Upload 27 files
Browse files- all_results.json +7 -0
- config.json +45 -0
- configuration_chatglm.py +59 -0
- finetuning_args.json +13 -0
- generation_config.json +6 -0
- modeling_chatglm.py +1193 -0
- pytorch_model.bin +3 -0
- quantization.py +188 -0
- runs/Aug01_10-45-37_ip-172-31-72-127/events.out.tfevents.1690886874.ip-172-31-72-127.2313011.0 +3 -0
- runs/Aug01_10-48-39_ip-172-31-72-127/events.out.tfevents.1690887057.ip-172-31-72-127.2314553.0 +3 -0
- runs/Aug01_10-55-01_ip-172-31-72-127/events.out.tfevents.1690887438.ip-172-31-72-127.2317680.0 +3 -0
- runs/Aug01_10-58-34_ip-172-31-72-127/events.out.tfevents.1690887651.ip-172-31-72-127.2319667.0 +3 -0
- runs/Aug01_11-04-29_ip-172-31-72-127/events.out.tfevents.1690888007.ip-172-31-72-127.2322272.0 +3 -0
- runs/Aug01_11-07-41_ip-172-31-72-127/events.out.tfevents.1690888199.ip-172-31-72-127.2323921.0 +3 -0
- runs/Aug01_11-11-10_ip-172-31-72-127/events.out.tfevents.1690888407.ip-172-31-72-127.2325679.0 +3 -0
- runs/Aug02_02-22-15_ip-172-31-72-127/events.out.tfevents.1690943071.ip-172-31-72-127.2474016.0 +3 -0
- runs/Aug02_02-49-56_ip-172-31-72-127/events.out.tfevents.1690944733.ip-172-31-72-127.2481410.0 +3 -0
- runs/Aug02_03-28-30_ip-172-31-72-127/events.out.tfevents.1690947047.ip-172-31-72-127.2482663.0 +3 -0
- special_tokens_map.json +1 -0
- tokenization_chatglm.py +253 -0
- tokenizer.model +3 -0
- tokenizer_config.json +14 -0
- train_results.json +7 -0
- trainer_log.jsonl +0 -0
- trainer_state.json +2635 -0
- training_args.bin +3 -0
- training_loss.png +0 -0
all_results.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 6.0,
|
3 |
+
"train_loss": 0.8953271216487972,
|
4 |
+
"train_runtime": 33942.058,
|
5 |
+
"train_samples_per_second": 12.326,
|
6 |
+
"train_steps_per_second": 0.128
|
7 |
+
}
|
config.json
ADDED
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "/home/ubuntu/chatglm2-6b",
|
3 |
+
"add_bias_linear": false,
|
4 |
+
"add_qkv_bias": true,
|
5 |
+
"apply_query_key_layer_scaling": true,
|
6 |
+
"apply_residual_connection_post_layernorm": false,
|
7 |
+
"architectures": [
|
8 |
+
"ChatGLMForConditionalGeneration"
|
9 |
+
],
|
10 |
+
"attention_dropout": 0.0,
|
11 |
+
"attention_softmax_in_fp32": true,
|
12 |
+
"auto_map": {
|
13 |
+
"AutoConfig": "configuration_chatglm.ChatGLMConfig",
|
14 |
+
"AutoModel": "modeling_chatglm.ChatGLMForConditionalGeneration",
|
15 |
+
"AutoModelForCausalLM": "modeling_chatglm.ChatGLMForConditionalGeneration",
|
16 |
+
"AutoModelForSeq2SeqLM": "modeling_chatglm.ChatGLMForConditionalGeneration"
|
17 |
+
},
|
18 |
+
"bias_dropout_fusion": true,
|
19 |
+
"eos_token_id": 2,
|
20 |
+
"ffn_hidden_size": 13696,
|
21 |
+
"fp32_residual_connection": false,
|
22 |
+
"hidden_dropout": 0.0,
|
23 |
+
"hidden_size": 4096,
|
24 |
+
"kv_channels": 128,
|
25 |
+
"layernorm_epsilon": 1e-05,
|
26 |
+
"model_type": "chatglm",
|
27 |
+
"multi_query_attention": true,
|
28 |
+
"multi_query_group_num": 2,
|
29 |
+
"num_attention_heads": 32,
|
30 |
+
"num_layers": 28,
|
31 |
+
"original_rope": true,
|
32 |
+
"pad_token_id": 0,
|
33 |
+
"padded_vocab_size": 65024,
|
34 |
+
"post_layer_norm": true,
|
35 |
+
"pre_seq_len": null,
|
36 |
+
"prefix_projection": false,
|
37 |
+
"quantization_bit": 0,
|
38 |
+
"rmsnorm": true,
|
39 |
+
"seq_length": 32768,
|
40 |
+
"tie_word_embeddings": false,
|
41 |
+
"torch_dtype": "float16",
|
42 |
+
"transformers_version": "4.30.2",
|
43 |
+
"use_cache": true,
|
44 |
+
"vocab_size": 65024
|
45 |
+
}
|
configuration_chatglm.py
ADDED
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import PretrainedConfig
|
2 |
+
|
3 |
+
|
4 |
+
class ChatGLMConfig(PretrainedConfig):
|
5 |
+
model_type = "chatglm"
|
6 |
+
def __init__(
|
7 |
+
self,
|
8 |
+
num_layers=28,
|
9 |
+
padded_vocab_size=65024,
|
10 |
+
hidden_size=4096,
|
11 |
+
ffn_hidden_size=13696,
|
12 |
+
kv_channels=128,
|
13 |
+
num_attention_heads=32,
|
14 |
+
seq_length=2048,
|
15 |
+
hidden_dropout=0.0,
|
16 |
+
attention_dropout=0.0,
|
17 |
+
layernorm_epsilon=1e-5,
|
18 |
+
rmsnorm=True,
|
19 |
+
apply_residual_connection_post_layernorm=False,
|
20 |
+
post_layer_norm=True,
|
21 |
+
add_bias_linear=False,
|
22 |
+
add_qkv_bias=False,
|
23 |
+
bias_dropout_fusion=True,
|
24 |
+
multi_query_attention=False,
|
25 |
+
multi_query_group_num=1,
|
26 |
+
apply_query_key_layer_scaling=True,
|
27 |
+
attention_softmax_in_fp32=True,
|
28 |
+
fp32_residual_connection=False,
|
29 |
+
quantization_bit=0,
|
30 |
+
pre_seq_len=None,
|
31 |
+
prefix_projection=False,
|
32 |
+
**kwargs
|
33 |
+
):
|
34 |
+
self.num_layers = num_layers
|
35 |
+
self.vocab_size = padded_vocab_size
|
36 |
+
self.padded_vocab_size = padded_vocab_size
|
37 |
+
self.hidden_size = hidden_size
|
38 |
+
self.ffn_hidden_size = ffn_hidden_size
|
39 |
+
self.kv_channels = kv_channels
|
40 |
+
self.num_attention_heads = num_attention_heads
|
41 |
+
self.seq_length = seq_length
|
42 |
+
self.hidden_dropout = hidden_dropout
|
43 |
+
self.attention_dropout = attention_dropout
|
44 |
+
self.layernorm_epsilon = layernorm_epsilon
|
45 |
+
self.rmsnorm = rmsnorm
|
46 |
+
self.apply_residual_connection_post_layernorm = apply_residual_connection_post_layernorm
|
47 |
+
self.post_layer_norm = post_layer_norm
|
48 |
+
self.add_bias_linear = add_bias_linear
|
49 |
+
self.add_qkv_bias = add_qkv_bias
|
50 |
+
self.bias_dropout_fusion = bias_dropout_fusion
|
51 |
+
self.multi_query_attention = multi_query_attention
|
52 |
+
self.multi_query_group_num = multi_query_group_num
|
53 |
+
self.apply_query_key_layer_scaling = apply_query_key_layer_scaling
|
54 |
+
self.attention_softmax_in_fp32 = attention_softmax_in_fp32
|
55 |
+
self.fp32_residual_connection = fp32_residual_connection
|
56 |
+
self.quantization_bit = quantization_bit
|
57 |
+
self.pre_seq_len = pre_seq_len
|
58 |
+
self.prefix_projection = prefix_projection
|
59 |
+
super().__init__(**kwargs)
|
finetuning_args.json
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"finetuning_type": "freeze",
|
3 |
+
"lora_alpha": 9.0,
|
4 |
+
"lora_dropout": 0.05,
|
5 |
+
"lora_rank": 100,
|
6 |
+
"lora_target": [
|
7 |
+
"query_key_value"
|
8 |
+
],
|
9 |
+
"name_module_trainable": "mlp",
|
10 |
+
"num_layer_trainable": 1,
|
11 |
+
"pre_seq_len": 64,
|
12 |
+
"prefix_projection": false
|
13 |
+
}
|
generation_config.json
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"eos_token_id": 2,
|
4 |
+
"pad_token_id": 0,
|
5 |
+
"transformers_version": "4.30.2"
|
6 |
+
}
|
modeling_chatglm.py
ADDED
@@ -0,0 +1,1193 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
""" PyTorch ChatGLM model. """
|
2 |
+
|
3 |
+
import math
|
4 |
+
import copy
|
5 |
+
import warnings
|
6 |
+
import re
|
7 |
+
import sys
|
8 |
+
|
9 |
+
import torch
|
10 |
+
import torch.utils.checkpoint
|
11 |
+
import torch.nn.functional as F
|
12 |
+
from torch import nn
|
13 |
+
from torch.nn import CrossEntropyLoss, LayerNorm
|
14 |
+
from torch.nn.utils import skip_init
|
15 |
+
from typing import Optional, Tuple, Union, List, Callable, Dict, Any
|
16 |
+
|
17 |
+
from transformers.modeling_outputs import (
|
18 |
+
BaseModelOutputWithPast,
|
19 |
+
CausalLMOutputWithPast,
|
20 |
+
)
|
21 |
+
from transformers.modeling_utils import PreTrainedModel
|
22 |
+
from transformers.utils import logging
|
23 |
+
from transformers.generation.logits_process import LogitsProcessor
|
24 |
+
from transformers.generation.utils import LogitsProcessorList, StoppingCriteriaList, GenerationConfig, ModelOutput
|
25 |
+
|
26 |
+
from .configuration_chatglm import ChatGLMConfig
|
27 |
+
|
28 |
+
# flags required to enable jit fusion kernels
|
29 |
+
|
30 |
+
if sys.platform != 'darwin':
|
31 |
+
torch._C._jit_set_profiling_mode(False)
|
32 |
+
torch._C._jit_set_profiling_executor(False)
|
33 |
+
torch._C._jit_override_can_fuse_on_cpu(True)
|
34 |
+
torch._C._jit_override_can_fuse_on_gpu(True)
|
35 |
+
|
36 |
+
logger = logging.get_logger(__name__)
|
37 |
+
|
38 |
+
_CHECKPOINT_FOR_DOC = "THUDM/ChatGLM2-6B"
|
39 |
+
_CONFIG_FOR_DOC = "ChatGLM6BConfig"
|
40 |
+
|
41 |
+
CHATGLM_6B_PRETRAINED_MODEL_ARCHIVE_LIST = [
|
42 |
+
"THUDM/chatglm2-6b",
|
43 |
+
# See all ChatGLM models at https://huggingface.co/models?filter=chatglm
|
44 |
+
]
|
45 |
+
|
46 |
+
|
47 |
+
def default_init(cls, *args, **kwargs):
|
48 |
+
return cls(*args, **kwargs)
|
49 |
+
|
50 |
+
|
51 |
+
class InvalidScoreLogitsProcessor(LogitsProcessor):
|
52 |
+
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
|
53 |
+
if torch.isnan(scores).any() or torch.isinf(scores).any():
|
54 |
+
scores.zero_()
|
55 |
+
scores[..., 5] = 5e4
|
56 |
+
return scores
|
57 |
+
|
58 |
+
|
59 |
+
class PrefixEncoder(torch.nn.Module):
|
60 |
+
"""
|
61 |
+
The torch.nn model to encode the prefix
|
62 |
+
Input shape: (batch-size, prefix-length)
|
63 |
+
Output shape: (batch-size, prefix-length, 2*layers*hidden)
|
64 |
+
"""
|
65 |
+
|
66 |
+
def __init__(self, config: ChatGLMConfig):
|
67 |
+
super().__init__()
|
68 |
+
self.prefix_projection = config.prefix_projection
|
69 |
+
if self.prefix_projection:
|
70 |
+
# Use a two-layer MLP to encode the prefix
|
71 |
+
kv_size = config.num_layers * config.kv_channels * config.multi_query_group_num * 2
|
72 |
+
self.embedding = torch.nn.Embedding(config.pre_seq_len, kv_size)
|
73 |
+
self.trans = torch.nn.Sequential(
|
74 |
+
torch.nn.Linear(kv_size, config.hidden_size),
|
75 |
+
torch.nn.Tanh(),
|
76 |
+
torch.nn.Linear(config.hidden_size, kv_size)
|
77 |
+
)
|
78 |
+
else:
|
79 |
+
self.embedding = torch.nn.Embedding(config.pre_seq_len,
|
80 |
+
config.num_layers * config.kv_channels * config.multi_query_group_num * 2)
|
81 |
+
|
82 |
+
def forward(self, prefix: torch.Tensor):
|
83 |
+
if self.prefix_projection:
|
84 |
+
prefix_tokens = self.embedding(prefix)
|
85 |
+
past_key_values = self.trans(prefix_tokens)
|
86 |
+
else:
|
87 |
+
past_key_values = self.embedding(prefix)
|
88 |
+
return past_key_values
|
89 |
+
|
90 |
+
|
91 |
+
def split_tensor_along_last_dim(
|
92 |
+
tensor: torch.Tensor,
|
93 |
+
num_partitions: int,
|
94 |
+
contiguous_split_chunks: bool = False,
|
95 |
+
) -> List[torch.Tensor]:
|
96 |
+
"""Split a tensor along its last dimension.
|
97 |
+
|
98 |
+
Arguments:
|
99 |
+
tensor: input tensor.
|
100 |
+
num_partitions: number of partitions to split the tensor
|
101 |
+
contiguous_split_chunks: If True, make each chunk contiguous
|
102 |
+
in memory.
|
103 |
+
|
104 |
+
Returns:
|
105 |
+
A list of Tensors
|
106 |
+
"""
|
107 |
+
# Get the size and dimension.
|
108 |
+
last_dim = tensor.dim() - 1
|
109 |
+
last_dim_size = tensor.size()[last_dim] // num_partitions
|
110 |
+
# Split.
|
111 |
+
tensor_list = torch.split(tensor, last_dim_size, dim=last_dim)
|
112 |
+
# Note: torch.split does not create contiguous tensors by default.
|
113 |
+
if contiguous_split_chunks:
|
114 |
+
return tuple(chunk.contiguous() for chunk in tensor_list)
|
115 |
+
|
116 |
+
return tensor_list
|
117 |
+
|
118 |
+
|
119 |
+
class RotaryEmbedding(nn.Module):
|
120 |
+
def __init__(self, dim, original_impl=False, device=None, dtype=None):
|
121 |
+
super().__init__()
|
122 |
+
inv_freq = 1.0 / (10000 ** (torch.arange(0, dim, 2, device=device).to(dtype=dtype) / dim))
|
123 |
+
self.register_buffer("inv_freq", inv_freq)
|
124 |
+
self.dim = dim
|
125 |
+
self.original_impl = original_impl
|
126 |
+
|
127 |
+
def forward_impl(
|
128 |
+
self, seq_len: int, n_elem: int, dtype: torch.dtype, device: torch.device, base: int = 10000
|
129 |
+
):
|
130 |
+
"""Enhanced Transformer with Rotary Position Embedding.
|
131 |
+
|
132 |
+
Derived from: https://github.com/labmlai/annotated_deep_learning_paper_implementations/blob/master/labml_nn/
|
133 |
+
transformers/rope/__init__.py. MIT License:
|
134 |
+
https://github.com/labmlai/annotated_deep_learning_paper_implementations/blob/master/license.
