File size: 6,338 Bytes
8d7ec14 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 |
# 1st edit by https://github.com/comfyanonymous/ComfyUI
# 2nd edit by Forge Official
import torch
import ldm_patched.modules.model_management
import contextlib
from modules_forge import stream
# https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/14855/files
stash = {}
@contextlib.contextmanager
def use_patched_ops(operations):
op_names = ['Linear', 'Conv2d', 'Conv3d', 'GroupNorm', 'LayerNorm']
backups = {op_name: getattr(torch.nn, op_name) for op_name in op_names}
try:
for op_name in op_names:
setattr(torch.nn, op_name, getattr(operations, op_name))
yield
finally:
for op_name in op_names:
setattr(torch.nn, op_name, backups[op_name])
return
def cast_bias_weight(s, input):
weight, bias, signal = None, None, None
non_blocking = ldm_patched.modules.model_management.device_supports_non_blocking(input.device)
if stream.using_stream:
with stream.stream_context()(stream.mover_stream):
if s.bias is not None:
bias = s.bias.to(device=input.device, dtype=input.dtype, non_blocking=non_blocking)
weight = s.weight.to(device=input.device, dtype=input.dtype, non_blocking=non_blocking)
signal = stream.mover_stream.record_event()
else:
if s.bias is not None:
bias = s.bias.to(device=input.device, dtype=input.dtype, non_blocking=non_blocking)
weight = s.weight.to(device=input.device, dtype=input.dtype, non_blocking=non_blocking)
return weight, bias, signal
@contextlib.contextmanager
def main_stream_worker(weight, bias, signal):
if not stream.using_stream or signal is None:
yield
return
with stream.stream_context()(stream.current_stream):
stream.current_stream.wait_event(signal)
yield
finished_signal = stream.current_stream.record_event()
stash[id(finished_signal)] = (weight, bias, finished_signal)
garbage = []
for k, (w, b, s) in stash.items():
if s.query():
garbage.append(k)
for k in garbage:
del stash[k]
return
def cleanup_cache():
if not stream.using_stream:
return
stream.current_stream.synchronize()
stream.mover_stream.synchronize()
stash.clear()
return
class disable_weight_init:
class Linear(torch.nn.Linear):
ldm_patched_cast_weights = False
def reset_parameters(self):
return None
def forward_ldm_patched_cast_weights(self, input):
weight, bias, signal = cast_bias_weight(self, input)
with main_stream_worker(weight, bias, signal):
return torch.nn.functional.linear(input, weight, bias)
def forward(self, *args, **kwargs):
if self.ldm_patched_cast_weights:
return self.forward_ldm_patched_cast_weights(*args, **kwargs)
else:
return super().forward(*args, **kwargs)
class Conv2d(torch.nn.Conv2d):
ldm_patched_cast_weights = False
def reset_parameters(self):
return None
def forward_ldm_patched_cast_weights(self, input):
weight, bias, signal = cast_bias_weight(self, input)
with main_stream_worker(weight, bias, signal):
return self._conv_forward(input, weight, bias)
def forward(self, *args, **kwargs):
if self.ldm_patched_cast_weights:
return self.forward_ldm_patched_cast_weights(*args, **kwargs)
else:
return super().forward(*args, **kwargs)
class Conv3d(torch.nn.Conv3d):
ldm_patched_cast_weights = False
def reset_parameters(self):
return None
def forward_ldm_patched_cast_weights(self, input):
weight, bias, signal = cast_bias_weight(self, input)
with main_stream_worker(weight, bias, signal):
return self._conv_forward(input, weight, bias)
def forward(self, *args, **kwargs):
if self.ldm_patched_cast_weights:
return self.forward_ldm_patched_cast_weights(*args, **kwargs)
else:
return super().forward(*args, **kwargs)
class GroupNorm(torch.nn.GroupNorm):
ldm_patched_cast_weights = False
def reset_parameters(self):
return None
def forward_ldm_patched_cast_weights(self, input):
weight, bias, signal = cast_bias_weight(self, input)
with main_stream_worker(weight, bias, signal):
return torch.nn.functional.group_norm(input, self.num_groups, weight, bias, self.eps)
def forward(self, *args, **kwargs):
if self.ldm_patched_cast_weights:
return self.forward_ldm_patched_cast_weights(*args, **kwargs)
else:
return super().forward(*args, **kwargs)
class LayerNorm(torch.nn.LayerNorm):
ldm_patched_cast_weights = False
def reset_parameters(self):
return None
def forward_ldm_patched_cast_weights(self, input):
weight, bias, signal = cast_bias_weight(self, input)
with main_stream_worker(weight, bias, signal):
return torch.nn.functional.layer_norm(input, self.normalized_shape, weight, bias, self.eps)
def forward(self, *args, **kwargs):
if self.ldm_patched_cast_weights:
return self.forward_ldm_patched_cast_weights(*args, **kwargs)
else:
return super().forward(*args, **kwargs)
@classmethod
def conv_nd(s, dims, *args, **kwargs):
if dims == 2:
return s.Conv2d(*args, **kwargs)
elif dims == 3:
return s.Conv3d(*args, **kwargs)
else:
raise ValueError(f"unsupported dimensions: {dims}")
class manual_cast(disable_weight_init):
class Linear(disable_weight_init.Linear):
ldm_patched_cast_weights = True
class Conv2d(disable_weight_init.Conv2d):
ldm_patched_cast_weights = True
class Conv3d(disable_weight_init.Conv3d):
ldm_patched_cast_weights = True
class GroupNorm(disable_weight_init.GroupNorm):
ldm_patched_cast_weights = True
class LayerNorm(disable_weight_init.LayerNorm):
ldm_patched_cast_weights = True
|