File size: 16,529 Bytes
8d7ec14
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
import importlib
import streamlit as st
import torch
import cv2
import numpy as np
import PIL
from omegaconf import OmegaConf
from PIL import Image
from tqdm import trange
import io, os
from torch import autocast
from einops import rearrange, repeat
from torchvision.utils import make_grid
from pytorch_lightning import seed_everything
from contextlib import nullcontext

from ldm.models.diffusion.ddim import DDIMSampler
from ldm.models.diffusion.plms import PLMSSampler
from ldm.models.diffusion.dpm_solver import DPMSolverSampler

torch.set_grad_enabled(False)

PROMPTS_ROOT = "scripts/prompts/"
SAVE_PATH = "outputs/demo/stable-unclip/"

VERSION2SPECS = {
    "Stable unCLIP-L": {"H": 768, "W": 768, "C": 4, "f": 8},
    "Stable unOpenCLIP-H": {"H": 768, "W": 768, "C": 4, "f": 8},
    "Full Karlo": {}
}


def get_obj_from_str(string, reload=False):
    module, cls = string.rsplit(".", 1)
    importlib.invalidate_caches()
    if reload:
        module_imp = importlib.import_module(module)
        importlib.reload(module_imp)
    return getattr(importlib.import_module(module, package=None), cls)


def instantiate_from_config(config):
    if not "target" in config:
        raise KeyError("Expected key `target` to instantiate.")
    return get_obj_from_str(config["target"])(**config.get("params", dict()))


def get_interactive_image(key=None):
    image = st.file_uploader("Input", type=["jpg", "JPEG", "png"], key=key)
    if image is not None:
        image = Image.open(image)
        if not image.mode == "RGB":
            image = image.convert("RGB")
        return image


def load_img(display=True, key=None):
    image = get_interactive_image(key=key)
    if display:
        st.image(image)
    w, h = image.size
    print(f"loaded input image of size ({w}, {h})")
    w, h = map(lambda x: x - x % 64, (w, h))
    image = image.resize((w, h), resample=PIL.Image.LANCZOS)
    image = np.array(image).astype(np.float32) / 255.0
    image = image[None].transpose(0, 3, 1, 2)
    image = torch.from_numpy(image)
    return 2. * image - 1.


def get_init_img(batch_size=1, key=None):
    init_image = load_img(key=key).cuda()
    init_image = repeat(init_image, '1 ... -> b ...', b=batch_size)
    return init_image


def sample(
        model,
        prompt,
        n_runs=3,
        n_samples=2,
        H=512,
        W=512,
        C=4,
        f=8,
        scale=10.0,
        ddim_steps=50,
        ddim_eta=0.0,
        callback=None,
        skip_single_save=False,
        save_grid=True,
        ucg_schedule=None,
        negative_prompt="",
        adm_cond=None,
        adm_uc=None,
        use_full_precision=False,
        only_adm_cond=False
):
    batch_size = n_samples
    precision_scope = autocast if not use_full_precision else nullcontext
    # decoderscope = autocast if not use_full_precision else nullcontext
    if use_full_precision: st.warning(f"Running {model.__class__.__name__} at full precision.")
    if isinstance(prompt, str):
        prompt = [prompt]
    prompts = batch_size * prompt

    outputs = st.empty()

    with precision_scope("cuda"):
        with model.ema_scope():
            all_samples = list()
            for n in trange(n_runs, desc="Sampling"):
                shape = [C, H // f, W // f]
                if not only_adm_cond:
                    uc = None
                    if scale != 1.0:
                        uc = model.get_learned_conditioning(batch_size * [negative_prompt])
                    if isinstance(prompts, tuple):
                        prompts = list(prompts)
                    c = model.get_learned_conditioning(prompts)

