File size: 11,254 Bytes
8d7ec14 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 |
import torch
import contextlib
from ldm_patched.modules import model_management
from ldm_patched.modules import model_detection
from ldm_patched.modules.sd import VAE, CLIP, load_model_weights
import ldm_patched.modules.model_patcher
import ldm_patched.modules.utils
import ldm_patched.modules.clip_vision
from omegaconf import OmegaConf
from modules.sd_models_config import find_checkpoint_config
from modules.shared import cmd_opts
from modules import sd_hijack
from modules.sd_models_xl import extend_sdxl
from ldm.util import instantiate_from_config
from modules_forge import forge_clip
from modules_forge.unet_patcher import UnetPatcher
from ldm_patched.modules.model_base import model_sampling, ModelType
import open_clip
from transformers import CLIPTextModel, CLIPTokenizer
class FakeObject:
def __init__(self, *args, **kwargs):
super().__init__()
self.visual = None
return
def eval(self, *args, **kwargs):
return self
def parameters(self, *args, **kwargs):
return []
class ForgeSD:
def __init__(self, unet, clip, vae, clipvision):
self.unet = unet
self.clip = clip
self.vae = vae
self.clipvision = clipvision
def shallow_copy(self):
return ForgeSD(
self.unet,
self.clip,
self.vae,
self.clipvision
)
@contextlib.contextmanager
def no_clip():
backup_openclip = open_clip.create_model_and_transforms
backup_CLIPTextModel = CLIPTextModel.from_pretrained
backup_CLIPTokenizer = CLIPTokenizer.from_pretrained
try:
open_clip.create_model_and_transforms = lambda *args, **kwargs: (FakeObject(), None, None)
CLIPTextModel.from_pretrained = lambda *args, **kwargs: FakeObject()
CLIPTokenizer.from_pretrained = lambda *args, **kwargs: FakeObject()
yield
finally:
open_clip.create_model_and_transforms = backup_openclip
CLIPTextModel.from_pretrained = backup_CLIPTextModel
CLIPTokenizer.from_pretrained = backup_CLIPTokenizer
return
def load_checkpoint_guess_config(sd, output_vae=True, output_clip=True, output_clipvision=False, embedding_directory=None, output_model=True):
sd_keys = sd.keys()
clip = None
clipvision = None
vae = None
model = None
model_patcher = None
clip_target = None
parameters = ldm_patched.modules.utils.calculate_parameters(sd, "model.diffusion_model.")
unet_dtype = model_management.unet_dtype(model_params=parameters)
load_device = model_management.get_torch_device()
manual_cast_dtype = model_management.unet_manual_cast(unet_dtype, load_device)
class WeightsLoader(torch.nn.Module):
pass
model_config = model_detection.model_config_from_unet(sd, "model.diffusion_model.", unet_dtype)
model_config.set_manual_cast(manual_cast_dtype)
if model_config is None:
raise RuntimeError("ERROR: Could not detect model type")
if model_config.clip_vision_prefix is not None:
if output_clipvision:
clipvision = ldm_patched.modules.clip_vision.load_clipvision_from_sd(sd, model_config.clip_vision_prefix, True)
if output_model:
inital_load_device = model_management.unet_inital_load_device(parameters, unet_dtype)
offload_device = model_management.unet_offload_device()
model = model_config.get_model(sd, "model.diffusion_model.", device=inital_load_device)
model.load_model_weights(sd, "model.diffusion_model.")
if output_vae:
vae_sd = ldm_patched.modules.utils.state_dict_prefix_replace(sd, {"first_stage_model.": ""}, filter_keys=True)
vae_sd = model_config.process_vae_state_dict(vae_sd)
vae = VAE(sd=vae_sd)
if output_clip:
w = WeightsLoader()
clip_target = model_config.clip_target()
if clip_target is not None:
clip = CLIP(clip_target, embedding_directory=embedding_directory)
w.cond_stage_model = clip.cond_stage_model
sd = model_config.process_clip_state_dict(sd)
load_model_weights(w, sd)
left_over = sd.keys()
if len(left_over) > 0:
print("left over keys:", left_over)
if output_model:
model_patcher = UnetPatcher(model, load_device=load_device, offload_device=model_management.unet_offload_device(), current_device=inital_load_device)
if inital_load_device != torch.device("cpu"):
print("loaded straight to GPU")
model_management.load_model_gpu(model_patcher)
return ForgeSD(model_patcher, clip, vae, clipvision)
@torch.no_grad()
def load_model_for_a1111(timer, checkpoint_info=None, state_dict=None):
a1111_config_filename = find_checkpoint_config(state_dict, checkpoint_info)
a1111_config = OmegaConf.load(a1111_config_filename)
timer.record("forge solving config")
if hasattr(a1111_config.model.params, 'network_config'):
a1111_config.model.params.network_config.target = 'modules_forge.forge_loader.FakeObject'
if hasattr(a1111_config.model.params, 'unet_config'):
a1111_config.model.params.unet_config.target = 'modules_forge.forge_loader.FakeObject'
if hasattr(a1111_config.model.params, 'first_stage_config'):
a1111_config.model.params.first_stage_config.target = 'modules_forge.forge_loader.FakeObject'
with no_clip():
sd_model = instantiate_from_config(a1111_config.model)
timer.record("forge instantiate config")
forge_objects = load_checkpoint_guess_config(
