmethod |
|
def get_target_dimensions(p: StableDiffusionProcessing) -> Tuple[int, int, int, int]: |
|
"""Returns (h, w, hr_h, hr_w).""" |
|
h = align_dim_latent(p.height) |
|
w = align_dim_latent(p.width) |
|
|
|
high_res_fix = ( |
|
isinstance(p, StableDiffusionProcessingTxt2Img) |
|
and getattr(p, 'enable_hr', False) |
|
) |
|
if high_res_fix: |
|
if p.hr_resize_x == 0 and p.hr_resize_y == 0: |
|
hr_y = int(p.height * p.hr_scale) |
|
hr_x = int(p.width * p.hr_scale) |
|
else: |
|
hr_y, hr_x = p.hr_resize_y, p.hr_resize_x |
|
hr_y = align_dim_latent(hr_y) |
|
hr_x = align_dim_latent(hr_x) |
|
else: |
|
hr_y = h |
|
hr_x = w |
|
|
|
return h, w, hr_y, hr_x |
|
|
|
@torch.no_grad() |
|
def process_unit_after_click_generate(self, |
|
p: StableDiffusionProcessing, |
|
unit: ControlNetUnit, |
|
params: ControlNetCachedParameters, |
|
*args, **kwargs): |
|
|
|
h, w, hr_y, hr_x = self.get_target_dimensions(p) |
|
|
|
has_high_res_fix = ( |
|
isinstance(p, StableDiffusionProcessingTxt2Img) |
|
and getattr(p, 'enable_hr', False) |
|
) |
|
|
|
if unit.use_preview_as_input: |
|
unit.module = 'None' |
|
|
|
preprocessor = global_state.get_preprocessor(unit.module) |
|
|
|
input_list, resize_mode = self.get_input_data(p, unit, preprocessor, h, w) |
|
preprocessor_outputs = [] |
|
control_masks = [] |
|
preprocessor_output_is_image = False |
|
preprocessor_output = None |
|
|
|
def optional_tqdm(iterable, use_tqdm): |
|
from tqdm import tqdm |
|
return tqdm(iterable) if use_tqdm else iterable |
|
|
|
for input_image, input_mask in optional_tqdm(input_list, len(input_list) > 1): |
|
if unit.pixel_perfect: |
|
unit.processor_res = external_code.pixel_perfect_resolution( |
|
input_image, |
|
target_H=h, |
|
target_W=w, |
|
resize_mode=resize_mode, |
|
) |
|
|
|
seed = set_numpy_seed(p) |
|
logger.debug(f"Use numpy seed {seed}.") |
|
logger.info(f"Using preprocessor: {unit.module}") |
|
logger.info(f'preprocessor resolution = {unit.processor_res}') |
|
|
|
preprocessor_output = preprocessor( |
|
input_image=input_image, |
|
input_mask=input_mask, |
|
resolution=unit.processor_res, |
|
slider_1=unit.threshold_a, |
|
slider_2=unit.threshold_b, |
|
) |
|
|
|
preprocessor_outputs.append(preprocessor_output) |
|
|
|
preprocessor_output_is_image = judge_image_type(preprocessor_output) |
|
|
|
if input_mask is not None: |
|
control_masks.append(input_mask) |
|
|
|
if len(input_list) > 1 and not preprocessor_output_is_image: |
|
logger.info('Batch wise input only support controlnet, control-lora, and t2i adapters!') |
|
break |
|
|
|
if has_high_res_fix: |
|
hr_option = HiResFixOption.from_value(unit.hr_option) |
|
else: |
|
hr_option = HiResFixOption.BOTH |
|
|
|
alignment_indices = [i % len(preprocessor_outputs) for i in range(p.batch_size)] |
|
def attach_extra_result_image(img: np.ndarray, is_high_res: bool = False): |
|
if ( |
|
(is_high_res and hr_option.high_res_enabled) or |
|
(not is_high_res and hr_option.low_res_enabled) |
|
) and unit.save_detected_map: |
|
p.extra_result_images.append(img) |
|
|
|
if preprocessor_output_is_image: |
|
params.control_cond = [] |
|
params.control_cond_for_hr_fix = [] |
|
|
|
for preprocessor_output in preprocessor_outputs: |
|
control_cond = crop_and_resize_image(preprocessor_output, resize_mode, h, w) |
|
attach_extra_result_image(external_code.visualize_inpaint_mask(control_cond)) |
|
params.control_cond.append(numpy_to_pytorch(control_cond).movedim(-1, 1)) |
|
|
|
params.control_cond = torch.cat(params.control_cond, dim=0)[alignment_indices].contiguous() |
|
|
|
if has_high_res_fix: |
|
for preprocessor_output in preprocessor_outputs: |
|
control_cond_for_hr_fix = crop_and_resize_image(preprocessor_output, resize_mode, hr_y, hr_x) |