                if adm_cond is not None:
                    if adm_cond.shape[0] == 1:
                        adm_cond = repeat(adm_cond, '1 ... -> b ...', b=batch_size)
                    if adm_uc is None:
                        st.warning("Not guiding via c_adm")
                        adm_uc = adm_cond
                    else:
                        if adm_uc.shape[0] == 1:
                            adm_uc = repeat(adm_uc, '1 ... -> b ...', b=batch_size)
                    if not only_adm_cond:
                        c = {"c_crossattn": [c], "c_adm": adm_cond}
                        uc = {"c_crossattn": [uc], "c_adm": adm_uc}
                    else:
                        c = adm_cond
                        uc = adm_uc
                samples_ddim, _ = sampler.sample(S=ddim_steps,
                                                 conditioning=c,
                                                 batch_size=batch_size,
                                                 shape=shape,
                                                 verbose=False,
                                                 unconditional_guidance_scale=scale,
                                                 unconditional_conditioning=uc,
                                                 eta=ddim_eta,
                                                 x_T=None,
                                                 callback=callback,
                                                 ucg_schedule=ucg_schedule
                                                 )
                x_samples = model.decode_first_stage(samples_ddim)
                x_samples = torch.clamp((x_samples + 1.0) / 2.0, min=0.0, max=1.0)

                if not skip_single_save:
                    base_count = len(os.listdir(os.path.join(SAVE_PATH, "samples")))
                    for x_sample in x_samples:
                        x_sample = 255. * rearrange(x_sample.cpu().numpy(), 'c h w -> h w c')
                        Image.fromarray(x_sample.astype(np.uint8)).save(
                            os.path.join(SAVE_PATH, "samples", f"{base_count:09}.png"))
                        base_count += 1

                all_samples.append(x_samples)

                # get grid of all samples
                grid = torch.stack(all_samples, 0)
                grid = rearrange(grid, 'n b c h w -> (n h) (b w) c')
                outputs.image(grid.cpu().numpy())

            # additionally, save grid
            grid = Image.fromarray((255. * grid.cpu().numpy()).astype(np.uint8))
            if save_grid:
                grid_count = len(os.listdir(SAVE_PATH)) - 1
                grid.save(os.path.join(SAVE_PATH, f'grid-{grid_count:06}.png'))

    return x_samples


def make_oscillating_guidance_schedule(num_steps, max_weight=15., min_weight=1.):
    schedule = list()
    for i in range(num_steps):
        if float(i / num_steps) < 0.1:
            schedule.append(max_weight)
        elif i % 2 == 0:
            schedule.append(min_weight)
        else:
            schedule.append(max_weight)
    print(f"OSCILLATING GUIDANCE SCHEDULE: \n {schedule}")
    return schedule


def torch2np(x):
    x = ((x + 1.0) * 127.5).clamp(0, 255).to(dtype=torch.uint8)
    x = x.permute(0, 2, 3, 1).detach().cpu().numpy()
    return x


@st.cache(allow_output_mutation=True, suppress_st_warning=True)
def init(version="Stable unCLIP-L", load_karlo_prior=False):
    state = dict()
    if not "model" in state:
        if version == "Stable unCLIP-L":
            config = "configs/stable-diffusion/v2-1-stable-unclip-l-inference.yaml"
            ckpt = "checkpoints/sd21-unclip-l.ckpt"

        elif version == "Stable unOpenCLIP-H":
            config = "configs/stable-diffusion/v2-1-stable-unclip-h-inference.yaml"
            ckpt = "checkpoints/sd21-unclip-h.ckpt"

        elif version == "Full Karlo":
            from ldm.modules.karlo.kakao.sampler import T2ISampler
            st.info("Loading full KARLO..")
            karlo = T2ISampler.from_pretrained(
                root_dir="checkpoints/karlo_models",
                clip_model_path="ViT-L-14.pt",
                clip_stat_path="ViT-L-14_stats.th",
                sampling_type="default",
            )
            state["karlo_prior"] = karlo
            state["msg"] = "loaded full Karlo"
            return state
        else:
            raise ValueError(f"version {version} unknown!")