|
135 |
+
"""
|
136 |
+
# $\Theta = {\theta_i = 10000^{\frac{2(i-1)}{d}}, i \in [1, 2, ..., \frac{d}{2}]}$
|
137 |
+
theta = 1.0 / (base ** (torch.arange(0, n_elem, 2, dtype=dtype, device=device) / n_elem))
|
138 |
+
|
139 |
+
# Create position indexes `[0, 1, ..., seq_len - 1]`
|
140 |
+
seq_idx = torch.arange(seq_len, dtype=dtype, device=device)
|
141 |
+
|
142 |
+
# Calculate the product of position index and $\theta_i$
|
143 |
+
idx_theta = torch.outer(seq_idx, theta).float()
|
144 |
+
|
145 |
+
cache = torch.stack([torch.cos(idx_theta), torch.sin(idx_theta)], dim=-1)
|
146 |
+
|
147 |
+
# this is to mimic the behaviour of complex32, else we will get different results
|
148 |
+
if dtype in (torch.float16, torch.bfloat16, torch.int8):
|
149 |
+
cache = cache.bfloat16() if dtype == torch.bfloat16 else cache.half()
|
150 |
+
return cache
|
151 |
+
|
152 |
+
def forward(self, max_seq_len, offset=0):
|
153 |
+
return self.forward_impl(
|
154 |
+
max_seq_len, self.dim, dtype=self.inv_freq.dtype, device=self.inv_freq.device
|
155 |
+
)
|
156 |
+
|
157 |
+
|
158 |
+
@torch.jit.script
|
159 |
+
def apply_rotary_pos_emb(x: torch.Tensor, rope_cache: torch.Tensor) -> torch.Tensor:
|
160 |
+
# x: [sq, b, np, hn]
|
161 |
+
sq, b, np, hn = x.size(0), x.size(1), x.size(2), x.size(3)
|
162 |
+
rot_dim = rope_cache.shape[-2] * 2
|
163 |
+
x, x_pass = x[..., :rot_dim], x[..., rot_dim:]
|
164 |
+
# truncate to support variable sizes
|
165 |
+
rope_cache = rope_cache[:sq]
|
166 |
+
xshaped = x.reshape(sq, -1, np, rot_dim // 2, 2)
|
167 |
+
rope_cache = rope_cache.view(sq, -1, 1, xshaped.size(3), 2)
|
168 |
+
x_out2 = torch.stack(
|
169 |
+
[
|
170 |
+
xshaped[..., 0] * rope_cache[..., 0] - xshaped[..., 1] * rope_cache[..., 1],
|
171 |
+
xshaped[..., 1] * rope_cache[..., 0] + xshaped[..., 0] * rope_cache[..., 1],
|
172 |
+
],
|
173 |
+
-1,
|
174 |
+
)
|
175 |
+
x_out2 = x_out2.flatten(3)
|
176 |
+
return torch.cat((x_out2, x_pass), dim=-1)
|
177 |
+
|
178 |
+
|
179 |
+
class RMSNorm(torch.nn.Module):
|
180 |
+
def __init__(self, normalized_shape, eps=1e-5, device=None, dtype=None, **kwargs):
|
181 |
+
super().__init__()
|
182 |
+
self.weight = torch.nn.Parameter(torch.empty(normalized_shape, device=device, dtype=dtype))
|
183 |
+
self.eps = eps
|
184 |
+
|
185 |
+
def forward(self, hidden_states: torch.Tensor):
|
186 |
+
input_dtype = hidden_states.dtype
|
187 |
+
variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True)
|
188 |
+
hidden_states = hidden_states * torch.rsqrt(variance + self.eps)
|
189 |
+
|
190 |
+
return (self.weight * hidden_states).to(input_dtype)
|
191 |
+
|
192 |
+
|
193 |
+
class CoreAttention(torch.nn.Module):
|
194 |
+
def __init__(self, config: ChatGLMConfig, layer_number):
|
195 |
+
super(CoreAttention, self).__init__()
|
196 |
+
|
197 |
+
self.apply_query_key_layer_scaling = config.apply_query_key_layer_scaling
|
198 |
+
self.attention_softmax_in_fp32 = config.attention_softmax_in_fp32
|
199 |
+
if self.apply_query_key_layer_scaling:
|
200 |
+
self.attention_softmax_in_fp32 = True
|
201 |
+
self.layer_number = max(1, layer_number)
|
202 |
+
|
203 |
+
projection_size = config.kv_channels * config.num_attention_heads
|
204 |
+
|
205 |
+
# Per attention head and per partition values.
|
206 |
+
self.hidden_size_per_partition = projection_size
|
207 |
+
self.hidden_size_per_attention_head = projection_size // config.num_attention_heads
|
208 |
+
self.num_attention_heads_per_partition = config.num_attention_heads
|
209 |
+
|
210 |
+
coeff = None
|
211 |
+
self.norm_factor = math.sqrt(self.hidden_size_per_attention_head)
|
212 |
+
if self.apply_query_key_layer_scaling:
|
213 |
+
coeff = self.layer_number
|
214 |
+
self.norm_factor *= coeff
|
215 |
+
self.coeff = coeff
|
216 |
+
|
217 |
+
self.attention_dropout = torch.nn.Dropout(config.attention_dropout)
|
218 |
+
|
219 |
+
def forward(self, query_layer, key_layer, value_layer, attention_mask):
|
220 |
+
pytorch_major_version = int(torch.__version__.split('.')[0])
|
221 |
+
if pytorch_major_version >= 2:
|
222 |
+
query_layer, key_layer, value_layer = [k.permute(1, 2, 0, 3) for k in [query_layer, key_layer, value_layer]]
|
223 |
+
if attention_mask is None and query_layer.shape[2] == key_layer.shape[2]:
|
224 |
+
context_layer = torch.nn.functional.scaled_dot_product_attention(query_layer, key_layer, value_layer,
|
225 |
+
is_causal=True)
|
226 |
+
else:
|
227 |
+
if attention_mask is not None:
|
228 |
+
attention_mask = ~attention_mask
|
229 |
+
context_layer = torch.nn.functional.scaled_dot_product_attention(query_layer, key_layer, value_layer,
|
230 |
+
attention_mask)
|
231 |
+
context_layer = context_layer.permute(2, 0, 1, 3)
|
232 |
+
new_context_layer_shape = context_layer.size()[:-2] + (self.hidden_size_per_partition,)
|
233 |
+
context_layer = context_layer.reshape(*new_context_layer_shape)
|
234 |
+
else:
|
235 |
+
# Raw attention scores
|
236 |
+
|
237 |
+
# [b, np, sq, sk]
|
238 |
+
output_size = (query_layer.size(1), query_layer.size(2), query_layer.size(0), key_layer.size(0))
|
239 |
+
|
240 |
+
# [sq, b, np, hn] -> [sq, b * np, hn]
|
241 |
+
query_layer = query_layer.view(output_size[2], output_size[0] * output_size[1], -1)
|
242 |
+
# [sk, b, np, hn] -> [sk, b * np, hn]
|
243 |
+
key_layer = key_layer.view(output_size[3], output_size[0] * output_size[1], -1)
|
244 |
+
|
245 |
+
# preallocting input tensor: [b * np, sq, sk]
|
246 |
+
matmul_input_buffer = torch.empty(
|
247 |
+
output_size[0] * output_size[1], output_size[2], output_size[3], dtype=query_layer.dtype,
|
248 |
+
device=query_layer.device
|
249 |
+
)
|
250 |
+
|
251 |
+
# Raw attention scores. [b * np, sq, sk]
|
252 |
+
matmul_result = torch.baddbmm(
|
253 |
+
matmul_input_buffer,
|
254 |
+
query_layer.transpose(0, 1), # [b * np, sq, hn]
|
255 |
+
key_layer.transpose(0, 1).transpose(1, 2), # [b * np, hn, sk]
|
256 |
+
beta=0.0,
|
257 |
+
alpha=(1.0 / self.norm_factor),
|
258 |
+
)
|
259 |
+
|
260 |
+
# change view to [b, np, sq, sk]
|
261 |
+
attention_scores = matmul_result.view(*output_size)
|
262 |
+
|
263 |
+
# ===========================
|
264 |
+
# Attention probs and dropout
|
265 |
+
# ===========================
|
266 |
+
|
267 |
+
# attention scores and attention mask [b, np, sq, sk]
|
268 |
+
if self.attention_softmax_in_fp32:
|
269 |
+
attention_scores = attention_scores.float()
|
270 |
+
if self.coeff is not None:
|
271 |
+
attention_scores = attention_scores * self.coeff
|
272 |
+
if attention_mask is None and attention_scores.shape[2] == attention_scores.shape[3]:
|
273 |
+
attention_mask = torch.ones(output_size[0], 1, output_size[2], output_size[3],
|
274 |
+
device=attention_scores.device, dtype=torch.bool)
|
275 |
+
attention_mask.tril_()
|
276 |
+
attention_mask = ~attention_mask
|
277 |
+
if attention_mask is not None:
|
278 |
+
attention_scores = attention_scores.masked_fill(attention_mask, float("-inf"))
|
279 |
+
attention_probs = F.softmax(attention_scores, dim=-1)
|
280 |
+
attention_probs = attention_probs.type_as(value_layer)
|
281 |
+
|
282 |
+
# This is actually dropping out entire tokens to attend to, which might
|
283 |
+
# seem a bit unusual, but is taken from the original Transformer paper.
|
284 |
+
attention_probs = self.attention_dropout(attention_probs)
|
285 |
+
# =========================
|
286 |
+
# Context layer. [sq, b, hp]
|
287 |
+
# =========================
|
288 |
+
|
289 |
+
# value_layer -> context layer.
|
290 |
+
# [sk, b, np, hn] --> [b, np, sq, hn]
|
291 |
+
|
292 |
+
# context layer shape: [b, np, sq, hn]
|
293 |
+
output_size = (value_layer.size(1), value_layer.size(2), query_layer.size(0), value_layer.size(3))
|
294 |
+
# change view [sk, b * np, hn]
|
295 |
+
value_layer = value_layer.view(value_layer.size(0), output_size[0] * output_size[1], -1)
|
296 |
+
# change view [b * np, sq, sk]
|
297 |
+
attention_probs = attention_probs.view(output_size[0] * output_size[1], output_size[2], -1)
|
298 |
+
# matmul: [b * np, sq, hn]
|
299 |
+
context_layer = torch.bmm(attention_probs, value_layer.transpose(0, 1))
|
300 |
+
# change view [b, np, sq, hn]
|
301 |
+
context_layer = context_layer.view(*output_size)
|
302 |
+
# [b, np, sq, hn] --> [sq, b, np, hn]
|
303 |
+
context_layer = context_layer.permute(2, 0, 1, 3).contiguous()
|
304 |
+
# [sq, b, np, hn] --> [sq, b, hp]
|
305 |
+
new_context_layer_shape = context_layer.size()[:-2] + (self.hidden_size_per_partition,)
|
306 |
+
context_layer = context_layer.view(*new_context_layer_shape)
|
307 |
+
|
308 |
+
return context_layer
|
309 |
+
|
310 |
+
|
311 |
+
class SelfAttention(torch.nn.Module):
|
312 |
+
"""Parallel self-attention layer abstract class.
|
313 |
+
|
314 |
+
Self-attention layer takes input with size [s, b, h]
|
315 |
+
and returns output of the same size.
|
316 |
+
"""
|
317 |
+
|
318 |
+
def __init__(self, config: ChatGLMConfig, layer_number, device=None):
|
319 |
+
super(SelfAttention, self).__init__()
|
320 |
+
self.layer_number = max(1, layer_number)
|
321 |
+
|
322 |
+
self.projection_size = config.kv_channels * config.num_attention_heads
|
323 |
+
|
324 |
+
# Per attention head and per partition values.
|
325 |
+
self.hidden_size_per_attention_head = self.projection_size // config.num_attention_heads
|
326 |
+
self.num_attention_heads_per_partition = config.num_attention_heads
|
327 |
+
|
328 |
+
self.multi_query_attention = config.multi_query_attention
|
329 |
+
self.qkv_hidden_size = 3 * self.projection_size
|
330 |
+
if self.multi_query_attention:
|
331 |
+
self.num_multi_query_groups_per_partition = config.multi_query_group_num
|
332 |
+
self.qkv_hidden_size = (
|
333 |
+
self.projection_size + 2 * self.hidden_size_per_attention_head * config.multi_query_group_num
|
334 |
+
)
|
335 |
+
self.query_key_value = nn.Linear(config.hidden_size, self.qkv_hidden_size,
|
336 |
+
bias=config.add_bias_linear or config.add_qkv_bias,
|
337 |
+
device=device, **_config_to_kwargs(config)
|
338 |
+
)
|
339 |
+
|
340 |
+
self.core_attention = CoreAttention(config, self.layer_number)
|
341 |
+
|
342 |
+
# Output.
|
343 |
+
self.dense = nn.Linear(self.projection_size, config.hidden_size, bias=config.add_bias_linear,
|
344 |
+
device=device, **_config_to_kwargs(config)
|
345 |
+
)
|
346 |
+
|
347 |
+
def _allocate_memory(self, inference_max_sequence_len, batch_size, device=None, dtype=None):
|
348 |
+
if self.multi_query_attention:
|
349 |
+
num_attention_heads = self.num_multi_query_groups_per_partition
|
350 |
+
else:
|
351 |
+
num_attention_heads = self.num_attention_heads_per_partition
|
352 |
+
return torch.empty(
|
353 |
+
inference_max_sequence_len,
|
354 |
+
batch_size,
|
355 |
+
num_attention_heads,
|
356 |
+
self.hidden_size_per_attention_head,
|
357 |
+
dtype=dtype,
|
358 |
+
device=device,
|
359 |
+
)
|
360 |
+
|
361 |
+
def forward(
|
362 |
+
self, hidden_states, attention_mask, rotary_pos_emb, kv_cache=None, use_cache=True
|
363 |
+
):
|
364 |
+
# hidden_states: [sq, b, h]
|
365 |
+
|
366 |
+
# =================================================
|
367 |
+
# Pre-allocate memory for key-values for inference.
|
368 |
+
# =================================================
|
369 |
+
# =====================
|
370 |
+
# Query, Key, and Value
|
371 |
+
# =====================
|
372 |
+
|
373 |
+
# Attention heads [sq, b, h] --> [sq, b, (np * 3 * hn)]
|
374 |
+
mixed_x_layer = self.query_key_value(hidden_states)
|
375 |
+
|
376 |
+
if self.multi_query_attention:
|
377 |
+
(query_layer, key_layer, value_layer) = mixed_x_layer.split(
|
378 |
+
[
|
379 |
+
self.num_attention_heads_per_partition * self.hidden_size_per_attention_head,
|
380 |
+
self.num_multi_query_groups_per_partition * self.hidden_size_per_attention_head,
|
381 |
+
self.num_multi_query_groups_per_partition * self.hidden_size_per_attention_head,
|
382 |
+
],
|
383 |
+
dim=-1,
|
384 |
+
)
|
385 |
+
query_layer = query_layer.view(
|
386 |
+
query_layer.size()[:-1] + (self.num_attention_heads_per_partition, self.hidden_size_per_attention_head)
|
387 |
+
)
|
388 |
+
key_layer = key_layer.view(
|
389 |
+
key_layer.size()[:-1] + (self.num_multi_query_groups_per_partition, self.hidden_size_per_attention_head)
|
390 |
+
)
|
391 |
+
value_layer = value_layer.view(
|
392 |
+
value_layer.size()[:-1]
|
393 |
+
+ (self.num_multi_query_groups_per_partition, self.hidden_size_per_attention_head)
|
394 |
+
)
|
395 |
+
else:
|
396 |
+
new_tensor_shape = mixed_x_layer.size()[:-1] + \
|
397 |
+
(self.num_attention_heads_per_partition,
|
398 |
+
3 * self.hidden_size_per_attention_head)
|
399 |
+
mixed_x_layer = mixed_x_layer.view(*new_tensor_shape)
|
400 |
+
|
401 |
+
# [sq, b, np, 3 * hn] --> 3 [sq, b, np, hn]
|
402 |
+
(query_layer, key_layer, value_layer) = split_tensor_along_last_dim(mixed_x_layer, 3)
|
403 |
+
|
404 |
+
# apply relative positional encoding (rotary embedding)
|
405 |
+
if rotary_pos_emb is not None:
|
406 |
+
query_layer = apply_rotary_pos_emb(query_layer, rotary_pos_emb)
|
407 |
+
key_layer = apply_rotary_pos_emb(key_layer, rotary_pos_emb)
|
408 |
+
|
409 |
+
# adjust key and value for inference
|
410 |
+
if kv_cache is not None:
|
411 |
+
cache_k, cache_v = kv_cache
|
412 |
+
key_layer = torch.cat((cache_k, key_layer), dim=0)
|
413 |
+
value_layer = torch.cat((cache_v, value_layer), dim=0)
|
414 |
+
if use_cache:
|
415 |
+
kv_cache = (key_layer, value_layer)
|
416 |
+
else:
|
417 |
+
kv_cache = None
|
418 |
+
|
419 |
+
if self.multi_query_attention:
|
420 |
+
key_layer = key_layer.unsqueeze(-2)
|
421 |
+
key_layer = key_layer.expand(
|
422 |
+
-1, -1, -1, self.num_attention_heads_per_partition // self.num_multi_query_groups_per_partition, -1
|
423 |
+
)
|
424 |
+
key_layer = key_layer.contiguous().view(
|
425 |
+
key_layer.size()[:2] + (self.num_attention_heads_per_partition, self.hidden_size_per_attention_head)
|
426 |
+
)
|
427 |
+
value_layer = value_layer.unsqueeze(-2)
|
428 |
+
value_layer = value_layer.expand(
|
429 |
+
-1, -1, -1, self.num_attention_heads_per_partition // self.num_multi_query_groups_per_partition, -1
|
430 |
+
)
|
431 |
+
value_layer = value_layer.contiguous().view(
|
432 |
+
value_layer.size()[:2] + (self.num_attention_heads_per_partition, self.hidden_size_per_attention_head)
|
433 |
+
)
|
434 |
+
|
435 |
+
# ==================================
|
436 |
+
# core attention computation
|
437 |
+
# ==================================
|
438 |
+
|
439 |
+
context_layer = self.core_attention(query_layer, key_layer, value_layer, attention_mask)
|
440 |
+
|
441 |
+
# =================
|
442 |
+
# Output. [sq, b, h]
|
443 |
+
# =================
|
444 |
+
|
445 |
+
output = self.dense(context_layer)
|
446 |
+
|
447 |
+
return output, kv_cache
|
448 |
+
|
449 |
+
|
450 |
+
def _config_to_kwargs(args):
|
451 |
+
common_kwargs = {
|
452 |
+
"dtype": args.torch_dtype,
|
453 |
+
}
|
454 |
+
return common_kwargs
|
455 |
+
|
456 |
+
|
457 |
+
class MLP(torch.nn.Module):
|
458 |
+
"""MLP.
