File size: 16,529 Bytes
8d7ec14 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 |
import importlib
import streamlit as st
import torch
import cv2
import numpy as np
import PIL
from omegaconf import OmegaConf
from PIL import Image
from tqdm import trange
import io, os
from torch import autocast
from einops import rearrange, repeat
from torchvision.utils import make_grid
from pytorch_lightning import seed_everything
from contextlib import nullcontext
from ldm.models.diffusion.ddim import DDIMSampler
from ldm.models.diffusion.plms import PLMSSampler
from ldm.models.diffusion.dpm_solver import DPMSolverSampler
torch.set_grad_enabled(False)
PROMPTS_ROOT = "scripts/prompts/"
SAVE_PATH = "outputs/demo/stable-unclip/"
VERSION2SPECS = {
"Stable unCLIP-L": {"H": 768, "W": 768, "C": 4, "f": 8},
"Stable unOpenCLIP-H": {"H": 768, "W": 768, "C": 4, "f": 8},
"Full Karlo": {}
}
def get_obj_from_str(string, reload=False):
module, cls = string.rsplit(".", 1)
importlib.invalidate_caches()
if reload:
module_imp = importlib.import_module(module)
importlib.reload(module_imp)
return getattr(importlib.import_module(module, package=None), cls)
def instantiate_from_config(config):
if not "target" in config:
raise KeyError("Expected key `target` to instantiate.")
return get_obj_from_str(config["target"])(**config.get("params", dict()))
def get_interactive_image(key=None):
image = st.file_uploader("Input", type=["jpg", "JPEG", "png"], key=key)
if image is not None:
image = Image.open(image)
if not image.mode == "RGB":
image = image.convert("RGB")
return image
def load_img(display=True, key=None):
image = get_interactive_image(key=key)
if display:
st.image(image)
w, h = image.size
print(f"loaded input image of size ({w}, {h})")
w, h = map(lambda x: x - x % 64, (w, h))
image = image.resize((w, h), resample=PIL.Image.LANCZOS)
image = np.array(image).astype(np.float32) / 255.0
image = image[None].transpose(0, 3, 1, 2)
image = torch.from_numpy(image)
return 2. * image - 1.
def get_init_img(batch_size=1, key=None):
init_image = load_img(key=key).cuda()
init_image = repeat(init_image, '1 ... -> b ...', b=batch_size)
return init_image
def sample(
model,
prompt,
n_runs=3,
n_samples=2,
H=512,
W=512,
C=4,
f=8,
scale=10.0,
ddim_steps=50,
ddim_eta=0.0,
callback=None,
skip_single_save=False,
save_grid=True,
ucg_schedule=None,
negative_prompt="",
adm_cond=None,
adm_uc=None,
use_full_precision=False,
only_adm_cond=False
):
batch_size = n_samples
precision_scope = autocast if not use_full_precision else nullcontext
# decoderscope = autocast if not use_full_precision else nullcontext
if use_full_precision: st.warning(f"Running {model.__class__.__name__} at full precision.")
if isinstance(prompt, str):
prompt = [prompt]
prompts = batch_size * prompt
outputs = st.empty()
with precision_scope("cuda"):
with model.ema_scope():
all_samples = list()
for n in trange(n_runs, desc="Sampling"):
shape = [C, H // f, W // f]
if not only_adm_cond:
uc = None
if scale != 1.0:
uc = model.get_learned_conditioning(batch_size * [negative_prompt])
if isinstance(prompts, tuple):
prompts = list(prompts)
c = model.get_learned_conditioning(prompts)
if adm_cond is not None:
if adm_cond.shape[0] == 1:
adm_cond = repeat(adm_cond, '1 ... -> b ...', b=batch_size)
if adm_uc is None:
st.warning("Not guiding via c_adm")
adm_uc = adm_cond
else:
if adm_uc.shape[0] == 1:
adm_uc = repeat(adm_uc, '1 ... -> b ...', b=batch_size)
if not only_adm_cond:
c = {"c_crossattn": [c], "c_adm": adm_cond}
uc = {"c_crossattn": [uc], "c_adm": adm_uc}
else:
c = adm_cond
uc = adm_uc
samples_ddim, _ = sampler.sample(S=ddim_steps,
conditioning=c,
batch_size=batch_size,
shape=shape,
verbose=False,
unconditional_guidance_scale=scale,
unconditional_conditioning=uc,
eta=ddim_eta,
x_T=None,
callback=callback,
ucg_schedule=ucg_schedule
)
x_samples = model.decode_first_stage(samples_ddim)
x_samples = torch.clamp((x_samples + 1.0) / 2.0, min=0.0, max=1.0)
if not skip_single_save:
base_count = len(os.listdir(os.path.join(SAVE_PATH, "samples")))
for x_sample in x_samples:
x_sample = 255. * rearrange(x_sample.cpu().numpy(), 'c h w -> h w c')
Image.fromarray(x_sample.astype(np.uint8)).save(
