--- license: mit language: - zh - en base_model: - deepseek-ai/deepseek-llm-7b-chat --- # Deep **Seek-Fake-News** LLM
DeepSeekFakeNews-LLM

Project Link👁️ Lab Link👁️

### 1. Introduction of Deep **Seek-Fake-News** LLM ### 2. Model Summary `deepseekfakenews-llm-7b-chat` is a 7B parameter model initialized from `deepseek-llm-7b-chat` and fine-tuned on extra fake news instruction data. - **Home Page:** [DeepSeekFakeNews](https://deepseek.com/) - **Repository:** [zt-ai/DeepSeekFakeNews-LLM-7B-Chat](https://github.com/TAN-OpenLab) - **Demo of Chatting With DeepSeekFakeNews-LLM: to comment soon! ### 3. How to Use Here are some examples of how to use our model. ```python import torch from peft import PeftModel from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig model_name = "zt-ai/DeepSeekFakeNews-llm-7b-chat" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name) model.generation_config = GenerationConfig.from_pretrained(model_name) model.generation_config.pad_token_id = model.generation_config.eos_token_id lora_model = PeftModel.from_pretrained(base_model, model_name) messages = [ { "role": "user", "content": """假新闻的表现可以总结为以下几个方面:1. 逻辑和事实矛盾。2.断章取义和误导性信息。3.夸张标题和吸引眼球的内容。4.情绪化和极端语言。5.偏见和单一立场。请从这几个方面分析新闻的真实性(真新闻或假新闻): 发布时间: 新闻标题: 新闻内容: """} ] input_tensor = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt") outputs = model.generate(input_tensor.to(model.device), max_new_tokens=100) result = tokenizer.decode(outputs[0][input_tensor.shape[1]:], skip_special_tokens=True) print(result) ``` Avoiding the use of the provided function `apply_chat_template`, you can also interact with our model following the sample template. Note that `messages` should be replaced by your input. ``` User: {messages[0]['content']} Assistant: ``` **Note:** By default (`add_special_tokens=True`), our tokenizer automatically adds a `bos_token` (`<|begin▁of▁sentence|>`) before the input text. Additionally, since the system prompt is not compatible with this version of our models, we DO NOT RECOMMEND including the system prompt in your input. ### 4. License This code repository is licensed under the MIT License. The use of DeepSeekFakeNews-LLM models is subject to the Model License. DeepSeekFakeNews-LLM supports commercial use. ### 5. Contact If you have any questions, please raise an issue or contact us at [zi4zhangt@gmail.com](mailto:zi4zhangt@gmail.com).