|
459 |
+
|
460 |
+
MLP will take the input with h hidden state, project it to 4*h
|
461 |
+
hidden dimension, perform nonlinear transformation, and project the
|
462 |
+
state back into h hidden dimension.
|
463 |
+
"""
|
464 |
+
|
465 |
+
def __init__(self, config: ChatGLMConfig, device=None):
|
466 |
+
super(MLP, self).__init__()
|
467 |
+
|
468 |
+
self.add_bias = config.add_bias_linear
|
469 |
+
|
470 |
+
# Project to 4h. If using swiglu double the output width, see https://arxiv.org/pdf/2002.05202.pdf
|
471 |
+
self.dense_h_to_4h = nn.Linear(
|
472 |
+
config.hidden_size,
|
473 |
+
config.ffn_hidden_size * 2,
|
474 |
+
bias=self.add_bias,
|
475 |
+
device=device,
|
476 |
+
**_config_to_kwargs(config)
|
477 |
+
)
|
478 |
+
|
479 |
+
def swiglu(x):
|
480 |
+
x = torch.chunk(x, 2, dim=-1)
|
481 |
+
return F.silu(x[0]) * x[1]
|
482 |
+
|
483 |
+
self.activation_func = swiglu
|
484 |
+
|
485 |
+
# Project back to h.
|
486 |
+
self.dense_4h_to_h = nn.Linear(
|
487 |
+
config.ffn_hidden_size,
|
488 |
+
config.hidden_size,
|
489 |
+
bias=self.add_bias,
|
490 |
+
device=device,
|
491 |
+
**_config_to_kwargs(config)
|
492 |
+
)
|
493 |
+
|
494 |
+
def forward(self, hidden_states):
|
495 |
+
# [s, b, 4hp]
|
496 |
+
intermediate_parallel = self.dense_h_to_4h(hidden_states)
|
497 |
+
intermediate_parallel = self.activation_func(intermediate_parallel)
|
498 |
+
# [s, b, h]
|
499 |
+
output = self.dense_4h_to_h(intermediate_parallel)
|
500 |
+
return output
|
501 |
+
|
502 |
+
|
503 |
+
class GLMBlock(torch.nn.Module):
|
504 |
+
"""A single transformer layer.
|
505 |
+
|
506 |
+
Transformer layer takes input with size [s, b, h] and returns an
|
507 |
+
output of the same size.
|
508 |
+
"""
|
509 |
+
|
510 |
+
def __init__(self, config: ChatGLMConfig, layer_number, device=None):
|
511 |
+
super(GLMBlock, self).__init__()
|
512 |
+
self.layer_number = layer_number
|
513 |
+
|
514 |
+
self.apply_residual_connection_post_layernorm = config.apply_residual_connection_post_layernorm
|
515 |
+
|
516 |
+
self.fp32_residual_connection = config.fp32_residual_connection
|
517 |
+
|
518 |
+
LayerNormFunc = RMSNorm if config.rmsnorm else LayerNorm
|
519 |
+
# Layernorm on the input data.
|
520 |
+
self.input_layernorm = LayerNormFunc(config.hidden_size, eps=config.layernorm_epsilon, device=device,
|
521 |
+
dtype=config.torch_dtype)
|
522 |
+
|
523 |
+
# Self attention.
|
524 |
+
self.self_attention = SelfAttention(config, layer_number, device=device)
|
525 |
+
self.hidden_dropout = config.hidden_dropout
|
526 |
+
|
527 |
+
# Layernorm on the attention output
|
528 |
+
self.post_attention_layernorm = LayerNormFunc(config.hidden_size, eps=config.layernorm_epsilon, device=device,
|
529 |
+
dtype=config.torch_dtype)
|
530 |
+
|
531 |
+
# MLP
|
532 |
+
self.mlp = MLP(config, device=device)
|
533 |
+
|
534 |
+
def forward(
|
535 |
+
self, hidden_states, attention_mask, rotary_pos_emb, kv_cache=None, use_cache=True,
|
536 |
+
):
|
537 |
+
# hidden_states: [s, b, h]
|
538 |
+
|
539 |
+
# Layer norm at the beginning of the transformer layer.
|
540 |
+
layernorm_output = self.input_layernorm(hidden_states)
|
541 |
+
# Self attention.
|
542 |
+
attention_output, kv_cache = self.self_attention(
|
543 |
+
layernorm_output,
|
544 |
+
attention_mask,
|
545 |
+
rotary_pos_emb,
|
546 |
+
kv_cache=kv_cache,
|
547 |
+
use_cache=use_cache
|
548 |
+
)
|
549 |
+
|
550 |
+
# Residual connection.
|
551 |
+
if self.apply_residual_connection_post_layernorm:
|
552 |
+
residual = layernorm_output
|
553 |
+
else:
|
554 |
+
residual = hidden_states
|
555 |
+
|
556 |
+
layernorm_input = torch.nn.functional.dropout(attention_output, p=self.hidden_dropout, training=self.training)
|
557 |
+
layernorm_input = residual + layernorm_input
|
558 |
+
|
559 |
+
# Layer norm post the self attention.
|
560 |
+
layernorm_output = self.post_attention_layernorm(layernorm_input)
|
561 |
+
|
562 |
+
# MLP.
|
563 |
+
mlp_output = self.mlp(layernorm_output)
|
564 |
+
|
565 |
+
# Second residual connection.
|
566 |
+
if self.apply_residual_connection_post_layernorm:
|
567 |
+
residual = layernorm_output
|
568 |
+
else:
|
569 |
+
residual = layernorm_input
|
570 |
+
|
571 |
+
output = torch.nn.functional.dropout(mlp_output, p=self.hidden_dropout, training=self.training)
|
572 |
+
output = residual + output
|
573 |
+
|
574 |
+
return output, kv_cache
|
575 |
+
|
576 |
+
|
577 |
+
class GLMTransformer(torch.nn.Module):
|
578 |
+
"""Transformer class."""
|
579 |
+
|
580 |
+
def __init__(self, config: ChatGLMConfig, device=None):
|
581 |
+
super(GLMTransformer, self).__init__()
|
582 |
+
|
583 |
+
self.fp32_residual_connection = config.fp32_residual_connection
|
584 |
+
self.post_layer_norm = config.post_layer_norm
|
585 |
+
|
586 |
+
# Number of layers.
|
587 |
+
self.num_layers = config.num_layers
|
588 |
+
|
589 |
+
# Transformer layers.
|
590 |
+
def build_layer(layer_number):
|
591 |
+
return GLMBlock(config, layer_number, device=device)
|
592 |
+
|
593 |
+
self.layers = torch.nn.ModuleList([build_layer(i + 1) for i in range(self.num_layers)])
|
594 |
+
|
595 |
+
if self.post_layer_norm:
|
596 |
+
LayerNormFunc = RMSNorm if config.rmsnorm else LayerNorm
|
597 |
+
# Final layer norm before output.
|
598 |
+
self.final_layernorm = LayerNormFunc(config.hidden_size, eps=config.layernorm_epsilon, device=device,
|
599 |
+
dtype=config.torch_dtype)
|
600 |
+
|
601 |
+
self.gradient_checkpointing = False
|
602 |
+
|
603 |
+
def _get_layer(self, layer_number):
|
604 |
+
return self.layers[layer_number]
|
605 |
+
|
606 |
+
def forward(
|
607 |
+
self, hidden_states, attention_mask, rotary_pos_emb, kv_caches=None,
|
608 |
+
use_cache: Optional[bool] = True,
|
609 |
+
output_hidden_states: Optional[bool] = False,
|
610 |
+
):
|
611 |
+
if not kv_caches:
|
612 |
+
kv_caches = [None for _ in range(self.num_layers)]
|
613 |
+
presents = () if use_cache else None
|
614 |
+
if self.gradient_checkpointing and self.training:
|
615 |
+
if use_cache:
|
616 |
+
logger.warning_once(
|
617 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
618 |
+
)
|
619 |
+
use_cache = False
|
620 |
+
|
621 |
+
all_self_attentions = None
|
622 |
+
all_hidden_states = () if output_hidden_states else None
|
623 |
+
for index in range(self.num_layers):
|
624 |
+
if output_hidden_states:
|
625 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
626 |
+
|
627 |
+
layer = self._get_layer(index)
|
628 |
+
if self.gradient_checkpointing and self.training:
|
629 |
+
layer_ret = torch.utils.checkpoint.checkpoint(
|
630 |
+
layer,
|
631 |
+
hidden_states,
|
632 |
+
attention_mask,
|
633 |
+
rotary_pos_emb,
|
634 |
+
kv_caches[index],
|
635 |
+
use_cache
|
636 |
+
)
|
637 |
+
else:
|
638 |
+
layer_ret = layer(
|
639 |
+
hidden_states,
|
640 |
+
attention_mask,
|
641 |
+
rotary_pos_emb,
|
642 |
+
kv_cache=kv_caches[index],
|
643 |
+
use_cache=use_cache
|
644 |
+
)
|
645 |
+
hidden_states, kv_cache = layer_ret
|
646 |
+
if use_cache:
|
647 |
+
presents = presents + (kv_cache,)
|
648 |
+
|
649 |
+
if output_hidden_states:
|
650 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
651 |
+
|
652 |
+
# Final layer norm.
|
653 |
+
if self.post_layer_norm:
|
654 |
+
hidden_states = self.final_layernorm(hidden_states)
|
655 |
+
|
656 |
+
return hidden_states, presents, all_hidden_states, all_self_attentions
|
657 |
+
|
658 |
+
|
659 |
+
class ChatGLMPreTrainedModel(PreTrainedModel):
|
660 |
+
"""
|
661 |
+
An abstract class to handle weights initialization and
|
662 |
+
a simple interface for downloading and loading pretrained models.
|
663 |
+
"""
|
664 |
+
|
665 |
+
is_parallelizable = False
|
666 |
+
supports_gradient_checkpointing = True
|
667 |
+
config_class = ChatGLMConfig
|
668 |
+
base_model_prefix = "transformer"
|
669 |
+
_no_split_modules = ["GLMBlock"]
|
670 |
+
|
671 |
+
def _init_weights(self, module: nn.Module):
|
672 |
+
"""Initialize the weights."""
|
673 |
+
return
|
674 |
+
|
675 |
+
def get_masks(self, input_ids, past_key_values, padding_mask=None):
|
676 |
+
batch_size, seq_length = input_ids.shape
|
677 |
+
full_attention_mask = torch.ones(batch_size, seq_length, seq_length, device=input_ids.device)
|
678 |
+
full_attention_mask.tril_()
|
679 |
+
past_length = 0
|
680 |
+
if past_key_values:
|
681 |
+
past_length = past_key_values[0][0].shape[0]
|
682 |
+
if past_length:
|
683 |
+
full_attention_mask = torch.cat((torch.ones(batch_size, seq_length, past_length,
|
684 |
+
device=input_ids.device), full_attention_mask), dim=-1)
|
685 |
+
if padding_mask is not None:
|
686 |
+
full_attention_mask = full_attention_mask * padding_mask.unsqueeze(1)
|
687 |
+
if not past_length and padding_mask is not None:
|
688 |
+
full_attention_mask -= padding_mask.unsqueeze(-1) - 1
|
689 |
+
full_attention_mask = (full_attention_mask < 0.5).bool()
|
690 |
+
full_attention_mask.unsqueeze_(1)
|
691 |
+
return full_attention_mask
|
692 |
+
|
693 |
+
def get_position_ids(self, input_ids, device):
|
694 |
+
batch_size, seq_length = input_ids.shape
|
695 |
+
position_ids = torch.arange(seq_length, dtype=torch.long, device=device).unsqueeze(0).repeat(batch_size, 1)
|
696 |
+
return position_ids
|
697 |
+
|
698 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
699 |
+
if isinstance(module, GLMTransformer):
|
700 |
+
module.gradient_checkpointing = value
|
701 |
+
|
702 |
+
|
703 |
+
class Embedding(torch.nn.Module):
|
704 |
+
"""Language model embeddings."""
|
705 |
+
|
706 |
+
def __init__(self, config: ChatGLMConfig, device=None):
|
707 |
+
super(Embedding, self).__init__()
|
708 |
+
|
709 |
+
self.hidden_size = config.hidden_size
|
710 |
+
# Word embeddings (parallel).
|
711 |
+
self.word_embeddings = nn.Embedding(
|
712 |
+
config.padded_vocab_size,
|
713 |
+
self.hidden_size,
|
714 |
+
dtype=config.torch_dtype,
|
715 |
+
device=device
|
716 |
+
)
|
717 |
+
self.fp32_residual_connection = config.fp32_residual_connection
|
718 |
+
|
719 |
+
def forward(self, input_ids):
|
720 |
+
# Embeddings.
|
721 |
+
words_embeddings = self.word_embeddings(input_ids)
|
722 |
+
embeddings = words_embeddings
|
723 |
+
# Data format change to avoid explicit tranposes : [b s h] --> [s b h].
|
724 |
+
embeddings = embeddings.transpose(0, 1).contiguous()