|
attach_extra_result_image(external_code.visualize_inpaint_mask(control_cond_for_hr_fix), is_high_res=True) |
|
params.control_cond_for_hr_fix.append(numpy_to_pytorch(control_cond_for_hr_fix).movedim(-1, 1)) |
|
params.control_cond_for_hr_fix = torch.cat(params.control_cond_for_hr_fix, dim=0)[alignment_indices].contiguous() |
|
else: |
|
params.control_cond_for_hr_fix = params.control_cond |
|
else: |
|
params.control_cond = preprocessor_output |
|
params.control_cond_for_hr_fix = preprocessor_output |
|
attach_extra_result_image(input_image) |
|
|
|
if len(control_masks) > 0: |
|
params.control_mask = [] |
|
params.control_mask_for_hr_fix = [] |
|
|
|
for input_mask in control_masks: |
|
fill_border = preprocessor.fill_mask_with_one_when_resize_and_fill |
|
control_mask = crop_and_resize_image(input_mask, resize_mode, h, w, fill_border) |
|
attach_extra_result_image(control_mask) |
|
control_mask = numpy_to_pytorch(control_mask).movedim(-1, 1)[:, :1] |
|
params.control_mask.append(control_mask) |
|
|
|
if has_high_res_fix: |
|
control_mask_for_hr_fix = crop_and_resize_image(input_mask, resize_mode, hr_y, hr_x, fill_border) |
|
attach_extra_result_image(control_mask_for_hr_fix, is_high_res=True) |
|
control_mask_for_hr_fix = numpy_to_pytorch(control_mask_for_hr_fix).movedim(-1, 1)[:, :1] |
|
params.control_mask_for_hr_fix.append(control_mask_for_hr_fix) |
|
|
|
params.control_mask = torch.cat(params.control_mask, dim=0)[alignment_indices].contiguous() |
|
if has_high_res_fix: |
|
params.control_mask_for_hr_fix = torch.cat(params.control_mask_for_hr_fix, dim=0)[alignment_indices].contiguous() |
|
else: |
|
params.control_mask_for_hr_fix = params.control_mask |
|
|
|
if preprocessor.do_not_need_model: |
|
model_filename = 'Not Needed' |
|
params.model = ControlModelPatcher() |
|
else: |
|
assert unit.model != 'None', 'You have not selected any control model!' |
|
model_filename = global_state.get_controlnet_filename(unit.model) |
|
params.model = cached_controlnet_loader(model_filename) |
|
assert params.model is not None, logger.error(f"Recognizing Control Model failed: {model_filename}") |
|
|
|
params.preprocessor = preprocessor |
|
|
|
params.preprocessor.process_after_running_preprocessors(process=p, params=params, **kwargs) |
|
params.model.process_after_running_preprocessors(process=p, params=params, **kwargs) |
|
|
|
logger.info(f"Current ControlNet {type(params.model).__name__}: {model_filename}") |
|
return |
|
|
|
@torch.no_grad() |
|
def process_unit_before_every_sampling(self, |
|
p: StableDiffusionProcessing, |
|
unit: ControlNetUnit, |
|
params: ControlNetCachedParameters, |
|
*args, **kwargs): |
|
|
|
is_hr_pass = getattr(p, 'is_hr_pass', False) |
|
|
|
has_high_res_fix = ( |
|
isinstance(p, StableDiffusionProcessingTxt2Img) |
|
and getattr(p, 'enable_hr', False) |
|
) |
|
|
|
if has_high_res_fix: |
|
hr_option = HiResFixOption.from_value(unit.hr_option) |
|
else: |
|
hr_option = HiResFixOption.BOTH |
|
|
|
if has_high_res_fix and is_hr_pass and (not hr_option.high_res_enabled): |
|
logger.info(f"ControlNet Skipped High-res pass.") |
|
return |
|
|
|
if has_high_res_fix and (not is_hr_pass) and (not hr_option.low_res_enabled): |
|
logger.info(f"ControlNet Skipped Low-res pass.") |
|
return |
|
|
|
if is_hr_pass: |
|
cond = params.control_cond_for_hr_fix |
|
mask = params.control_mask_for_hr_fix |
|
else: |
|
cond = params.control_cond |
|
mask = params.control_mask |
|
|
|
kwargs.update(dict( |
|
unit=unit, |
|
params=params, |
|
cond_original=cond.clone() if isinstance(cond, torch.Tensor) else cond, |
|
mask_original=mask.clone() if isinstance(mask, torch.Tensor) else mask, |
|
)) |
|
|
|
params.model.strength = float(unit.weight) |