        config = OmegaConf.load(config)
        model, msg = load_model_from_config(config, ckpt, vae_sd=None)
        state["msg"] = msg

        if load_karlo_prior:
            from ldm.modules.karlo.kakao.sampler import PriorSampler
            st.info("Loading KARLO CLIP prior...")
            karlo_prior = PriorSampler.from_pretrained(
                root_dir="checkpoints/karlo_models",
                clip_model_path="ViT-L-14.pt",
                clip_stat_path="ViT-L-14_stats.th",
                sampling_type="default",
            )
            state["karlo_prior"] = karlo_prior
        state["model"] = model
        state["ckpt"] = ckpt
        state["config"] = config
    return state


def load_model_from_config(config, ckpt, verbose=False, vae_sd=None):
    print(f"Loading model from {ckpt}")
    pl_sd = torch.load(ckpt, map_location="cpu")
    msg = None
    if "global_step" in pl_sd:
        msg = f"This is global step {pl_sd['global_step']}. "
    if "model_ema.num_updates" in pl_sd["state_dict"]:
        msg += f"And we got {pl_sd['state_dict']['model_ema.num_updates']} EMA updates."
    global_step = pl_sd.get("global_step", "?")
    sd = pl_sd["state_dict"]
    if vae_sd is not None:
        for k in sd.keys():
            if "first_stage" in k:
                sd[k] = vae_sd[k[len("first_stage_model."):]]

    model = instantiate_from_config(config.model)
    m, u = model.load_state_dict(sd, strict=False)
    if len(m) > 0 and verbose:
        print("missing keys:")
        print(m)
    if len(u) > 0 and verbose:
        print("unexpected keys:")
        print(u)

    model.cuda()
    model.eval()
    print(f"Loaded global step {global_step}")
    return model, msg


if __name__ == "__main__":
    st.title("Stable unCLIP")
    mode = "txt2img"
    version = st.selectbox("Model Version", list(VERSION2SPECS.keys()), 0)
    use_karlo_prior = version in ["Stable unCLIP-L"] and st.checkbox("Use KARLO prior", False)
    state = init(version=version, load_karlo_prior=use_karlo_prior)
    prompt = st.text_input("Prompt", "a professional photograph")
    negative_prompt = st.text_input("Negative Prompt", "")
    scale = st.number_input("cfg-scale", value=10., min_value=-100., max_value=100.)
    number_rows = st.number_input("num rows", value=2, min_value=1, max_value=10)
    number_cols = st.number_input("num cols", value=2, min_value=1, max_value=10)
    steps = st.sidebar.number_input("steps", value=20, min_value=1, max_value=1000)
    eta = st.sidebar.number_input("eta (DDIM)", value=0., min_value=0., max_value=1.)
    force_full_precision = st.sidebar.checkbox("Force FP32", False)  # TODO: check if/where things break.
    if version != "Full Karlo":
        H = st.sidebar.number_input("H", value=VERSION2SPECS[version]["H"], min_value=64, max_value=2048)
        W = st.sidebar.number_input("W", value=VERSION2SPECS[version]["W"], min_value=64, max_value=2048)
        C = VERSION2SPECS[version]["C"]
        f = VERSION2SPECS[version]["f"]

    SAVE_PATH = os.path.join(SAVE_PATH, version)
    os.makedirs(os.path.join(SAVE_PATH, "samples"), exist_ok=True)

    seed = st.sidebar.number_input("seed", value=42, min_value=0, max_value=int(1e9))
    seed_everything(seed)

    ucg_schedule = None
    sampler = st.sidebar.selectbox("Sampler", ["DDIM", "DPM"], 0)
    if version == "Full Karlo":
        pass
    else:
        if sampler == "DPM":
            sampler = DPMSolverSampler(state["model"])
        elif sampler == "DDIM":
            sampler = DDIMSampler(state["model"])
        else:
            raise ValueError(f"unknown sampler {sampler}!")