|
725 |
+
# If the input flag for fp32 residual connection is set, convert for float.
|
726 |
+
if self.fp32_residual_connection:
|
727 |
+
embeddings = embeddings.float()
|
728 |
+
return embeddings
|
729 |
+
|
730 |
+
|
731 |
+
class ChatGLMModel(ChatGLMPreTrainedModel):
|
732 |
+
def __init__(self, config: ChatGLMConfig, device=None, empty_init=True):
|
733 |
+
super().__init__(config)
|
734 |
+
if empty_init:
|
735 |
+
init_method = skip_init
|
736 |
+
else:
|
737 |
+
init_method = default_init
|
738 |
+
init_kwargs = {}
|
739 |
+
if device is not None:
|
740 |
+
init_kwargs["device"] = device
|
741 |
+
self.embedding = init_method(Embedding, config, **init_kwargs)
|
742 |
+
self.num_layers = config.num_layers
|
743 |
+
self.multi_query_group_num = config.multi_query_group_num
|
744 |
+
self.kv_channels = config.kv_channels
|
745 |
+
|
746 |
+
# Rotary positional embeddings
|
747 |
+
self.seq_length = config.seq_length
|
748 |
+
rotary_dim = (
|
749 |
+
config.hidden_size // config.num_attention_heads if config.kv_channels is None else config.kv_channels
|
750 |
+
)
|
751 |
+
|
752 |
+
self.rotary_pos_emb = RotaryEmbedding(rotary_dim // 2, original_impl=config.original_rope, device=device,
|
753 |
+
dtype=config.torch_dtype)
|
754 |
+
self.encoder = init_method(GLMTransformer, config, **init_kwargs)
|
755 |
+
self.output_layer = init_method(nn.Linear, config.hidden_size, config.padded_vocab_size, bias=False,
|
756 |
+
dtype=config.torch_dtype, **init_kwargs)
|
757 |
+
self.pre_seq_len = config.pre_seq_len
|
758 |
+
self.prefix_projection = config.prefix_projection
|
759 |
+
if self.pre_seq_len is not None:
|
760 |
+
for param in self.parameters():
|
761 |
+
param.requires_grad = False
|
762 |
+
self.prefix_tokens = torch.arange(self.pre_seq_len).long()
|
763 |
+
self.prefix_encoder = PrefixEncoder(config)
|
764 |
+
self.dropout = torch.nn.Dropout(0.1)
|
765 |
+
|
766 |
+
def get_input_embeddings(self):
|
767 |
+
return self.embedding.word_embeddings
|
768 |
+
|
769 |
+
def get_prompt(self, batch_size, device, dtype=torch.half):
|
770 |
+
prefix_tokens = self.prefix_tokens.unsqueeze(0).expand(batch_size, -1).to(device)
|
771 |
+
past_key_values = self.prefix_encoder(prefix_tokens).type(dtype)
|
772 |
+
past_key_values = past_key_values.view(
|
773 |
+
batch_size,
|
774 |
+
self.pre_seq_len,
|
775 |
+
self.num_layers * 2,
|
776 |
+
self.multi_query_group_num,
|
777 |
+
self.kv_channels
|
778 |
+
)
|
779 |
+
# seq_len, b, nh, hidden_size
|
780 |
+
past_key_values = self.dropout(past_key_values)
|
781 |
+
past_key_values = past_key_values.permute([2, 1, 0, 3, 4]).split(2)
|
782 |
+
return past_key_values
|
783 |
+
|
784 |
+
def forward(
|
785 |
+
self,
|
786 |
+
input_ids,
|
787 |
+
position_ids: Optional[torch.Tensor] = None,
|
788 |
+
attention_mask: Optional[torch.BoolTensor] = None,
|
789 |
+
full_attention_mask: Optional[torch.BoolTensor] = None,
|
790 |
+
past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None,
|
791 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
792 |
+
use_cache: Optional[bool] = None,
|
793 |
+
output_hidden_states: Optional[bool] = None,
|
794 |
+
return_dict: Optional[bool] = None,
|
795 |
+
):
|
796 |
+
output_hidden_states = (
|
797 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
798 |
+
)
|
799 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
800 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
801 |
+
|
802 |
+
batch_size, seq_length = input_ids.shape
|
803 |
+
|
804 |
+
if inputs_embeds is None:
|
805 |
+
inputs_embeds = self.embedding(input_ids)
|
806 |
+
|
807 |
+
if self.pre_seq_len is not None:
|
808 |
+
if past_key_values is None:
|
809 |
+
past_key_values = self.get_prompt(batch_size=batch_size, device=input_ids.device,
|
810 |
+
dtype=inputs_embeds.dtype)
|
811 |
+
if attention_mask is not None:
|
812 |
+
attention_mask = torch.cat([attention_mask.new_ones((batch_size, self.pre_seq_len)),
|
813 |
+
attention_mask], dim=-1)
|
814 |
+
|
815 |
+
if full_attention_mask is None:
|
816 |
+
if (attention_mask is not None and not attention_mask.all()) or (past_key_values and seq_length != 1):
|
817 |
+
full_attention_mask = self.get_masks(input_ids, past_key_values, padding_mask=attention_mask)
|
818 |
+
|
819 |
+
# Rotary positional embeddings
|
820 |
+
rotary_pos_emb = self.rotary_pos_emb(self.seq_length)
|
821 |
+
if position_ids is not None:
|
822 |
+
rotary_pos_emb = rotary_pos_emb[position_ids]
|
823 |
+
else:
|
824 |
+
rotary_pos_emb = rotary_pos_emb[None, :seq_length]
|
825 |
+
rotary_pos_emb = rotary_pos_emb.transpose(0, 1).contiguous()
|
826 |
+
|
827 |
+
# Run encoder.
|
828 |
+
hidden_states, presents, all_hidden_states, all_self_attentions = self.encoder(
|
829 |
+
inputs_embeds, full_attention_mask, rotary_pos_emb=rotary_pos_emb,
|
830 |
+
kv_caches=past_key_values, use_cache=use_cache, output_hidden_states=output_hidden_states
|
831 |
+
)
|
832 |
+
|
833 |
+
if not return_dict:
|
834 |
+
return tuple(v for v in [hidden_states, presents, all_hidden_states, all_self_attentions] if v is not None)
|
835 |
+
|
836 |
+
return BaseModelOutputWithPast(
|
837 |
+
last_hidden_state=hidden_states,
|
838 |
+
past_key_values=presents,
|
839 |
+
hidden_states=all_hidden_states,
|
840 |
+
attentions=all_self_attentions,
|
841 |
+
)
|
842 |
+
|
843 |
+
def quantize(self, weight_bit_width: int):
|
844 |
+
from .quantization import quantize
|
845 |
+
quantize(self.encoder, weight_bit_width)
|
846 |
+
return self
|
847 |
+
|
848 |
+
|
849 |
+
class ChatGLMForConditionalGeneration(ChatGLMPreTrainedModel):
|
850 |
+
def __init__(self, config: ChatGLMConfig, empty_init=True, device=None):
|
851 |
+
super().__init__(config)
|
852 |
+
|
853 |
+
self.max_sequence_length = config.max_length
|
854 |
+
self.transformer = ChatGLMModel(config, empty_init=empty_init, device=device)
|
855 |
+
self.config = config
|
856 |
+
self.quantized = False
|
857 |
+
|
858 |
+
if self.config.quantization_bit:
|
859 |
+
self.quantize(self.config.quantization_bit, empty_init=True)
|
860 |
+
|
861 |
+
def _update_model_kwargs_for_generation(
|
862 |
+
self,
|
863 |
+
outputs: ModelOutput,
|
864 |
+
model_kwargs: Dict[str, Any],
|
865 |
+
is_encoder_decoder: bool = False,
|
866 |
+
standardize_cache_format: bool = False,
|
867 |
+
) -> Dict[str, Any]:
|
868 |
+
# update past_key_values
|
869 |
+
model_kwargs["past_key_values"] = self._extract_past_from_model_output(
|
870 |
+
outputs, standardize_cache_format=standardize_cache_format
|
871 |
+
)
|
872 |
+
|
873 |
+
# update attention mask
|
874 |
+
if "attention_mask" in model_kwargs:
|
875 |
+
attention_mask = model_kwargs["attention_mask"]
|
876 |
+
model_kwargs["attention_mask"] = torch.cat(
|
877 |
+
[attention_mask, attention_mask.new_ones((attention_mask.shape[0], 1))], dim=-1
|
878 |
+
)
|
879 |
+
|
880 |
+
# update position ids
|
881 |
+
if "position_ids" in model_kwargs:
|
882 |
+
position_ids = model_kwargs["position_ids"]
|
883 |
+
new_position_id = position_ids[..., -1:].clone()
|
884 |
+
new_position_id += 1
|
885 |
+
model_kwargs["position_ids"] = torch.cat(
|
886 |
+
[position_ids, new_position_id], dim=-1
|
887 |
+
)
|
888 |
+
|
889 |
+
model_kwargs["is_first_forward"] = False
|
890 |
+
return model_kwargs
|
891 |
+
|
892 |
+
def prepare_inputs_for_generation(
|
893 |
+
self,
|
894 |
+
input_ids: torch.LongTensor,
|
895 |
+
past_key_values: Optional[torch.Tensor] = None,
|
896 |
+
attention_mask: Optional[torch.Tensor] = None,
|
897 |
+
position_ids: Optional[torch.Tensor] = None,
|
898 |
+
is_first_forward: bool = True,
|
899 |
+
**kwargs
|
900 |
+
) -> dict:
|
901 |
+
# only last token for input_ids if past is not None
|
902 |
+
if position_ids is None:
|
903 |
+
position_ids = self.get_position_ids(input_ids, device=input_ids.device)
|
904 |
+
if not is_first_forward:
|
905 |
+
position_ids = position_ids[..., -1:]
|
906 |
+
input_ids = input_ids[:, -1:]
|
907 |
+
return {
|
908 |
+
"input_ids": input_ids,
|
909 |
+
"past_key_values": past_key_values,
|
910 |
+
"position_ids": position_ids,
|
911 |
+
"attention_mask": attention_mask,
|
912 |
+
"return_last_logit": True
|
913 |
+
}
|
914 |
+
|
915 |
+
def forward(
|
916 |
+
self,
|
917 |
+
input_ids: Optional[torch.Tensor] = None,
|
918 |
+
position_ids: Optional[torch.Tensor] = None,
|
919 |
+
attention_mask: Optional[torch.Tensor] = None,
|
920 |
+
past_key_values: Optional[Tuple[torch.FloatTensor]] = None,
|
921 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
922 |
+
labels: Optional[torch.Tensor] = None,
|
923 |
+
use_cache: Optional[bool] = None,
|
924 |
+
output_attentions: Optional[bool] = None,
|
925 |
+
output_hidden_states: Optional[bool] = None,
|
926 |
+
return_dict: Optional[bool] = None,
|
927 |
+
return_last_logit: Optional[bool] = False,
|
928 |
+
):
|
929 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
930 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
931 |
+
|
932 |
+
transformer_outputs = self.transformer(
|
933 |
+
input_ids=input_ids,
|
934 |
+
position_ids=position_ids,
|
935 |
+
attention_mask=attention_mask,
|
936 |
+
past_key_values=past_key_values,
|
937 |
+
inputs_embeds=inputs_embeds,
|
938 |
+
use_cache=use_cache,
|
939 |
+
output_hidden_states=output_hidden_states,
|
940 |
+
return_dict=return_dict,
|
941 |
+
)
|
942 |
+
|
943 |
+
hidden_states = transformer_outputs[0]
|
944 |
+
if return_last_logit:
|
945 |
+
hidden_states = hidden_states[-1:]
|
946 |
+
lm_logits = self.transformer.output_layer(hidden_states)
|
947 |
+
lm_logits = lm_logits.transpose(0, 1).contiguous()
|
948 |
+
|
949 |
+
loss = None
|
950 |
+
if labels is not None:
|
951 |
+
lm_logits = lm_logits.to(torch.float32)
|
952 |
+
|
953 |
+
# Shift so that tokens < n predict n
|
954 |
+
shift_logits = lm_logits[..., :-1, :].contiguous()
|
955 |
+
shift_labels = labels[..., 1:].contiguous()
|
956 |
+
# Flatten the tokens
|
957 |
+
loss_fct = CrossEntropyLoss(ignore_index=-100)
|
958 |
+
loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
|
959 |
+
|
960 |
+
lm_logits = lm_logits.to(hidden_states.dtype)
|
961 |
+
loss = loss.to(hidden_states.dtype)
|
962 |
+
|
963 |
+
if not return_dict:
|
964 |
+
output = (lm_logits,) + transformer_outputs[1:]
|
965 |
+
return ((loss,) + output) if loss is not None else output
|
966 |
+
|
967 |
+
return CausalLMOutputWithPast(
|
968 |
+
loss=loss,
|
969 |
+
logits=lm_logits,
|
970 |
+
past_key_values=transformer_outputs.past_key_values,
|
971 |
+
hidden_states=transformer_outputs.hidden_states,
|
972 |
+
attentions=transformer_outputs.attentions,
|
973 |
+
)
|
974 |
+
|
975 |
+
@staticmethod
|
976 |
+
def _reorder_cache(
|
977 |
+
past: Tuple[Tuple[torch.Tensor, torch.Tensor], ...], beam_idx: torch.LongTensor
|
978 |
+
) -> Tuple[Tuple[torch.Tensor, torch.Tensor], ...]:
|
979 |
+
"""
|
980 |
+
This function is used to re-order the `past_key_values` cache if [`~PreTrainedModel.beam_search`] or
|
981 |
+
[`~PreTrainedModel.beam_sample`] is called. This is required to match `past_key_values` with the correct
|
982 |
+
beam_idx at every generation step.
|
983 |
+
|
984 |
+
Output shares the same memory storage as `past`.
|
985 |
+
"""
|
986 |
+
return tuple(
|
987 |
+
(
|
988 |
+
layer_past[0].index_select(1, beam_idx.to(layer_past[0].device)),
|
989 |
+
layer_past[1].index_select(1, beam_idx.to(layer_past[1].device)),
|
990 |
+
)
|
991 |
+
for layer_past in past
|
992 |
+
)
|
993 |
+
|
994 |
+
def process_response(self, response):
|
995 |
+
response = response.strip()
|
996 |
+
response = response.replace("[[训练时间]]", "2023年")
|
997 |
+
return response
|
998 |
+
|
999 |
+
def build_inputs(self, tokenizer, query: str, history: List[Tuple[str, str]] = None):
|
1000 |
+
prompt = tokenizer.build_prompt(query, history=history)
|
1001 |
+
inputs = tokenizer([prompt], return_tensors="pt")
|
1002 |
+
inputs = inputs.to(self.device)
|
1003 |
+
return inputs
|
1004 |
+
|
1005 |
+
def build_stream_inputs(self, tokenizer, query: str, history: List[Tuple[str, str]] = None):
|
1006 |
+
if history:
|
1007 |
+
prompt = "\n\n[Round {}]\n\n问:{}\n\n答:".format(len(history) + 1, query)
|
1008 |
+
input_ids = tokenizer.encode(prompt, add_special_tokens=False)
|
1009 |
+
input_ids = input_ids[1:]
|
1010 |
+
inputs = tokenizer.batch_encode_plus([(input_ids, None)], return_tensors="pt", add_special_tokens=False)
|
1011 |
+
else:
|
1012 |
+
prompt = "[Round {}]\n\n问:{}\n\n答:".format(len(history) + 1, query)
|
1013 |
+
inputs = tokenizer([prompt], return_tensors="pt")
|
1014 |
+
inputs = inputs.to(self.device)
|
1015 |
+
return inputs
|
1016 |
+
|
1017 |
+
@torch.no_grad()
|
1018 |
+
def chat(self, tokenizer, query: str, history: List[Tuple[str, str]] = None, max_length: int = 8192, num_beams=1,
|
1019 |
+
do_sample=True, top_p=0.8, temperature=0.8, logits_processor=None, **kwargs):
|
1020 |
+
if history is None:
|
1021 |
+
history = []
|
1022 |
+
if logits_processor is None:
|
1023 |
+
logits_processor = LogitsProcessorList()
|
1024 |
+
logits_processor.append(InvalidScoreLogitsProcessor())
|
1025 |
+
gen_kwargs = {"max_length": max_length, "num_beams": num_beams, "do_sample": do_sample, "top_p": top_p,
|
1026 |
+
"temperature": temperature, "logits_processor": logits_processor, **kwargs}
|
1027 |
+
inputs = self.build_inputs(tokenizer, query, history=history)
|
1028 |
+
outputs = self.generate(**inputs, **gen_kwargs)
|
1029 |
+
outputs = outputs.tolist()[0][len(inputs["input_ids"][0]):]
|
1030 |
+
response = tokenizer.decode(outputs)
|
1031 |
+
response = self.process_response(response)
|
1032 |
+
history = history + [(query, response)]
|
1033 |
+
return response, history
|
1034 |
+
|
1035 |
+
@torch.no_grad()
|
1036 |
+
def stream_chat(self, tokenizer, query: str, history: List[Tuple[str, str]] = None, past_key_values=None,
|
1037 |
+
max_length: int = 8192, do_sample=True, top_p=0.8, temperature=0.8, logits_processor=None,
|
1038 |
+
return_past_key_values=False, **kwargs):
|
1039 |
+
if history is None:
|
1040 |
+
history = []
|
1041 |
+
if logits_processor is None:
|
1042 |
+
logits_processor = LogitsProcessorList()
|
1043 |
+
logits_processor.append(InvalidScoreLogitsProcessor())
|
1044 |
+
gen_kwargs = {"max_length": max_length, "do_sample": do_sample, "top_p": top_p,
|
1045 |
+
"temperature": temperature, "logits_processor": logits_processor, **kwargs}
|
1046 |
+
if past_key_values is None and not return_past_key_values:
|
1047 |
+
inputs = self.build_inputs(tokenizer, query, history=history)
|
1048 |
+
else:
|
1049 |
+
inputs = self.build_stream_inputs(tokenizer, query, history=history)
|
1050 |
+
if past_key_values is not None:
|
1051 |
+
past_length = past_key_values[0][0].shape[0]
|
1052 |
+
if self.transformer.pre_seq_len is not None:
|
1053 |
+
past_length -= self.transformer.pre_seq_len
|
1054 |
+
inputs.position_ids += past_length
|
1055 |
+
attention_mask = inputs.attention_mask
|
1056 |
+
attention_mask = torch.cat((attention_mask.new_ones(1, past_length), attention_mask), dim=1)
|
1057 |
+
inputs['attention_mask'] = attention_mask
|
1058 |
+
for outputs in self.stream_generate(**inputs, past_key_values=past_key_values,
|
1059 |
+
return_past_key_values=return_past_key_values, **gen_kwargs):
|
1060 |
+
if return_past_key_values:
|
1061 |
+
outputs, past_key_values = outputs
|
1062 |
+
outputs = outputs.tolist()[0][len(inputs["input_ids"][0]):]
|
1063 |
+
response = tokenizer.decode(outputs)
|
1064 |
+
if response and response[-1] != "�":
|
1065 |
+
response = self.process_response(response)
|
1066 |
+
new_history = history + [(query, response)]
|
1067 |
+
if return_past_key_values:
|
1068 |
+
yield response, new_history, past_key_values
|
1069 |
+
else:
|
1070 |
+
yield response, new_history
|
1071 |
+
|
1072 |
+
@torch.no_grad()
|
1073 |
+
def stream_generate(
|
1074 |
+
self,
|
1075 |
+
input_ids,
|
1076 |
+
generation_config: Optional[GenerationConfig] = None,
|
1077 |
+
logits_processor: Optional[LogitsProcessorList] = None,
|
1078 |
+
stopping_criteria: Optional[StoppingCriteriaList] = None,
|
1079 |
+
prefix_allowed_tokens_fn: Optional[Callable[[int, torch.Tensor], List[int]]] = None,
|
1080 |
+
return_past_key_values=False,
|
1081 |
+
**kwargs,
|
1082 |
+
):
|
1083 |
+
batch_size, input_ids_seq_length = input_ids.shape[0], input_ids.shape[-1]
|
1084 |
+
|
1085 |
+
if generation_config is None:
|
1086 |
+
generation_config = self.generation_config
|
1087 |
+
generation_config = copy.deepcopy(generation_config)
|
1088 |
+
model_kwargs = generation_config.update(**kwargs)
|
1089 |
+
bos_token_id, eos_token_id = generation_config.bos_token_id, generation_config.eos_token_id
|
1090 |
+
|
1091 |
+
if isinstance(eos_token_id, int):
|
1092 |
+
eos_token_id = [eos_token_id]
|
1093 |
+
|
1094 |
+
has_default_max_length = kwargs.get("max_length") is None and generation_config.max_length is not None
|
1095 |
+
if has_default_max_length and generation_config.max_new_tokens is None:
|
1096 |
+
warnings.warn(
|
1097 |
+
f"Using `max_length`'s default ({generation_config.max_length}) to control the generation length. "
|
1098 |
+
"This behaviour is deprecated and will be removed from the config in v5 of Transformers -- we"
|
1099 |
+
" recommend using `max_new_tokens` to control the maximum length of the generation.",
|
1100 |
+
UserWarning,
|
1101 |
+
)
|
1102 |
+
elif generation_config.max_new_tokens is not None:
|
1103 |
+
generation_config.max_length = generation_config.max_new_tokens + input_ids_seq_length
|
1104 |
+
if not has_default_max_length:
|
1105 |
+
logger.warn(
|
1106 |
+
f"Both `max_new_tokens` (={generation_config.max_new_tokens}) and `max_length`(="
|
1107 |
+
f"{generation_config.max_length}) seem to have been set. `max_new_tokens` will take precedence. "
|
1108 |
+
"Please refer to the documentation for more information. "
|
1109 |
+
"(https://huggingface.co/docs/transformers/main/en/main_classes/text_generation)",
|
1110 |
+
UserWarning,
|
1111 |
+
)
|
1112 |
+
|
1113 |
+
if input_ids_seq_length >= generation_config.max_length:
|
1114 |
+
input_ids_string = "decoder_input_ids" if self.config.is_encoder_decoder else "input_ids"
|
1115 |
+
logger.warning(
|
1116 |
+
f"Input length of {input_ids_string} is {input_ids_seq_length}, but `max_length` is set to"
|
1117 |
+
f" {generation_config.max_length}. This can lead to unexpected behavior. You should consider"
|
1118 |
+
" increasing `max_new_tokens`."