|
params.model.start_percent = float(unit.guidance_start) |
|
params.model.end_percent = float(unit.guidance_end) |
|
params.model.positive_advanced_weighting = None |
|
params.model.negative_advanced_weighting = None |
|
params.model.advanced_frame_weighting = None |
|
params.model.advanced_sigma_weighting = None |
|
|
|
soft_weighting = { |
|
'input': [0.09941396206337118, 0.12050177219802567, 0.14606275417942507, 0.17704576264172736, |
|
0.214600924414215, |
|
0.26012233262329093, 0.3152997971191405, 0.3821815722656249, 0.4632503906249999, 0.561515625, |
|
0.6806249999999999, 0.825], |
|
'middle': [0.561515625] if p.sd_model.is_sdxl else [1.0], |
|
'output': [0.09941396206337118, 0.12050177219802567, 0.14606275417942507, 0.17704576264172736, |
|
0.214600924414215, |
|
0.26012233262329093, 0.3152997971191405, 0.3821815722656249, 0.4632503906249999, 0.561515625, |
|
0.6806249999999999, 0.825] |
|
} |
|
|
|
zero_weighting = { |
|
'input': [0.0] * 12, |
|
'middle': [0.0], |
|
'output': [0.0] * 12 |
|
} |
|
|
|
if unit.control_mode == external_code.ControlMode.CONTROL.value: |
|
params.model.positive_advanced_weighting = soft_weighting.copy() |
|
params.model.negative_advanced_weighting = zero_weighting.copy() |
|
|
|
if unit.control_mode == external_code.ControlMode.PROMPT.value: |
|
params.model.positive_advanced_weighting = soft_weighting.copy() |
|
params.model.negative_advanced_weighting = soft_weighting.copy() |
|
|
|
if is_hr_pass and params.preprocessor.use_soft_projection_in_hr_fix: |
|
params.model.positive_advanced_weighting = soft_weighting.copy() |
|
params.model.negative_advanced_weighting = soft_weighting.copy() |
|
|
|
cond, mask = params.preprocessor.process_before_every_sampling(p, cond, mask, *args, **kwargs) |
|
|
|
params.model.advanced_mask_weighting = mask |
|
|
|
params.model.process_before_every_sampling(p, cond, mask, *args, **kwargs) |
|
|
|
logger.info(f"ControlNet Method {params.preprocessor.name} patched.") |
|
return |
|
|
|
@staticmethod |
|
def bound_check_params(unit: ControlNetUnit) -> None: |
|
""" |
|
Checks and corrects negative parameters in ControlNetUnit 'unit'. |
|
Parameters 'processor_res', 'threshold_a', 'threshold_b' are reset to |
|
their default values if negative. |
|
|
|
Args: |
|
unit (ControlNetUnit): The ControlNetUnit instance to check. |
|
""" |
|
preprocessor = global_state.get_preprocessor(unit.module) |
|
|
|
if unit.processor_res < 0: |
|
unit.processor_res = int(preprocessor.slider_resolution.gradio_update_kwargs.get('value', 512)) |
|
|
|
if unit.threshold_a < 0: |
|
unit.threshold_a = int(preprocessor.slider_1.gradio_update_kwargs.get('value', 1.0)) |
|
|
|
if unit.threshold_b < 0: |
|
unit.threshold_b = int(preprocessor.slider_2.gradio_update_kwargs.get('value', 1.0)) |
|
|
|
return |
|
|
|
@torch.no_grad() |
|
def process_unit_after_every_sampling(self, |
|
p: StableDiffusionProcessing, |
|
unit: ControlNetUnit, |
|
params: ControlNetCachedParameters, |
|
*args, **kwargs): |
|
|
|
params.preprocessor.process_after_every_sampling(p, params, *args, **kwargs) |
|
params.model.process_after_every_sampling(p, params, *args, **kwargs) |
|
return |
|
|
|
@torch.no_grad() |
|
def process(self, p, *args, **kwargs): |
|
self.current_params = {} |
|
enabled_units = self.get_enabled_units(args) |
|
Infotext.write_infotext(enabled_units, p) |
|
for i, unit in enumerate(enabled_units): |
|
self.bound_check_params(unit) |
|
params = ControlNetCachedParameters() |
|
self.process_unit_after_click_generate(p, unit, params, *args, **kwargs) |
|
self.current_params[i] = params |
|
return |
|
|
|
@torch.no_grad() |
|
def process_before_every_sampling(self, p, *args, **kwargs): |
|