os.path.join(SAVE_PATH, "samples", f"{base_count:09}.png"))
base_count += 1
all_samples.append(x_samples)
# get grid of all samples
grid = torch.stack(all_samples, 0)
grid = rearrange(grid, 'n b c h w -> (n h) (b w) c')
outputs.image(grid.cpu().numpy())
# additionally, save grid
grid = Image.fromarray((255. * grid.cpu().numpy()).astype(np.uint8))
if save_grid:
grid_count = len(os.listdir(SAVE_PATH)) - 1
grid.save(os.path.join(SAVE_PATH, f'grid-{grid_count:06}.png'))
return x_samples
def make_oscillating_guidance_schedule(num_steps, max_weight=15., min_weight=1.):
schedule = list()
for i in range(num_steps):
if float(i / num_steps) < 0.1:
schedule.append(max_weight)
elif i % 2 == 0:
schedule.append(min_weight)
else:
schedule.append(max_weight)
print(f"OSCILLATING GUIDANCE SCHEDULE: \n {schedule}")
return schedule
def torch2np(x):
x = ((x + 1.0) * 127.5).clamp(0, 255).to(dtype=torch.uint8)
x = x.permute(0, 2, 3, 1).detach().cpu().numpy()
return x
@st.cache(allow_output_mutation=True, suppress_st_warning=True)
def init(version="Stable unCLIP-L", load_karlo_prior=False):
state = dict()
if not "model" in state:
if version == "Stable unCLIP-L":
config = "configs/stable-diffusion/v2-1-stable-unclip-l-inference.yaml"
ckpt = "checkpoints/sd21-unclip-l.ckpt"
elif version == "Stable unOpenCLIP-H":
config = "configs/stable-diffusion/v2-1-stable-unclip-h-inference.yaml"
ckpt = "checkpoints/sd21-unclip-h.ckpt"
elif version == "Full Karlo":
from ldm.modules.karlo.kakao.sampler import T2ISampler
st.info("Loading full KARLO..")
karlo = T2ISampler.from_pretrained(
root_dir="checkpoints/karlo_models",
clip_model_path="ViT-L-14.pt",
clip_stat_path="ViT-L-14_stats.th",
sampling_type="default",
)
state["karlo_prior"] = karlo
state["msg"] = "loaded full Karlo"
return state
else:
raise ValueError(f"version {version} unknown!")
config = OmegaConf.load(config)
model, msg = load_model_from_config(config, ckpt, vae_sd=None)
state["msg"] = msg
if load_karlo_prior:
from ldm.modules.karlo.kakao.sampler import PriorSampler
st.info("Loading KARLO CLIP prior...")
karlo_prior = PriorSampler.from_pretrained(
root_dir="checkpoints/karlo_models",
clip_model_path="ViT-L-14.pt",
clip_stat_path="ViT-L-14_stats.th",
sampling_type="default",
)
state["karlo_prior"] = karlo_prior
state["model"] = model
state["ckpt"] = ckpt
state["config"] = config
return state
def load_model_from_config(config, ckpt, verbose=False, vae_sd=None):
print(f"Loading model from {ckpt}")
pl_sd = torch.load(ckpt, map_location="cpu")
msg = None
if "global_step" in pl_sd:
msg = f"This is global step {pl_sd['global_step']}. "
if "model_ema.num_updates" in pl_sd["state_dict"]:
msg += f"And we got {pl_sd['state_dict']['model_ema.num_updates']} EMA updates."
global_step = pl_sd.get("global_step", "?")
sd = pl_sd["state_dict"]
if vae_sd is not None:
for k in sd.keys():
if "first_stage" in k:
sd[k] = vae_sd[k[len("first_stage_model."):]]
model = instantiate_from_config(config.model)
m, u = model.load_state_dict(sd, strict=False)
if len(m) > 0 and verbose:
print("missing keys:")
print(m)
if len(u) > 0 and verbose:
print("unexpected keys:")
print(u)
model.cuda()
model.eval()
print(f"Loaded global step {global_step}")
return model, msg
if __name__ == "__main__":
st.title("Stable unCLIP")
mode = "txt2img"
version = st.selectbox("Model Version", list(VERSION2SPECS.keys()), 0)
use_karlo_prior = version in ["Stable unCLIP-L"] and st.checkbox("Use KARLO prior", False)
state = init(version=version, load_karlo_prior=use_karlo_prior)
prompt = st.text_input("Prompt", "a professional photograph")
negative_prompt = st.text_input("Negative Prompt", "")
scale = st.number_input("cfg-scale", value=10., min_value=-100., max_value=100.)
number_rows = st.number_input("num rows", value=2, min_value=1, max_value=10)
number_cols = st.number_input("num cols", value=2, min_value=1, max_value=10)
steps = st.sidebar.number_input("steps", value=20, min_value=1, max_value=1000)
eta = st.sidebar.number_input("eta (DDIM)", value=0., min_value=0., max_value=1.)
force_full_precision = st.sidebar.checkbox("Force FP32", False) # TODO: check if/where things break.