|
1119 |
+
)
|
1120 |
+
|
1121 |
+
# 2. Set generation parameters if not already defined
|
1122 |
+
logits_processor = logits_processor if logits_processor is not None else LogitsProcessorList()
|
1123 |
+
stopping_criteria = stopping_criteria if stopping_criteria is not None else StoppingCriteriaList()
|
1124 |
+
|
1125 |
+
logits_processor = self._get_logits_processor(
|
1126 |
+
generation_config=generation_config,
|
1127 |
+
input_ids_seq_length=input_ids_seq_length,
|
1128 |
+
encoder_input_ids=input_ids,
|
1129 |
+
prefix_allowed_tokens_fn=prefix_allowed_tokens_fn,
|
1130 |
+
logits_processor=logits_processor,
|
1131 |
+
)
|
1132 |
+
|
1133 |
+
stopping_criteria = self._get_stopping_criteria(
|
1134 |
+
generation_config=generation_config, stopping_criteria=stopping_criteria
|
1135 |
+
)
|
1136 |
+
logits_warper = self._get_logits_warper(generation_config)
|
1137 |
+
|
1138 |
+
unfinished_sequences = input_ids.new(input_ids.shape[0]).fill_(1)
|
1139 |
+
scores = None
|
1140 |
+
while True:
|
1141 |
+
model_inputs = self.prepare_inputs_for_generation(input_ids, **model_kwargs)
|
1142 |
+
# forward pass to get next token
|
1143 |
+
outputs = self(
|
1144 |
+
**model_inputs,
|
1145 |
+
return_dict=True,
|
1146 |
+
output_attentions=False,
|
1147 |
+
output_hidden_states=False,
|
1148 |
+
)
|
1149 |
+
|
1150 |
+
next_token_logits = outputs.logits[:, -1, :]
|
1151 |
+
|
1152 |
+
# pre-process distribution
|
1153 |
+
next_token_scores = logits_processor(input_ids, next_token_logits)
|
1154 |
+
next_token_scores = logits_warper(input_ids, next_token_scores)
|
1155 |
+
|
1156 |
+
# sample
|
1157 |
+
probs = nn.functional.softmax(next_token_scores, dim=-1)
|
1158 |
+
if generation_config.do_sample:
|
1159 |
+
next_tokens = torch.multinomial(probs, num_samples=1).squeeze(1)
|
1160 |
+
else:
|
1161 |
+
next_tokens = torch.argmax(probs, dim=-1)
|
1162 |
+
|
1163 |
+
# update generated ids, model inputs, and length for next step
|
1164 |
+
input_ids = torch.cat([input_ids, next_tokens[:, None]], dim=-1)
|
1165 |
+
model_kwargs = self._update_model_kwargs_for_generation(
|
1166 |
+
outputs, model_kwargs, is_encoder_decoder=self.config.is_encoder_decoder
|
1167 |
+
)
|
1168 |
+
unfinished_sequences = unfinished_sequences.mul((sum(next_tokens != i for i in eos_token_id)).long())
|
1169 |
+
if return_past_key_values:
|
1170 |
+
yield input_ids, outputs.past_key_values
|
1171 |
+
else:
|
1172 |
+
yield input_ids
|
1173 |
+
# stop when each sentence is finished, or if we exceed the maximum length
|
1174 |
+
if unfinished_sequences.max() == 0 or stopping_criteria(input_ids, scores):
|
1175 |
+
break
|
1176 |
+
|
1177 |
+
def quantize(self, bits: int, empty_init=False, device=None, **kwargs):
|
1178 |
+
if bits == 0:
|
1179 |
+
return
|
1180 |
+
|
1181 |
+
from .quantization import quantize
|
1182 |
+
|
1183 |
+
if self.quantized:
|
1184 |
+
logger.info("Already quantized.")
|
1185 |
+
return self
|
1186 |
+
|
1187 |
+
self.quantized = True
|
1188 |
+
|
1189 |
+
self.config.quantization_bit = bits
|
1190 |
+
|
1191 |
+
self.transformer.encoder = quantize(self.transformer.encoder, bits, empty_init=empty_init, device=device,
|
1192 |
+
**kwargs)
|
1193 |
+
return self
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:37f54a73a90d73f08d35fd1de3eb9ff4b09acf4e579a779840e7a761514aef20
|
3 |
+
size 673186943
|
quantization.py
ADDED
@@ -0,0 +1,188 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from torch.nn import Linear
|
2 |
+
from torch.nn.parameter import Parameter
|
3 |
+
|
4 |
+
import bz2
|
5 |
+
import torch
|
6 |
+
import base64
|
7 |
+
import ctypes
|
8 |
+
from transformers.utils import logging
|
9 |
+
|
10 |
+
from typing import List
|
11 |
+
from functools import partial
|
12 |
+
|
13 |
+
logger = logging.get_logger(__name__)
|
14 |
+
|
15 |
+
try:
|
16 |
+
from cpm_kernels.kernels.base import LazyKernelCModule, KernelFunction, round_up
|
17 |
+
|
18 |
+
class Kernel:
|
19 |
+
def __init__(self, code: bytes, function_names: List[str]):
|
20 |
+
self.code = code
|
21 |
+
self._function_names = function_names
|
22 |
+
self._cmodule = LazyKernelCModule(self.code)
|
23 |
+
|
24 |
+
for name in self._function_names:
|
25 |
+
setattr(self, name, KernelFunction(self._cmodule, name))
|
26 |
+
|
27 |
+
quantization_code = "$QlpoOTFBWSZTWU9yuJUAQHN//////////f/n/8/n///n//bt4dTidcVx8X3V9FV/92/v4B7/AD5FBQFAAAChSgKpFCFAFVSigUAAAEKhSgUUqgFBKigqVREQAABQBQIANDTTIGI00BkZBkNGE0A0BkBkGQGRkaNAaAGQNBoGgDIAAYIGTI0DQAQAaGmmQMRpoDIyDIaMJoBoDIDIMgMjI0aA0AMgaDQNAGQAAwQMmRoGgAgA0NNMgYjTQGRkGQ0YTQDQGQGQZAZGRo0BoAZA0GgaAMgABggZMjQNABABoaaZAxGmgMjIMhowmgGgMgMgyAyMjRoDQAyBoNA0AZAADBAyZGgaAAmqU1NEgJqnptU/Sn4jRR6J6epk2pqb1Q/SgAPUGgyNNGjQ2SBpoAZAAGg0NB6mgDIAAAAA2oaApSREBNAARhGiYEaEwU8pvImlP0k2aam1GaGqbFNM1MHpTwmkepmyU9R6nqPKekHqNNPUxNGhp6n6p6QaZ6o9TG1GMqcoV9ly6nRanHlq6zPNbnGZNi6HSug+2nPiZ13XcnFYZW+45W11CumhzYhchOJ2GLLV1OBjBjGf4TptOddTSOcVxhqYZMYwZXZZY00zI1paX5X9J+b+f4e+x43RXSxXPOdquiGpduatGyXneN696M9t4HU2eR5XX/kPhP261NTx3JO1Ow7LyuDmeo9a7d351T1ZxnvnrvYnrXv/hXxPCeuYx2XsNmO003eg9J3Z6U7b23meJ4ri01OdzTk9BNO96brz+qT5nuvvH3ds/G+m/JcG/F2XYuhXlvO+jP7U3XgrzPN/lr8Sf1n6j4j7jZs+s/T0tNaNNYzTs12rxjwztHlnire3Nzc3N1wuBwOBwXBvZfoHpD7rFmR99V5vj3aXza3xdBbXMalubTg/jIv5dfAi54Pdc75j4z412n3Npj3Ld/ENm7a3b/Cod6h/ret1/5vn/C+l+gdslMvgPSLJ8d8q+U66fevYn/tW1chleEtNTGlcHCbLRlq0tHzF5tsbbZZfHjjLgZu42XCuC3NrdjTasZGNzgxPIrGqp7r3p7L2p5XjnpPSmTd5XtzqnB6U87zzg1Ol0zd0zsLszxR6lkxp35u6/teL0L0W922cR7Lu1lpL9CsHirzuM2T+BgsyViT6LHcm0/Vr6U/7LGGyJeqTEjt0PHWhF5mCT7R9mtlDwriYv0Tyr/OxYt6qp5r0mPVT0608TqnqMZaarU2nFwrTzzlrs1ed7z1ux60wyr4ydCaTi3enW8x68x0zU7tXSlcmPSW1mGpWJMg4zmPC2lK96tp0OE80y4MfEvnZj8zGluR6b22ki1Ou9V2nCd9xovcPvcYMZYy0lvN60ScZ45vN6yeCeeXFb1lVjnnCar5fwXwE2bzJ4HI1XVPXfXZMm44GUsMpYsmLB65TuVdm0cl0b+i/wGNN66XjeV7zuPpHcnK/juhhjdfId5jMdE5nN0dGmmm2zZs2cexD5n9p/dY352XsvXHaZNWWsmmS1atjR452nYudzvqv2HMRyvNNnlMcDl3R2+yx2uVrBubTW9icHDVtbNXlZm7jma1rM4VurZZd2y6nUau7ZXZ7bVU+mnoOVxZGMrVmvX60605JwmzGZhhhjTWtaaaMaaGTGmNMZasY0iX8VMUl8eepaIrzGSpemWOQyZORk2bNpjUybMmxqYmknCGCFynutfksaZpjTNMaaatM0xsxcGR0sociNqxNSmhhR1ZJPbsn8qyF0t2qH6iYBclclalbtTTcHTDsPaX6rlnElph2Jyumumtynv2Kk8GI7rsvXbIcJgHJOSaSXnnGaI3m87RtVXJOZ/YtgdTE6Wpha6ZlE8ayXkef1fh602r2WwvfMXtMdLlkfnLFdYYwYso+bWqm7yJqHXZGw2nrS5ZanSYnWlxBxMF1V940K2wdrI7R6OYf7DGGamMmTSbRhlS45xmVOumF1EyPCmHrrN8wwZOOrdNtLeMtzFzDlWnfTBxMk2NaXIZHBYxYLD4w8yju0ao65Vz1OIXoS9dLanwCe1PWrYuWMqf1if1z2k2yYfKJ741PDgno1ZQ8DRqvUny3mNoWTzGO6m1DkrJI8JiR5cSd+vZdGOO8nrMoc5+NDUFsMSXaZJeNlMmGLtJsovOsUp7I9S5VojKxF6bTVEelXqlfJobQr3LozSh2Jk7VcrVMfhXqszGWMzNqGhqZY0OadxkyyMssKugZR0KNFXBHlqwmJgTE/BNVMk6ItJXZMR0H47GpXv/DMOvNkmVuaV1PRfEdxuqc7Hcd+ZV/zTLaRxWk0nl9CdCeM6mn5rstHIBcpiuwmUZXeq81DacHI2rmrZ5SuE5mOZd6LQrZg9mx32TprA8BMo5jKN6yLTCi3WzQaZSuhzTtM1fUTGVpG8Tw+KXI0tjEpiWxtLYynOlktSbVlaI5kxP8TDH8kx50xoxi5KcA4pcja8KWLRlO/Ks6q06ergnvm1ca3Tq8Uw7LTUsmWyctXPWmpitl/uvGcWTGXGuAXDfhqazGmjkxcJW5hMMMMpYsXl2TZYtVOddG3XCarUt6Ptq9CZXSNzyuRzqRZOjsxdBbFVz6OA5HI43r1jityVlVpVkxmOsyaYWE1NTGq1sOVh36mHMcxtSvcy70edG0ZGR3I1Go1GRlV7mWWo1G0ZGRqlvH40l7o4m5xMWLLLYyNjnqc8556mdPqLJ31n/1nWOncxzG1tizrHs/Z+d2vP/B/l8wdJ6rHUn2nbbDq4p6htFtYzMMMTaZis1K5GKzGNmxhmUx2DDlZ/qNnIx41xnaMfCZWYaZWtNLTNW8ND4Fw1MyZOCdM428suKG1ehW8TesOydg7J+YYcD4cYR+8dFK6M4E3HM9ZfRNNL+Sn6rsl4DsrDl2HpPCnfxjGXtbZtYys1ttlyJ4T+BvexjGWRjMszK4Jpc77D3GyuVD7q0+G8m9G+2+rGm7cOR2y7FdtY2XUYx/oNlfRYxhMYyYZkyyg55enna9Kt/FFi6GMMwYwdwxWgxGMLKYmUyGExTKMZkMFhkymKuh0NOBNnBu+23LdwDoZYYzGGMxtORaTU1pjTGWTTGGtMrNWUsyyTTLLG1qy2ZjbK2DBllWqxMtBMaYZQmcE7zvvRcTkclUwdkxTaSdyySt/7fpL+T1v516Ji97fwr5JbLu305zMn5+GMTTZ9F+y7ExwmGVfG44yxn3dLv6l5i+Wth1jCrDq21nW9LqvvDzz3Vf3LLH/O/32TJ/erx3bXftO4eF+G956D952K/An4NfvOpjFjExjevP/UmE0fIoZXx6/w6lX/no3D0bLt+ixjieBM6ksRd0yB4Lt2SwYNE+gd1detlZWUnpiZfGfFaK+4PyCa/v18V8X75pe9fLXzp7l3VjF76vWZmHwGz1IZNWT7b8yddJ4q5kyrVdfru6atWc7bVYztL9Jf4GXvT+Y8m9/YsXP6H018a8D4XVOqvfzqeR+6yZOD8dPv0+U7/q5Pl+2dNb0MjzGVH5p6MNQ7cOWvw62U9aHE8DprDek+McLyvDz+te+9Zhq5+YTruufMcWMabqysTmZVWjKPfnK0wyVcrsuhjZRdLkHNvD72b9abriOSGIxiLixMOoalNPXzy+wT/tf+U6HHONfsz+xe8ufHBdQWWGWLA9if0rsnmrxK5LvRZQeWsTCsrmOYy8VteVfuRfcVTtDLItLIsMYxZLdU/DbtSemxF6Z6Zo5WBXE4tFdCyVMMXMTEMZXVlS6Xec2T4e0tHsRcEuWshcJ2YsNF5rUx1E8ifCq6Z+ZP7qdCeu/aTwFd53l16/o0NOw6O3dLavP4Hbi4RdmuDk6DoYaninC0+o4uZjbJ7Rxeu0/FbuFg+q7DVS6fQe0rZ6NDGUNNU6DEqOaLTicKnYZMnBWruljQxoaS3dZhocDge0bSTyOvdAbG5hxe2xji7E/L55xX13wWNDi6HCekcFxfCPGxY0MXC+s7afWaMdDyjyr+o8Rudm/NabOZvdl274zH4f5XK9z6On1Pe/K5TdPAslg77BjuO6Y3eO7GqvOPG/stknp1leyvLL0Z7bl9I4noMvLkzytLhWYzrOZzLXCORe028rORzOg4N/L0HlMOQ3Pgmnbb6KczlabORpu980q37TBqRu0/p3PO6234Bl03Ynuz+9W7gnsEcmvYaYY3aMYY0wx3pYd+ujsXauWdaY5Xkbtl23fPzFHiDB/QMo0yFjBllYxTQYYyxkrwn7JufwJ/PfgJ+C83X69ni6zvXcnyXabv0ncbLwsceS+RNlyN2mnneJtX0ngYO0+e+0+UnA+Wch3ji8hj5an4h+i6XBySU4n+R0roVcbw5yvHrmr4Yw8Y7x6c+9POPYHI5HI5HI5HI5HGXGww4nE4nrVyOR8XeqPEO7PLOiukYa3Novk5hV4cdtYZLI93e+uxff2jRo0aNGjRo0aNG1bVtW1dy3m83m8+tQ5ZzHw3nObwOu8La9Rc1dtkdS8A3eTk823tnktXWlxN6Oixe06zrN70Isd9jiOgZFq9yfkPqP/SLhN2Myl8jDM43bl1nbcb4cO57jlh8Jow6pzXZdL4dyODTuuhu77FyO27DdwdRxmvO+O+3N2+BdqyTwLHVczDVY4UPE4O66/ZO2cx1LFzVdSXtF7G4HMbrauOHRw6c8FdZ5m9fHZHYZXfTlZquyynSyTTKke6vcffSD9pzPA/G7n7jxPmuhc1DHMynPMrGL6AdewYmwu5ko+UUyTwrMv27rPH1v1nGqd87+p6N6LU8k3NEng53xXyHS97+44OSg/sy/hn+Se6yfYNjW0/uTgP+PvWYzLMmjhcLB/gGpri6H83/84eUXWT6T9Hsv7785z/7z4icpW+zfXypuR7rx/gMdZb1/wC678pcs8/2a3mDitGHxl9mfPlll5MafWWqxk/eYuTDgcNMzDGWLWvsuglNxs53GtN6uWpktlW1tZZYcuinMMWmnNnJydze3b2Y1McBxrBkXw799izLMZZYyy0TkbsGM4p03S2uVu5s/XXUdSdec6smVxZYYGpVmT8A+8ajuEyV5FatkvVru2x6uxGXXbH4A+jvgP4GMYy3iPLXzq/6z65+E005ey+cwMZD3fZcqc6xpjTFjQ0P3U+e++cPYmTIwj0nrK5NPTfl3WvpfLtXDcb2HQMudYOxFXQBor4L4T6vrOauFctYXJQ++NUWmJe5bmx1jDiZS1dTqWxo4GR8jm3fttpmPHppk9PEyv4/y8/sO07XacOmcqc0x2Vi9BvNJvN5oW8x4mOsydpidRxMYJPx06m1bqPzq9KtK8sxXNXFodD/+MYYaJTLwOhc9brCsV18oOR1i4tXChyTkq4lf4y1Ke+9axjDHqs1mfBbMXuP4Hzi+X7t8vzv7bHerrUPgPCxhjre4fXdfLNtNM+Jd+Zdh8xd8wP87uNPoPgv4W7/5P2BuxfsMabNnMnza+54Pdi5U671GPZY8CehX8Voeoo7FHpkeEc6715FwHZrIrUrHaviPUbPZHND+IhczrP6FcYvhOZ0Di/ETt0OI+YwNWR9r7tpf6WDeZKZDB1+z2IthOl1mPyb5FluvEx9h9d0NnM0Y1XPFkWIsk1WotJ0PBMmkvjvQTd0e71tfeV+8r8lQ/tpzpsmxJ+InrI