--- language: - ca license: apache-2.0 base_model: openai/whisper-small tags: - whisper-event - generated_from_trainer datasets: - mozilla-foundation/common_voice_13_0 metrics: - wer model-index: - name: Whisper Small Catalan results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: mozilla-foundation/common_voice_13_0 ca type: mozilla-foundation/common_voice_13_0 config: ca split: test args: ca metrics: - name: Wer type: wer value: 10.025150042869392 --- # Whisper Small Catalan This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the mozilla-foundation/common_voice_13_0 ca dataset. It achieves the following results on the evaluation set: - Loss: 0.2169 - Wer: 10.0252 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 64 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.1708 | 1.1 | 1000 | 0.2494 | 12.1846 | | 0.0421 | 3.09 | 2000 | 0.2458 | 11.2689 | | 0.0761 | 5.09 | 3000 | 0.2340 | 10.9231 | | 0.0928 | 7.08 | 4000 | 0.2150 | 10.0394 | | 0.0504 | 9.08 | 5000 | 0.2169 | 10.0252 | ### Framework versions - Transformers 4.33.0.dev0 - Pytorch 2.0.1+cu117 - Datasets 2.14.4 - Tokenizers 0.13.3