state_dict,
output_vae=True,
output_clip=True,
output_clipvision=True,
embedding_directory=cmd_opts.embeddings_dir,
output_model=True
)
sd_model.forge_objects = forge_objects
sd_model.forge_objects_original = forge_objects.shallow_copy()
sd_model.forge_objects_after_applying_lora = forge_objects.shallow_copy()
timer.record("forge load real models")
sd_model.first_stage_model = forge_objects.vae.first_stage_model
sd_model.model.diffusion_model = forge_objects.unet.model.diffusion_model
conditioner = getattr(sd_model, 'conditioner', None)
if conditioner:
text_cond_models = []
for i in range(len(conditioner.embedders)):
embedder = conditioner.embedders[i]
typename = type(embedder).__name__
if typename == 'FrozenCLIPEmbedder': # SDXL Clip L
embedder.tokenizer = forge_objects.clip.tokenizer.clip_l.tokenizer
embedder.transformer = forge_objects.clip.cond_stage_model.clip_l.transformer
model_embeddings = embedder.transformer.text_model.embeddings
model_embeddings.token_embedding = sd_hijack.EmbeddingsWithFixes(
model_embeddings.token_embedding, sd_hijack.model_hijack)
embedder = forge_clip.CLIP_SD_XL_L(embedder, sd_hijack.model_hijack)
conditioner.embedders[i] = embedder
text_cond_models.append(embedder)
elif typename == 'FrozenOpenCLIPEmbedder2': # SDXL Clip G
embedder.tokenizer = forge_objects.clip.tokenizer.clip_g.tokenizer
embedder.transformer = forge_objects.clip.cond_stage_model.clip_g.transformer
embedder.text_projection = forge_objects.clip.cond_stage_model.clip_g.text_projection
model_embeddings = embedder.transformer.text_model.embeddings
model_embeddings.token_embedding = sd_hijack.EmbeddingsWithFixes(
model_embeddings.token_embedding, sd_hijack.model_hijack, textual_inversion_key='clip_g')
embedder = forge_clip.CLIP_SD_XL_G(embedder, sd_hijack.model_hijack)
conditioner.embedders[i] = embedder
text_cond_models.append(embedder)
if len(text_cond_models) == 1:
sd_model.cond_stage_model = text_cond_models[0]
else:
sd_model.cond_stage_model = conditioner
elif type(sd_model.cond_stage_model).__name__ == 'FrozenCLIPEmbedder': # SD15 Clip
sd_model.cond_stage_model.tokenizer = forge_objects.clip.tokenizer.clip_l.tokenizer
sd_model.cond_stage_model.transformer = forge_objects.clip.cond_stage_model.clip_l.transformer
model_embeddings = sd_model.cond_stage_model.transformer.text_model.embeddings
model_embeddings.token_embedding = sd_hijack.EmbeddingsWithFixes(
model_embeddings.token_embedding, sd_hijack.model_hijack)
sd_model.cond_stage_model = forge_clip.CLIP_SD_15_L(sd_model.cond_stage_model, sd_hijack.model_hijack)
elif type(sd_model.cond_stage_model).__name__ == 'FrozenOpenCLIPEmbedder': # SD21 Clip
sd_model.cond_stage_model.tokenizer = forge_objects.clip.tokenizer.clip_h.tokenizer
sd_model.cond_stage_model.transformer = forge_objects.clip.cond_stage_model.clip_h.transformer
model_embeddings = sd_model.cond_stage_model.transformer.text_model.embeddings
model_embeddings.token_embedding = sd_hijack.EmbeddingsWithFixes(
model_embeddings.token_embedding, sd_hijack.model_hijack)
sd_model.cond_stage_model = forge_clip.CLIP_SD_21_H(sd_model.cond_stage_model, sd_hijack.model_hijack)
else:
raise NotImplementedError('Bad Clip Class Name:' + type(sd_model.cond_stage_model).__name__)
timer.record("forge set components")
sd_model_hash = checkpoint_info.calculate_shorthash()
timer.record("calculate hash")
if getattr(sd_model, 'parameterization', None) == 'v':
sd_model.forge_objects.unet.model.model_sampling = model_sampling(sd_model.forge_objects.unet.model.model_config, ModelType.V_PREDICTION)
sd_model.is_sdxl = conditioner is not None
sd_model.is_sd2 = not sd_model.is_sdxl and hasattr(sd_model.cond_stage_model, 'model')
sd_model.is_sd1 = not sd_model.is_sdxl and not sd_model.is_sd2
sd_model.is_ssd = sd_model.is_sdxl and 'model.diffusion_model.middle_block.1.transformer_blocks.0.attn1.to_q.weight' not in sd_model.state_dict().keys()
if sd_model.is_sdxl:
extend_sdxl(sd_model)
sd_model.sd_model_hash = sd_model_hash
sd_model.sd_model_checkpoint = checkpoint_info.filename
sd_model.sd_checkpoint_info = checkpoint_info
@torch.inference_mode()
def patched_decode_first_stage(x):
sample = sd_model.forge_objects.unet.model.model_config.latent_format.process_out(x)
sample = sd_model.forge_objects.vae.decode(sample).movedim(-1, 1) * 2.0 - 1.0
return sample.to(x)
@torch.inference_mode()
def patched_encode_first_stage(x):
sample = sd_model.forge_objects.vae.encode(x.movedim(1, -1) * 0.5 + 0.5)
sample = sd_model.forge_objects.unet.model.model_config.latent_format.process_in(sample)
return sample.to(x)
sd_model.ema_scope = lambda *args, **kwargs: contextlib.nullcontext()
sd_model.get_first_stage_encoding = lambda x: x
sd_model.decode_first_stage = patched_decode_first_stage
sd_model.encode_first_stage = patched_encode_first_stage
sd_model.clip = sd_model.cond_stage_model
sd_model.tiling_enabled = False
timer.record("forge finalize")
sd_model.current_lora_hash = str([])
return sd_model
|