/dj2UajUajVTUajatRqNRtGo1Go1Go4wjeMpZFMVV9CHbofPraLsJ3JpWV2XOoanCuFky4y3PPNxucK2uKC1Lbdb1eo+m5XomN6HfeZsabHLHRX/K+offtNGGmHWctcVcG44MdSqsOLY9VzX+Zxfxn2HPdWTpzWvkrtJ8M5zorrKcquRytJ5N5DZmcaW02l76nWO+BqPXm1A2Ry/0q71dH/mqrqeFjkYxjEXtsX8qubTk67rGycyqsdm4tZx5D6D5hhi0waaWmiaMP81Yjii5qxPlPuU/GfTL1Y5E6Jyfiq63qTa39A4J0sOGDgO9WF9bOXl0XfPRbsY2bPNKPy1YrFYrFYmRhhlTIyMjJWJYZHXuCXI8OoXsvfljGLFicNifpp2XunoPiG1wtx3p1Tah+/DD66OnVtVXP9rKbVxOnL0tR/rHtqB5UDErUVcl11D4qqvjpOcxX7armUNJB3LpW6bxVvD08e8h3odKKvyCFZBdSh2FVcST9xV3n3T8t1j7Kr9qgrqXg+13Pt5U7JCvFXVIV1YG5lRhkVYZJYYDDD4KOIMoHCp26WS8GB7uBh2zIdgq/PKyInjV2STShuoapUdCpX1yTwqq/z1VvET7Kh5nVPkO8YyxjLt2MaaMmWTLQvx3qnzltnXW0p2jxgbEtSny/Osv8Y9pLMXYoHVPAhkVdWVeODhR6q9/Sxe2liwwZWMVvFXfRkeIDxAePUPIrdJ4ey6yquzH+PD/bUOWAu05qVHtFd8rrKHSoeNIOUqrYr3FXyToqfYJgwmJdKpXXOwYYegNNGMzfZPp/t3t/DVs4zjNTN61rRqaWaa4NYbRjTa0tWwy2Y2tGN8ZO8ofNKq4j9SL7I+cSm4/6ovLV5HNXLI0jJidwrtk6ynCaP6Z++GjRlWS3tLeW129Mi9evxU9mtz6s5J3Z7M2ngTgnKvmpomxpaLCzPfmx0JWE+m3NLDDGOX47RctdYYNK5jakdqLkRlI39n590T5zctGSwwZZDJj6kW8XSi6ot2MmWWJ0DUT3nuvebBudScjZ79g8cWJ8av0k+/bE5WKd5MdbFpbDVMxu1DVMmtNZGJvq1mtRbn6M+g/kP0FwDwr7quZs7xosNGpbscyxhhd9TyJyFwbLcxlTasg75vW7TsV5K7ji44XPMMrdoj+Y3rT0Hie62nlYV/pwczzOmdLqLhYkzGMzCZWGMQzGMSsZYY6Di1t4nlJ+Em63mJxrVLxPbYxNEdgc1dU2iOKyoYYWjNrEeHTYybVk0atSa7ehuwsWMWTqn1TrnS6hYsi71d1+s+k+ic70e20fzE/VaTdxT9ZtU4GIXdeNx3X77guYYfpHeTQjaMX6brOu4OY4K7Y2d9mbHarI5ox3p4GpJ2Vd/Tst60f7j999pppjR+Q/Qf8J/VaORs3cji7FfFuN61+ui9s8hix1OCh5KGVV23BPXvZfz3CLyHpix+exi8z/KnCnosY2eunor+cxyPO/xJ0vKey9OvE9VjqaYu0x3Z3jd6o2b1T12D+F8l232lwaaacD5LE8LBxu7WTlbWraWpew8Xexjel3E+wWD4APITdNqR8F3R3T0lunCQ4GaE9R37DxeCYfcHi4xci5ovKfxVs55y2hf+65E/Xdp6jR5nrebTmi5incpkyOjs50JvrZwstbbW6kfuuQw+2mykf/EXNFzxfKTrxew929TR6bWnGL//F3JFOFCQT3K4lQ"
|
28 |
+
|
29 |
+
kernels = Kernel(
|
30 |
+
bz2.decompress(base64.b64decode(quantization_code)),
|
31 |
+
[
|
32 |
+
"int4WeightCompression",
|
33 |
+
"int4WeightExtractionFloat",
|
34 |
+
"int4WeightExtractionHalf",
|
35 |
+
"int8WeightExtractionFloat",
|
36 |
+
"int8WeightExtractionHalf",
|
37 |
+
],
|
38 |
+
)
|
39 |
+
except Exception as exception:
|
40 |
+
kernels = None
|
41 |
+
logger.warning("Failed to load cpm_kernels:" + str(exception))
|
42 |
+
|
43 |
+
|
44 |
+
class W8A16Linear(torch.autograd.Function):
|
45 |
+
@staticmethod
|
46 |
+
def forward(ctx, inp: torch.Tensor, quant_w: torch.Tensor, scale_w: torch.Tensor, weight_bit_width):
|
47 |
+
ctx.inp_shape = inp.size()
|
48 |
+
ctx.weight_bit_width = weight_bit_width
|
49 |
+
out_features = quant_w.size(0)
|
50 |
+
inp = inp.contiguous().view(-1, inp.size(-1))
|
51 |
+
weight = extract_weight_to_half(quant_w, scale_w, weight_bit_width)
|
52 |
+
ctx.weight_shape = weight.size()
|
53 |
+
output = inp.mm(weight.t())
|
54 |
+
ctx.save_for_backward(inp, quant_w, scale_w)
|
55 |
+
return output.view(*(ctx.inp_shape[:-1] + (out_features,)))
|
56 |
+
|
57 |
+
@staticmethod
|
58 |
+
def backward(ctx, grad_output: torch.Tensor):
|
59 |
+
inp, quant_w, scale_w = ctx.saved_tensors
|
60 |
+
weight = extract_weight_to_half(quant_w, scale_w, ctx.weight_bit_width)
|
61 |
+
grad_output = grad_output.contiguous().view(-1, weight.size(0))
|
62 |
+
grad_input = grad_output.mm(weight)
|
63 |
+
grad_weight = grad_output.t().mm(inp)
|
64 |
+
return grad_input.view(ctx.inp_shape), grad_weight.view(ctx.weight_shape), None, None
|
65 |
+
|
66 |
+
|
67 |
+
def compress_int4_weight(weight: torch.Tensor): # (n, m)
|
68 |
+
with torch.cuda.device(weight.device):
|
69 |
+
n, m = weight.size(0), weight.size(1)
|
70 |
+
assert m % 2 == 0
|
71 |
+
m = m // 2
|
72 |
+
out = torch.empty(n, m, dtype=torch.int8, device="cuda")
|
73 |
+
stream = torch.cuda.current_stream()
|
74 |
+
|
75 |
+
gridDim = (n, 1, 1)
|
76 |
+
blockDim = (min(round_up(m, 32), 1024), 1, 1)
|
77 |
+
|
78 |
+
kernels.int4WeightCompression(
|
79 |
+
gridDim,
|
80 |
+
blockDim,
|
81 |
+
0,
|
82 |
+
stream,
|
83 |
+
[ctypes.c_void_p(weight.data_ptr()), ctypes.c_void_p(out.data_ptr()), ctypes.c_int32(n), ctypes.c_int32(m)],
|
84 |
+
)
|
85 |
+
return out
|
86 |
+
|
87 |
+
|
88 |
+
def extract_weight_to_half(weight: torch.Tensor, scale_list: torch.Tensor, source_bit_width: int):
|
89 |
+
assert scale_list.dtype in [torch.half, torch.bfloat16]
|
90 |
+
assert weight.dtype in [torch.int8]
|
91 |
+
if source_bit_width == 8:
|
92 |
+
return weight.to(scale_list.dtype) * scale_list[:, None]
|
93 |
+
elif source_bit_width == 4:
|
94 |
+
func = (
|
95 |
+
kernels.int4WeightExtractionHalf if scale_list.dtype == torch.half else kernels.int4WeightExtractionBFloat16
|
96 |
+
)
|
97 |
+
else:
|
98 |
+
assert False, "Unsupported bit-width"
|
99 |
+
|
100 |
+
with torch.cuda.device(weight.device):
|
101 |
+
n, m = weight.size(0), weight.size(1)
|
102 |
+
out = torch.empty(n, m * (8 // source_bit_width), dtype=scale_list.dtype, device="cuda")
|
103 |
+
stream = torch.cuda.current_stream()
|
104 |
+
|
105 |
+
gridDim = (n, 1, 1)
|
106 |
+
blockDim = (min(round_up(m, 32), 1024), 1, 1)
|
107 |
+
|
108 |
+
func(
|
109 |
+
gridDim,
|
110 |
+
blockDim,
|
111 |
+
0,
|
112 |
+
stream,
|
113 |
+
[
|
114 |
+
ctypes.c_void_p(weight.data_ptr()),
|
115 |
+
ctypes.c_void_p(scale_list.data_ptr()),
|
116 |
+
ctypes.c_void_p(out.data_ptr()),
|
117 |
+
ctypes.c_int32(n),
|
118 |
+
ctypes.c_int32(m),
|
119 |
+
],
|
120 |
+
)
|
121 |
+
return out
|
122 |
+
|
123 |
+
|
124 |
+
class QuantizedLinear(torch.nn.Module):
|
125 |
+
def __init__(self, weight_bit_width: int, weight, bias=None, device="cpu", dtype=None, empty_init=False, *args,
|
126 |
+
**kwargs):
|
127 |
+
super().__init__()
|
128 |
+
self.weight_bit_width = weight_bit_width
|
129 |
+
|
130 |
+
shape = weight.shape
|
131 |
+
|
132 |
+
if weight is None or empty_init:
|
133 |
+
self.weight = torch.empty(shape[0], shape[1] * weight_bit_width // 8, dtype=torch.int8, device=device)
|
134 |
+
self.weight_scale = torch.empty(shape[0], dtype=dtype, device=device)
|
135 |
+
else:
|
136 |
+
self.weight_scale = weight.abs().max(dim=-1).values / ((2 ** (weight_bit_width - 1)) - 1)
|
137 |
+
self.weight = torch.round(weight / self.weight_scale[:, None]).to(torch.int8)
|
138 |
+
if weight_bit_width == 4:
|
139 |
+
self.weight = compress_int4_weight(self.weight)
|
140 |
+
|
141 |
+
self.weight = Parameter(self.weight.to(device), requires_grad=False)
|
142 |
+
self.weight_scale = Parameter(self.weight_scale.to(device), requires_grad=False)
|
143 |
+
self.bias = Parameter(bias.to(device), requires_grad=False) if bias is not None else None
|
144 |
+
|
145 |
+
def forward(self, input):
|
146 |
+
output = W8A16Linear.apply(input, self.weight, self.weight_scale, self.weight_bit_width)
|
147 |
+
if self.bias is not None:
|
148 |
+
output = output + self.bias
|
149 |
+
return output
|
150 |
+
|
151 |
+
|
152 |
+
def quantize(model, weight_bit_width, empty_init=False, device=None):
|
153 |
+
"""Replace fp16 linear with quantized linear"""
|
154 |
+
for layer in model.layers:
|
155 |
+
layer.self_attention.query_key_value = QuantizedLinear(
|
156 |
+
weight_bit_width=weight_bit_width,
|
157 |
+
weight=layer.self_attention.query_key_value.weight.to(torch.cuda.current_device()),
|
158 |
+
bias=layer.self_attention.query_key_value.bias,
|
159 |
+
dtype=layer.self_attention.query_key_value.weight.dtype,
|
160 |
+
device=layer.self_attention.query_key_value.weight.device if device is None else device,
|
161 |
+
empty_init=empty_init
|
162 |
+
)
|
163 |
+
layer.self_attention.dense = QuantizedLinear(
|
164 |
+
weight_bit_width=weight_bit_width,
|
165 |
+
weight=layer.self_attention.dense.weight.to(torch.cuda.current_device()),
|
166 |
+
bias=layer.self_attention.dense.bias,
|
167 |
+
dtype=layer.self_attention.dense.weight.dtype,
|
168 |
+
device=layer.self_attention.dense.weight.device if device is None else device,
|
169 |
+
empty_init=empty_init
|
170 |
+
)
|
171 |
+
layer.mlp.dense_h_to_4h = QuantizedLinear(
|
172 |
+
weight_bit_width=weight_bit_width,
|
173 |
+
weight=layer.mlp.dense_h_to_4h.weight.to(torch.cuda.current_device()),
|
174 |
+
bias=layer.mlp.dense_h_to_4h.bias,
|
175 |
+
dtype=layer.mlp.dense_h_to_4h.weight.dtype,
|
176 |
+
device=layer.mlp.dense_h_to_4h.weight.device if device is None else device,
|
177 |
+
empty_init=empty_init
|
178 |
+
)
|
179 |
+
layer.mlp.dense_4h_to_h = QuantizedLinear(
|
180 |
+
weight_bit_width=weight_bit_width,
|
181 |
+
weight=layer.mlp.dense_4h_to_h.weight.to(torch.cuda.current_device()),
|
182 |
+
bias=layer.mlp.dense_4h_to_h.bias,
|
183 |
+
dtype=layer.mlp.dense_4h_to_h.weight.dtype,
|
184 |
+
device=layer.mlp.dense_4h_to_h.weight.device if device is None else device,
|
185 |
+
empty_init=empty_init
|
186 |
+
)
|
187 |
+
|
188 |
+
return model
|
runs/Aug01_10-45-37_ip-172-31-72-127/events.out.tfevents.1690886874.ip-172-31-72-127.2313011.0
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:77532330957084257016a692d22c3ec1354b8180f77f64ddeae4e556ae998ad2
|
3 |
+
size 4184
|
runs/Aug01_10-48-39_ip-172-31-72-127/events.out.tfevents.1690887057.ip-172-31-72-127.2314553.0
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b37ab0e36319f38ef13032cb11c034f6cf9c8734617801f446e8772d98694e3c
|
3 |
+
size 4184
|
runs/Aug01_10-55-01_ip-172-31-72-127/events.out.tfevents.1690887438.ip-172-31-72-127.2317680.0
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2c9ba3fd78cc012bc5cc0c3a2212140bb9c0bf082856b359ee5e0d9adfc2978e
|
3 |
+
size 5789
|
runs/Aug01_10-58-34_ip-172-31-72-127/events.out.tfevents.1690887651.ip-172-31-72-127.2319667.0
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ded0dd2f9a2a7334504d97fc6b2fff723b1aadc61a70d904e9231259c3a00832
|
3 |
+
size 4184
|
runs/Aug01_11-04-29_ip-172-31-72-127/events.out.tfevents.1690888007.ip-172-31-72-127.2322272.0
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:83714359dcd4f14768e252474d2aff10a8d12253ead4231a5ecb880737e70b13
|
3 |
+
size 4865
|
runs/Aug01_11-07-41_ip-172-31-72-127/events.out.tfevents.1690888199.ip-172-31-72-127.2323921.0