for i, unit in enumerate(self.get_enabled_units(args)): |
|
self.process_unit_before_every_sampling(p, unit, self.current_params[i], *args, **kwargs) |
|
return |
|
|
|
@torch.no_grad() |
|
def postprocess_batch_list(self, p, pp, *args, **kwargs): |
|
for i, unit in enumerate(self.get_enabled_units(args)): |
|
self.process_unit_after_every_sampling(p, unit, self.current_params[i], pp, *args, **kwargs) |
|
return |
|
|
|
def postprocess(self, p, processed, *args): |
|
self.current_params = {} |
|
return |
|
|
|
|
|
def on_ui_settings(): |
|
section = ('control_net', "ControlNet") |
|
shared.opts.add_option("control_net_detectedmap_dir", shared.OptionInfo( |
|
"detected_maps", "Directory for detected maps auto saving", section=section)) |
|
shared.opts.add_option("control_net_models_path", shared.OptionInfo( |
|
"", "Extra path to scan for ControlNet models (e.g. training output directory)", section=section)) |
|
shared.opts.add_option("control_net_modules_path", shared.OptionInfo( |
|
"", |
|
"Path to directory containing annotator model directories (requires restart, overrides corresponding command line flag)", |
|
section=section)) |
|
shared.opts.add_option("control_net_unit_count", shared.OptionInfo( |
|
3, "Multi-ControlNet: ControlNet unit number (requires restart)", gr.Slider, |
|
{"minimum": 1, "maximum": 10, "step": 1}, section=section)) |
|
shared.opts.add_option("control_net_model_cache_size", shared.OptionInfo( |
|
5, "Model cache size (requires restart)", gr.Slider, {"minimum": 1, "maximum": 10, "step": 1}, section=section)) |
|
shared.opts.add_option("control_net_no_detectmap", shared.OptionInfo( |
|
False, "Do not append detectmap to output", gr.Checkbox, {"interactive": True}, section=section)) |
|
shared.opts.add_option("control_net_detectmap_autosaving", shared.OptionInfo( |
|
False, "Allow detectmap auto saving", gr.Checkbox, {"interactive": True}, section=section)) |
|
shared.opts.add_option("control_net_allow_script_control", shared.OptionInfo( |
|
False, "Allow other script to control this extension", gr.Checkbox, {"interactive": True}, section=section)) |
|
shared.opts.add_option("control_net_sync_field_args", shared.OptionInfo( |
|
True, "Paste ControlNet parameters in infotext", gr.Checkbox, {"interactive": True}, section=section)) |
|
shared.opts.add_option("controlnet_show_batch_images_in_ui", shared.OptionInfo( |
|
False, "Show batch images in gradio gallery output", gr.Checkbox, {"interactive": True}, section=section)) |
|
shared.opts.add_option("controlnet_increment_seed_during_batch", shared.OptionInfo( |
|
False, "Increment seed after each controlnet batch iteration", gr.Checkbox, {"interactive": True}, |
|
section=section)) |
|
shared.opts.add_option("controlnet_disable_openpose_edit", shared.OptionInfo( |
|
False, "Disable openpose edit", gr.Checkbox, {"interactive": True}, section=section)) |
|
shared.opts.add_option("controlnet_disable_photopea_edit", shared.OptionInfo( |
|
False, "Disable photopea edit", gr.Checkbox, {"interactive": True}, section=section)) |
|
shared.opts.add_option("controlnet_photopea_warning", shared.OptionInfo( |
|
True, "Photopea popup warning", gr.Checkbox, {"interactive": True}, section=section)) |
|
shared.opts.add_option("controlnet_input_thumbnail", shared.OptionInfo( |
|
True, "Input image thumbnail on unit header", gr.Checkbox, {"interactive": True}, section=section)) |
|
|
|
|
|
script_callbacks.on_ui_settings(on_ui_settings) |
|
script_callbacks.on_infotext_pasted(Infotext.on_infotext_pasted) |
|
script_callbacks.on_after_component(ControlNetUiGroup.on_after_component) |
|
script_callbacks.on_before_reload(ControlNetUiGroup.reset) |
|
script_callbacks.on_app_started(controlnet_api) |
|
|