if version != "Full Karlo":
H = st.sidebar.number_input("H", value=VERSION2SPECS[version]["H"], min_value=64, max_value=2048)
W = st.sidebar.number_input("W", value=VERSION2SPECS[version]["W"], min_value=64, max_value=2048)
C = VERSION2SPECS[version]["C"]
f = VERSION2SPECS[version]["f"]
SAVE_PATH = os.path.join(SAVE_PATH, version)
os.makedirs(os.path.join(SAVE_PATH, "samples"), exist_ok=True)
seed = st.sidebar.number_input("seed", value=42, min_value=0, max_value=int(1e9))
seed_everything(seed)
ucg_schedule = None
sampler = st.sidebar.selectbox("Sampler", ["DDIM", "DPM"], 0)
if version == "Full Karlo":
pass
else:
if sampler == "DPM":
sampler = DPMSolverSampler(state["model"])
elif sampler == "DDIM":
sampler = DDIMSampler(state["model"])
else:
raise ValueError(f"unknown sampler {sampler}!")
adm_cond, adm_uc = None, None
if use_karlo_prior:
# uses the prior
karlo_sampler = state["karlo_prior"]
noise_level = None
if state["model"].noise_augmentor is not None:
noise_level = st.number_input("Noise Augmentation for CLIP embeddings", min_value=0,
max_value=state["model"].noise_augmentor.max_noise_level - 1, value=0)
with torch.no_grad():
karlo_prediction = iter(
karlo_sampler(
prompt=prompt,
bsz=number_cols,
progressive_mode="final",
)
).__next__()
adm_cond = karlo_prediction
if noise_level is not None:
c_adm, noise_level_emb = state["model"].noise_augmentor(adm_cond, noise_level=repeat(
torch.tensor([noise_level]).to(state["model"].device), '1 -> b', b=number_cols))
adm_cond = torch.cat((c_adm, noise_level_emb), 1)
adm_uc = torch.zeros_like(adm_cond)
elif version == "Full Karlo":
pass
else:
num_inputs = st.number_input("Number of Input Images", 1)
def make_conditionings_from_input(num=1, key=None):
init_img = get_init_img(batch_size=number_cols, key=key)
with torch.no_grad():
adm_cond = state["model"].embedder(init_img)
weight = st.slider(f"Weight for Input {num}", min_value=-10., max_value=10., value=1.)
if state["model"].noise_augmentor is not None:
noise_level = st.number_input(f"Noise Augmentation for CLIP embedding of input #{num}", min_value=0,
max_value=state["model"].noise_augmentor.max_noise_level - 1,
value=0, )
c_adm, noise_level_emb = state["model"].noise_augmentor(adm_cond, noise_level=repeat(
torch.tensor([noise_level]).to(state["model"].device), '1 -> b', b=number_cols))
adm_cond = torch.cat((c_adm, noise_level_emb), 1) * weight
adm_uc = torch.zeros_like(adm_cond)
return adm_cond, adm_uc, weight
adm_inputs = list()
weights = list()
for n in range(num_inputs):
adm_cond, adm_uc, w = make_conditionings_from_input(num=n + 1, key=n)
weights.append(w)
adm_inputs.append(adm_cond)
adm_cond = torch.stack(adm_inputs).sum(0) / sum(weights)
if num_inputs > 1:
if st.checkbox("Apply Noise to Embedding Mix", True):
noise_level = st.number_input(f"Noise Augmentation for averaged CLIP embeddings", min_value=0,
max_value=state["model"].noise_augmentor.max_noise_level - 1, value=50, )
c_adm, noise_level_emb = state["model"].noise_augmentor(
adm_cond[:, :state["model"].noise_augmentor.time_embed.dim],
noise_level=repeat(
torch.tensor([noise_level]).to(state["model"].device), '1 -> b', b=number_cols))
adm_cond = torch.cat((c_adm, noise_level_emb), 1)
if st.button("Sample"):
print("running prompt:", prompt)
st.text("Sampling")
t_progress = st.progress(0)
result = st.empty()
def t_callback(t):
t_progress.progress(min((t + 1) / steps, 1.))
if version == "Full Karlo":
outputs = st.empty()
karlo_sampler = state["karlo_prior"]
all_samples = list()
with torch.no_grad():
for _ in range(number_rows):
karlo_prediction = iter(
karlo_sampler(
prompt=prompt,
bsz=number_cols,
progressive_mode="final",
)
).__next__()
all_samples.append(karlo_prediction)
grid = torch.stack(all_samples, 0)
grid = rearrange(grid, 'n b c h w -> (n h) (b w) c')
outputs.image(grid.cpu().numpy())
else:
samples = sample(
state["model"],
prompt,
n_runs=number_rows,
n_samples=number_cols,
H=H, W=W, C=C, f=f,
scale=scale,
ddim_steps=steps,
ddim_eta=eta,
callback=t_callback,
ucg_schedule=ucg_schedule,
negative_prompt=negative_prompt,
adm_cond=adm_cond, adm_uc=adm_uc,
use_full_precision=force_full_precision,
only_adm_cond=False
)
|