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e04fca0ae81ae29fb81e0144a77d86d97106cc6c8169f62c3d205294b858210d
|
3 |
+
size 4184
|
runs/Aug01_11-11-10_ip-172-31-72-127/events.out.tfevents.1690888407.ip-172-31-72-127.2325679.0
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d8c0786cab806ed9aaba360bfa72a969399513a08b1fb0ec171f3d0957d9ebb0
|
3 |
+
size 19902
|
runs/Aug02_02-22-15_ip-172-31-72-127/events.out.tfevents.1690943071.ip-172-31-72-127.2474016.0
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5a969fa0db06769ce3bf412f4a434418954b69551ec1771e5a43c54cace8236d
|
3 |
+
size 5943
|
runs/Aug02_02-49-56_ip-172-31-72-127/events.out.tfevents.1690944733.ip-172-31-72-127.2481410.0
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:26e31372af6357ff146c092ba23fdd6777c9aa23d44795240c24e15da3e70e24
|
3 |
+
size 4865
|
runs/Aug02_03-28-30_ip-172-31-72-127/events.out.tfevents.1690947047.ip-172-31-72-127.2482663.0
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3c8e13518d69987dff950e4ccb02b2833478c57fb351f3ba61febc12a0482677
|
3 |
+
size 73478
|
special_tokens_map.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{}
|
tokenization_chatglm.py
ADDED
@@ -0,0 +1,253 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import torch
|
3 |
+
from typing import List, Optional, Union, Dict
|
4 |
+
from sentencepiece import SentencePieceProcessor
|
5 |
+
from transformers import PreTrainedTokenizer
|
6 |
+
from transformers.utils import logging, PaddingStrategy
|
7 |
+
from transformers.tokenization_utils_base import EncodedInput, BatchEncoding
|
8 |
+
|
9 |
+
|
10 |
+
class SPTokenizer:
|
11 |
+
def __init__(self, model_path: str):
|
12 |
+
# reload tokenizer
|
13 |
+
assert os.path.isfile(model_path), model_path
|
14 |
+
self.sp_model = SentencePieceProcessor(model_file=model_path)
|
15 |
+
|
16 |
+
# BOS / EOS token IDs
|
17 |
+
self.n_words: int = self.sp_model.vocab_size()
|
18 |
+
self.bos_id: int = self.sp_model.bos_id()
|
19 |
+
self.eos_id: int = self.sp_model.eos_id()
|
20 |
+
self.pad_id: int = self.sp_model.unk_id()
|
21 |
+
assert self.sp_model.vocab_size() == self.sp_model.get_piece_size()
|
22 |
+
|
23 |
+
special_tokens = ["[MASK]", "[gMASK]", "[sMASK]", "sop", "eop"]
|
24 |
+
self.special_tokens = {}
|
25 |
+
self.index_special_tokens = {}
|
26 |
+
for token in special_tokens:
|
27 |
+
self.special_tokens[token] = self.n_words
|
28 |
+
self.index_special_tokens[self.n_words] = token
|
29 |
+
self.n_words += 1
|
30 |
+
|
31 |
+
def tokenize(self, s: str):
|
32 |
+
return self.sp_model.EncodeAsPieces(s)
|
33 |
+
|
34 |
+
def encode(self, s: str, bos: bool = False, eos: bool = False) -> List[int]:
|
35 |
+
assert type(s) is str
|
36 |
+
t = self.sp_model.encode(s)
|
37 |
+
if bos:
|
38 |
+
t = [self.bos_id] + t
|
39 |
+
if eos:
|
40 |
+
t = t + [self.eos_id]
|
41 |
+
return t
|
42 |
+
|
43 |
+
def decode(self, t: List[int]) -> str:
|
44 |
+
return self.sp_model.decode(t)
|
45 |
+
|
46 |
+
def decode_tokens(self, tokens: List[str]) -> str:
|
47 |
+
text = self.sp_model.DecodePieces(tokens)
|
48 |
+
return text
|
49 |
+
|
50 |
+
def convert_token_to_id(self, token):
|
51 |
+
""" Converts a token (str) in an id using the vocab. """
|
52 |
+
if token in self.special_tokens:
|
53 |
+
return self.special_tokens[token]
|
54 |
+
return self.sp_model.PieceToId(token)
|
55 |
+
|
56 |
+
def convert_id_to_token(self, index):
|
57 |
+
"""Converts an index (integer) in a token (str) using the vocab."""
|
58 |
+
if index in self.index_special_tokens or index in [self.eos_id, self.bos_id, self.pad_id] or index < 0:
|
59 |
+
return ""
|
60 |
+
return self.sp_model.IdToPiece(index)
|
61 |
+
|
62 |
+
|
63 |
+
class ChatGLMTokenizer(PreTrainedTokenizer):
|
64 |
+
vocab_files_names = {"vocab_file": "tokenizer.model"}
|
65 |
+
|
66 |
+
model_input_names = ["input_ids", "attention_mask", "position_ids"]
|
67 |
+
|
68 |
+
def __init__(self, vocab_file, padding_side="left", **kwargs):
|
69 |
+
super().__init__(padding_side=padding_side, **kwargs)
|
70 |
+
self.name = "GLMTokenizer"
|
71 |
+
|
72 |
+
self.vocab_file = vocab_file
|
73 |
+
self.tokenizer = SPTokenizer(vocab_file)
|
74 |
+
self.special_tokens = {
|
75 |
+
"<bos>": self.tokenizer.bos_id,
|
76 |
+
"<eos>": self.tokenizer.eos_id,
|
77 |
+
"<pad>": self.tokenizer.pad_id
|
78 |
+
}
|
79 |
+
|
80 |
+
def get_command(self, token):
|
81 |
+
if token in self.special_tokens:
|
82 |
+
return self.special_tokens[token]
|
83 |
+
assert token in self.tokenizer.special_tokens, f"{token} is not a special token for {self.name}"
|
84 |
+
return self.tokenizer.special_tokens[token]
|
85 |
+
|
86 |
+
@property
|
87 |
+
def pad_token(self) -> str:
|
88 |
+
return "<unk>"
|
89 |
+
|
90 |
+
@property
|
91 |
+
def pad_token_id(self):
|
92 |
+
return self.get_command("<pad>")
|
93 |
+
|
94 |
+
@property
|
95 |
+
def eos_token(self) -> str:
|
96 |
+
return "</s>"
|
97 |
+
|
98 |
+
@property
|
99 |
+
def eos_token_id(self):
|
100 |
+
return self.get_command("<eos>")
|
101 |
+
|
102 |
+
@property
|
103 |
+
def vocab_size(self):
|
104 |
+
return self.tokenizer.n_words
|
105 |
+
|
106 |
+
def get_vocab(self):
|
107 |
+
""" Returns vocab as a dict """
|
108 |
+
vocab = {self._convert_id_to_token(i): i for i in range(self.vocab_size)}
|
109 |
+
vocab.update(self.added_tokens_encoder)
|
110 |
+
return vocab
|
111 |
+
|
112 |
+
def _tokenize(self, text, **kwargs):
|
113 |
+
return self.tokenizer.tokenize(text)
|
114 |
+
|
115 |
+
def _convert_token_to_id(self, token):
|
116 |
+
""" Converts a token (str) in an id using the vocab. """
|
117 |
+
return self.tokenizer.convert_token_to_id(token)
|
118 |
+
|
119 |
+
def _convert_id_to_token(self, index):
|
120 |
+
"""Converts an index (integer) in a token (str) using the vocab."""
|
121 |
+
return self.tokenizer.convert_id_to_token(index)
|
122 |
+
|
123 |
+
def convert_tokens_to_string(self, tokens: List[str]) -> str:
|
124 |
+
return self.tokenizer.decode_tokens(tokens)
|
125 |
+
|
126 |
+
def save_vocabulary(self, save_directory, filename_prefix=None):
|
127 |
+
"""
|
128 |
+
Save the vocabulary and special tokens file to a directory.
|
129 |
+
|
130 |
+
Args:
|
131 |
+
save_directory (`str`):
|
132 |
+
The directory in which to save the vocabulary.
|
133 |
+
filename_prefix (`str`, *optional*):
|
134 |
+
An optional prefix to add to the named of the saved files.
|
135 |
+
|
136 |
+
Returns:
|
137 |
+
`Tuple(str)`: Paths to the files saved.
|
138 |
+
"""
|
139 |
+
if os.path.isdir(save_directory):
|
140 |
+
vocab_file = os.path.join(
|
141 |
+
save_directory, self.vocab_files_names["vocab_file"]
|
142 |
+
)
|
143 |
+
else:
|
144 |
+
vocab_file = save_directory
|
145 |
+
|
146 |
+
with open(self.vocab_file, 'rb') as fin:
|
147 |
+
proto_str = fin.read()
|
148 |
+
|
149 |
+
with open(vocab_file, "wb") as writer:
|
150 |
+
writer.write(proto_str)
|
151 |
+
|
152 |
+
return (vocab_file,)
|
153 |
+
|
154 |
+
def get_prefix_tokens(self):
|
155 |
+
prefix_tokens = [self.get_command("[gMASK]"), self.get_command("sop")]
|
156 |
+
return prefix_tokens
|
157 |
+
|
158 |
+
def build_prompt(self, query, history=None):
|
159 |
+
if history is None:
|
160 |
+
history = []
|
161 |
+
prompt = ""
|
162 |
+
for i, (old_query, response) in enumerate(history):
|
163 |
+
prompt += "[Round {}]\n\n问:{}\n\n答:{}\n\n".format(i + 1, old_query, response)
|
164 |
+
prompt += "[Round {}]\n\n问:{}\n\n答:".format(len(history) + 1, query)
|
165 |
+
return prompt
|
166 |
+
|
167 |
+
def build_inputs_with_special_tokens(
|
168 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
169 |
+
) -> List[int]:
|
170 |
+
"""
|
171 |
+
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
|
172 |
+
adding special tokens. A BERT sequence has the following format:
|
173 |
+
|
174 |
+
- single sequence: `[CLS] X [SEP]`
|
175 |
+
- pair of sequences: `[CLS] A [SEP] B [SEP]`
|
176 |
+
|
177 |
+
Args:
|
178 |
+
token_ids_0 (`List[int]`):
|
179 |
+
List of IDs to which the special tokens will be added.
|
180 |
+
token_ids_1 (`List[int]`, *optional*):
|
181 |
+
Optional second list of IDs for sequence pairs.
|
182 |
+
|
183 |
+
Returns:
|
184 |
+
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
|
185 |
+
"""
|
186 |
+
prefix_tokens = self.get_prefix_tokens()
|
187 |
+
token_ids_0 = prefix_tokens + token_ids_0
|
188 |
+
if token_ids_1 is not None:
|
189 |
+
token_ids_0 = token_ids_0 + token_ids_1 + [self.get_command("<eos>")]
|
190 |
+
return token_ids_0
|
191 |
+
|
192 |
+
def _pad(
|
193 |
+
self,
|
194 |
+
encoded_inputs: Union[Dict[str, EncodedInput], BatchEncoding],
|
195 |
+
max_length: Optional[int] = None,
|
196 |
+
padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
|
197 |
+
pad_to_multiple_of: Optional[int] = None,
|
198 |
+
return_attention_mask: Optional[bool] = None,
|
199 |
+
) -> dict:
|
200 |
+
"""
|
201 |
+
Pad encoded inputs (on left/right and up to predefined length or max length in the batch)
|
202 |
+
|
203 |
+
Args:
|
204 |
+
encoded_inputs:
|
205 |
+
Dictionary of tokenized inputs (`List[int]`) or batch of tokenized inputs (`List[List[int]]`).
|
206 |
+
max_length: maximum length of the returned list and optionally padding length (see below).
|
207 |
+
Will truncate by taking into account the special tokens.
|
208 |
+
padding_strategy: PaddingStrategy to use for padding.
|
209 |
+
|
210 |
+
- PaddingStrategy.LONGEST Pad to the longest sequence in the batch
|
211 |
+
- PaddingStrategy.MAX_LENGTH: Pad to the max length (default)
|
212 |
+
- PaddingStrategy.DO_NOT_PAD: Do not pad
|
213 |
+
The tokenizer padding sides are defined in self.padding_side:
|
214 |
+
|
215 |
+
- 'left': pads on the left of the sequences
|
216 |
+
- 'right': pads on the right of the sequences
|
217 |
+
pad_to_multiple_of: (optional) Integer if set will pad the sequence to a multiple of the provided value.
|
218 |
+
This is especially useful to enable the use of Tensor Core on NVIDIA hardware with compute capability
|
219 |
+
`>= 7.5` (Volta).