    adm_cond, adm_uc = None, None
    if use_karlo_prior:
        # uses the prior
        karlo_sampler = state["karlo_prior"]
        noise_level = None
        if state["model"].noise_augmentor is not None:
            noise_level = st.number_input("Noise Augmentation for CLIP embeddings", min_value=0,
                                          max_value=state["model"].noise_augmentor.max_noise_level - 1, value=0)
        with torch.no_grad():
            karlo_prediction = iter(
                karlo_sampler(
                    prompt=prompt,
                    bsz=number_cols,
                    progressive_mode="final",
                )
            ).__next__()
            adm_cond = karlo_prediction
            if noise_level is not None:
                c_adm, noise_level_emb = state["model"].noise_augmentor(adm_cond, noise_level=repeat(
                    torch.tensor([noise_level]).to(state["model"].device), '1 -> b', b=number_cols))
                adm_cond = torch.cat((c_adm, noise_level_emb), 1)
            adm_uc = torch.zeros_like(adm_cond)
    elif version == "Full Karlo":
        pass
    else:
        num_inputs = st.number_input("Number of Input Images", 1)


        def make_conditionings_from_input(num=1, key=None):
            init_img = get_init_img(batch_size=number_cols, key=key)
            with torch.no_grad():
                adm_cond = state["model"].embedder(init_img)
                weight = st.slider(f"Weight for Input {num}", min_value=-10., max_value=10., value=1.)
                if state["model"].noise_augmentor is not None:
                    noise_level = st.number_input(f"Noise Augmentation for CLIP embedding of input #{num}", min_value=0,
                                                  max_value=state["model"].noise_augmentor.max_noise_level - 1,
                                                  value=0, )
                    c_adm, noise_level_emb = state["model"].noise_augmentor(adm_cond, noise_level=repeat(
                        torch.tensor([noise_level]).to(state["model"].device), '1 -> b', b=number_cols))
                    adm_cond = torch.cat((c_adm, noise_level_emb), 1) * weight
                adm_uc = torch.zeros_like(adm_cond)
            return adm_cond, adm_uc, weight


        adm_inputs = list()
        weights = list()
        for n in range(num_inputs):
            adm_cond, adm_uc, w = make_conditionings_from_input(num=n + 1, key=n)
            weights.append(w)
            adm_inputs.append(adm_cond)
        adm_cond = torch.stack(adm_inputs).sum(0) / sum(weights)
        if num_inputs > 1:
            if st.checkbox("Apply Noise to Embedding Mix", True):
                noise_level = st.number_input(f"Noise Augmentation for averaged CLIP embeddings", min_value=0,
                                              max_value=state["model"].noise_augmentor.max_noise_level - 1, value=50, )
                c_adm, noise_level_emb = state["model"].noise_augmentor(
                    adm_cond[:, :state["model"].noise_augmentor.time_embed.dim],
                    noise_level=repeat(
                        torch.tensor([noise_level]).to(state["model"].device), '1 -> b', b=number_cols))
                adm_cond = torch.cat((c_adm, noise_level_emb), 1)

    if st.button("Sample"):
        print("running prompt:", prompt)
        st.text("Sampling")
        t_progress = st.progress(0)
        result = st.empty()


        def t_callback(t):
            t_progress.progress(min((t + 1) / steps, 1.))


        if version == "Full Karlo":
            outputs = st.empty()
            karlo_sampler = state["karlo_prior"]
            all_samples = list()
            with torch.no_grad():
                for _ in range(number_rows):
                    karlo_prediction = iter(
                        karlo_sampler(
                            prompt=prompt,
                            bsz=number_cols,
                            progressive_mode="final",
                        )
                    ).__next__()
                    all_samples.append(karlo_prediction)
            grid = torch.stack(all_samples, 0)
            grid = rearrange(grid, 'n b c h w -> (n h) (b w) c')
            outputs.image(grid.cpu().numpy())

        else:
            samples = sample(
                state["model"],
                prompt,
                n_runs=number_rows,
                n_samples=number_cols,
                H=H, W=W, C=C, f=f,
                scale=scale,
                ddim_steps=steps,
                ddim_eta=eta,
                callback=t_callback,
                ucg_schedule=ucg_schedule,
                negative_prompt=negative_prompt,
                adm_cond=adm_cond, adm_uc=adm_uc,
                use_full_precision=force_full_precision,
                only_adm_cond=False
            )