|
220 |
+
return_attention_mask:
|
221 |
+
(optional) Set to False to avoid returning attention mask (default: set to model specifics)
|
222 |
+
"""
|
223 |
+
# Load from model defaults
|
224 |
+
assert self.padding_side == "left"
|
225 |
+
|
226 |
+
required_input = encoded_inputs[self.model_input_names[0]]
|
227 |
+
seq_length = len(required_input)
|
228 |
+
|
229 |
+
if padding_strategy == PaddingStrategy.LONGEST:
|
230 |
+
max_length = len(required_input)
|
231 |
+
|
232 |
+
if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0):
|
233 |
+
max_length = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of
|
234 |
+
|
235 |
+
needs_to_be_padded = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(required_input) != max_length
|
236 |
+
|
237 |
+
# Initialize attention mask if not present.
|
238 |
+
if "attention_mask" not in encoded_inputs:
|
239 |
+
encoded_inputs["attention_mask"] = [1] * seq_length
|
240 |
+
|
241 |
+
if "position_ids" not in encoded_inputs:
|
242 |
+
encoded_inputs["position_ids"] = list(range(seq_length))
|
243 |
+
|
244 |
+
if needs_to_be_padded:
|
245 |
+
difference = max_length - len(required_input)
|
246 |
+
|
247 |
+
if "attention_mask" in encoded_inputs:
|
248 |
+
encoded_inputs["attention_mask"] = [0] * difference + encoded_inputs["attention_mask"]
|
249 |
+
if "position_ids" in encoded_inputs:
|
250 |
+
encoded_inputs["position_ids"] = [0] * difference + encoded_inputs["position_ids"]
|
251 |
+
encoded_inputs[self.model_input_names[0]] = [self.pad_token_id] * difference + required_input
|
252 |
+
|
253 |
+
return encoded_inputs
|
tokenizer.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e7dc4c393423b76e4373e5157ddc34803a0189ba96b21ddbb40269d31468a6f2
|
3 |
+
size 1018370
|
tokenizer_config.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"auto_map": {
|
3 |
+
"AutoTokenizer": [
|
4 |
+
"tokenization_chatglm.ChatGLMTokenizer",
|
5 |
+
null
|
6 |
+
]
|
7 |
+
},
|
8 |
+
"clean_up_tokenization_spaces": true,
|
9 |
+
"do_lower_case": false,
|
10 |
+
"model_max_length": 1000000000000000019884624838656,
|
11 |
+
"padding_side": "left",
|
12 |
+
"remove_space": false,
|
13 |
+
"tokenizer_class": "ChatGLMTokenizer"
|
14 |
+
}
|
train_results.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 6.0,
|
3 |
+
"train_loss": 0.8953271216487972,
|
4 |
+
"train_runtime": 33942.058,
|
5 |
+
"train_samples_per_second": 12.326,
|
6 |
+
"train_steps_per_second": 0.128
|
7 |
+
}
|
trainer_log.jsonl
ADDED
The diff for this file is too large to render.
See raw diff
|
|
trainer_state.json
ADDED
@@ -0,0 +1,2635 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 5.997246443322625,
|
5 |
+
"global_step": 4356,
|
6 |
+
"is_hyper_param_search": false,
|
7 |
+
"is_local_process_zero": true,
|
8 |
+
"is_world_process_zero": true,
|
9 |
+
"log_history": [
|
10 |
+
{
|
11 |
+
"epoch": 0.01,
|
12 |
+
"learning_rate": 0.00019999739928881725,
|
13 |
+
"loss": 2.1906,
|
14 |
+
"step": 10
|
15 |
+
},
|
16 |
+
{
|
17 |
+
"epoch": 0.03,
|
18 |
+
"learning_rate": 0.00019998959729054295,
|
19 |
+
"loss": 1.8919,
|
20 |
+
"step": 20
|
21 |
+
},
|
22 |
+
{
|
23 |
+
"epoch": 0.04,
|
24 |
+
"learning_rate": 0.00019997659441099206,
|
25 |
+
"loss": 1.7855,
|
26 |
+
"step": 30
|
27 |
+
},
|
28 |
+
{
|
29 |
+
"epoch": 0.06,
|
30 |
+
"learning_rate": 0.00019995839132649917,
|
31 |
+
"loss": 1.7235,
|
32 |
+
"step": 40
|
33 |
+
},
|
34 |
+
{
|
35 |
+
"epoch": 0.07,
|
36 |
+
"learning_rate": 0.0001999349889838836,
|
37 |
+
"loss": 1.7027,
|
38 |
+
"step": 50
|
39 |
+
},
|
40 |
+
{
|
41 |
+
"epoch": 0.08,
|
42 |
+
"learning_rate": 0.00019990638860040006,
|
43 |
+
"loss": 1.7118,
|
44 |
+
"step": 60
|
45 |
+
},
|
46 |
+
{
|
47 |
+
"epoch": 0.1,
|
48 |
+
"learning_rate": 0.00019987259166367533,
|
49 |
+
"loss": 1.689,
|
50 |
+
"step": 70
|
51 |
+
},
|
52 |
+
{
|
53 |
+
"epoch": 0.11,
|
54 |
+
"learning_rate": 0.00019983359993163078,
|
55 |
+
"loss": 1.6845,
|
56 |
+
"step": 80
|
57 |
+
},
|
58 |
+
{
|
59 |
+
"epoch": 0.12,
|
60 |
+
"learning_rate": 0.0001997894154323911,
|
61 |
+
"loss": 1.6655,
|
62 |
+
"step": 90
|
63 |
+
},
|
64 |
+
{
|
65 |
+
"epoch": 0.14,
|
66 |
+
"learning_rate": 0.0001997400404641787,
|
67 |
+
"loss": 1.6518,
|
68 |
+
"step": 100
|
69 |
+
},
|
70 |
+
{
|
71 |
+
"epoch": 0.15,
|
72 |
+
"learning_rate": 0.00019968547759519425,
|
73 |
+
"loss": 1.6571,
|
74 |
+
"step": 110
|
75 |
+
},
|
76 |
+
{
|
77 |
+
"epoch": 0.17,
|
78 |
+
"learning_rate": 0.000199625729663483,
|
79 |
+
"loss": 1.6559,
|
80 |
+
"step": 120
|
81 |
+
},
|
82 |
+
{
|
83 |
+
"epoch": 0.18,
|
84 |
+
"learning_rate": 0.00019956079977678722,
|
85 |
+
"loss": 1.6417,
|
86 |
+
"step": 130
|
87 |
+
},
|
88 |
+
{
|
89 |
+
"epoch": 0.19,
|
90 |
+
"learning_rate": 0.0001994906913123846,
|
91 |
+
"loss": 1.6313,
|
92 |
+
"step": 140
|
93 |
+
},
|
94 |
+
{
|
95 |
+
"epoch": 0.21,
|
96 |
+
"learning_rate": 0.00019941540791691245,
|
97 |
+
"loss": 1.6243,
|
98 |
+
"step": 150
|
99 |
+
},
|
100 |
+
{
|
101 |
+
"epoch": 0.22,
|
102 |
+
"learning_rate": 0.00019933495350617813,
|
103 |
+
"loss": 1.6189,
|
104 |
+
"step": 160
|
105 |
+
},
|
106 |
+
{
|
107 |
+
"epoch": 0.23,
|
108 |
+
"learning_rate": 0.0001992493322649554,
|
109 |
+
"loss": 1.628,
|
110 |
+
"step": 170
|
111 |
+
},
|
112 |
+
{
|
113 |
+
"epoch": 0.25,
|
114 |
+
"learning_rate": 0.00019915854864676664,
|
115 |
+
"loss": 1.6149,
|
116 |
+
"step": 180
|
117 |
+
},
|
118 |
+
{
|
119 |
+
"epoch": 0.26,
|
120 |
+
"learning_rate": 0.00019906260737365122,
|
121 |
+
"loss": 1.6032,
|
122 |
+
"step": 190
|
123 |
+
},
|
124 |
+
{
|
125 |
+
"epoch": 0.28,
|
126 |
+
"learning_rate": 0.00019896151343592008,
|
127 |
+
"loss": 1.626,
|
128 |
+
"step": 200
|
129 |
+
},
|
130 |
+
{
|
131 |
+
"epoch": 0.29,
|
132 |
+
"learning_rate": 0.0001988552720918958,
|
133 |
+
"loss": 1.6369,
|
134 |
+
"step": 210
|
135 |
+
},
|
136 |
+
{
|
137 |
+
"epoch": 0.3,
|
138 |
+
"learning_rate": 0.00019874388886763944,
|
139 |
+
"loss": 1.5757,
|
140 |
+
"step": 220
|
141 |
+
},
|
142 |
+
{
|
143 |
+
"epoch": 0.32,
|
144 |
+
"learning_rate": 0.00019862736955666296,
|
145 |
+
"loss": 1.5873,
|
146 |
+
"step": 230
|
147 |
+
},
|
148 |
+
{
|
149 |
+
"epoch": 0.33,
|
150 |
+
"learning_rate": 0.00019850572021962788,
|
151 |
+
"loss": 1.6041,
|
152 |
+
"step": 240
|
153 |
+
},
|
154 |
+
{
|
155 |
+
"epoch": 0.34,
|
156 |
+
"learning_rate": 0.00019837894718402997,
|
157 |
+
"loss": 1.5905,
|
158 |
+
"step": 250
|
159 |
+
},
|
160 |
+
{
|
161 |
+
"epoch": 0.36,
|
162 |
+
"learning_rate": 0.00019824705704387028,
|
163 |
+
"loss": 1.6131,
|
164 |
+
"step": 260
|
165 |
+
},
|
166 |
+
{
|
167 |
+
"epoch": 0.37,
|
168 |
+
"learning_rate": 0.00019811005665931205,
|
169 |
+
"loss": 1.6045,
|
170 |
+
"step": 270
|
171 |
+
},
|
172 |
+
{
|
173 |
+
"epoch": 0.39,
|
174 |
+
"learning_rate": 0.00019796795315632395,
|
175 |
+
"loss": 1.5942,
|
176 |
+
"step": 280
|
177 |
+
},
|
178 |
+
{
|
179 |
+
"epoch": 0.4,
|
180 |
+
"learning_rate": 0.00019782075392630935,
|
181 |
+
"loss": 1.5768,
|
182 |
+
"step": 290
|
183 |
+
},
|
184 |
+
{
|
185 |
+
"epoch": 0.41,
|
186 |
+
"learning_rate": 0.00019766846662572191,
|
187 |
+
"loss": 1.5967,
|
188 |
+
"step": 300
|
189 |
+
},
|
190 |
+
{
|
191 |
+
"epoch": 0.43,
|
192 |
+
"learning_rate": 0.00019751109917566737,
|
193 |
+
"loss": 1.5606,
|
194 |
+
"step": 310
|
195 |
+
},
|
196 |
+
{
|
197 |
+
"epoch": 0.44,
|
198 |
+
"learning_rate": 0.00019734865976149145,
|
199 |
+
"loss": 1.58,
|
200 |
+
"step": 320
|
201 |
+
},
|
202 |
+
{
|
203 |
+
"epoch": 0.45,
|
204 |
+
"learning_rate": 0.00019718115683235417,
|
205 |
+
"loss": 1.5809,
|
206 |
+
"step": 330
|
207 |
+
},
|
208 |
+
{
|
209 |
+
"epoch": 0.47,
|
210 |
+
"learning_rate": 0.00019700859910079036,
|
211 |
+
"loss": 1.5758,
|
212 |
+
"step": 340
|
213 |
+
},
|
214 |
+
{
|
215 |
+
"epoch": 0.48,
|
216 |
+
"learning_rate": 0.00019683099554225649,
|
217 |
+
"loss": 1.57,
|
218 |
+
"step": 350
|
219 |
+
},
|
220 |
+
{
|
221 |
+
"epoch": 0.5,
|
222 |
+
"learning_rate": 0.0001966483553946637,
|
223 |
+
"loss": 1.5783,
|
224 |
+
"step": 360
|
225 |
+
},
|
226 |
+
{
|
227 |
+
"epoch": 0.51,
|
228 |
+
"learning_rate": 0.00019646068815789755,
|
229 |
+
"loss": 1.5699,
|
230 |
+
"step": 370
|
231 |
+
},
|
232 |
+
{
|
233 |
+
"epoch": 0.52,
|
234 |
+
"learning_rate": 0.00019626800359332362,
|
235 |
+
"loss": 1.5767,
|
236 |
+
"step": 380
|
237 |
+
},
|
238 |
+
{
|
239 |
+
"epoch": 0.54,
|
240 |
+
"learning_rate": 0.00019607031172327996,
|
241 |
+
"loss": 1.5635,
|
242 |
+
"step": 390
|
243 |
+
},
|
244 |
+
{
|
245 |
+
"epoch": 0.55,
|
246 |
+
"learning_rate": 0.00019586762283055573,
|
247 |
+
"loss": 1.5763,
|
248 |
+
"step": 400
|
249 |
+
},
|
250 |
+
{
|
251 |
+
"epoch": 0.56,
|
252 |
+
"learning_rate": 0.0001956599474578563,
|
253 |
+
"loss": 1.5719,
|
254 |
+
"step": 410
|
255 |
+
},
|
256 |
+
{
|
257 |
+
"epoch": 0.58,
|
258 |
+
"learning_rate": 0.00019544729640725498,
|
259 |
+
"loss": 1.5712,
|
260 |
+
"step": 420
|
261 |
+
},
|
262 |
+
{
|
263 |
+
"epoch": 0.59,
|
264 |
+
"learning_rate": 0.00019522968073963106,
|
265 |
+
"loss": 1.5699,
|
266 |
+
"step": 430
|
267 |
+
},
|
268 |
+
{
|
269 |
+
"epoch": 0.61,
|
270 |
+
"learning_rate": 0.00019500711177409454,
|
271 |
+
"loss": 1.539,
|
272 |
+
"step": 440
|
273 |
+
},
|
274 |
+
{
|
275 |
+
"epoch": 0.62,
|
276 |
+
"learning_rate": 0.0001947796010873974,
|
277 |
+
"loss": 1.5515,
|
278 |
+
"step": 450
|
279 |
+
},
|
280 |
+
{
|
281 |
+
"epoch": 0.63,
|
282 |
+
"learning_rate": 0.00019454716051333135,
|
283 |
+
"loss": 1.5691,
|
284 |
+
"step": 460
|
285 |
+
},
|
286 |
+
{
|
287 |
+
"epoch": 0.65,
|
288 |
+
"learning_rate": 0.0001943098021421124,
|
289 |
+
"loss": 1.573,
|
290 |
+
"step": 470
|
291 |
+
},
|
292 |
+
{
|
293 |
+
"epoch": 0.66,
|
294 |
+
"learning_rate": 0.00019406753831975203,
|
295 |
+
"loss": 1.5532,
|
296 |
+
"step": 480
|
297 |
+
},
|
298 |
+
{
|
299 |
+
"epoch": 0.67,
|
300 |
+
"learning_rate": 0.00019382038164741477,
|
301 |
+
"loss": 1.5778,
|
302 |
+
"step": 490
|
303 |
+
},
|
304 |
+
{
|
305 |
+
"epoch": 0.69,
|
306 |
+
"learning_rate": 0.0001935683449807631,
|
307 |
+
"loss": 1.5514,
|
308 |
+
"step": 500
|
309 |
+
},
|
310 |
+
{
|
311 |
+
"epoch": 0.7,
|
312 |
+
"learning_rate": 0.00019331144142928854,
|
313 |
+
"loss": 1.5493,
|
314 |
+
"step": 510
|
315 |
+
},
|
316 |
+
{
|
317 |
+
"epoch": 0.72,
|
318 |
+
"learning_rate": 0.00019304968435562993,
|
319 |
+
"loss": 1.5698,
|
320 |
+
"step": 520
|
321 |
+
},
|
322 |
+
{
|
323 |
+
"epoch": 0.73,
|
324 |
+
"learning_rate": 0.00019278308737487822,
|
325 |
+
"loss": 1.5699,
|
326 |
+
"step": 530
|
327 |
+
},
|
328 |
+
{
|
329 |
+
"epoch": 0.74,
|
330 |
+
"learning_rate": 0.0001925116643538684,
|
331 |
+
"loss": 1.554,
|
332 |
+
"step": 540
|
333 |
+
},
|
334 |
+
{
|
335 |
+
"epoch": 0.76,
|
336 |
+
"learning_rate": 0.00019223542941045817,
|
337 |
+
"loss": 1.5527,
|
338 |
+
"step": 550
|
339 |
+
},
|
340 |
+
{
|
341 |
+
"epoch": 0.77,
|
342 |
+
"learning_rate": 0.00019195439691279363,
|
343 |
+
"loss": 1.5517,
|
344 |
+
"step": 560
|
345 |
+
},
|
346 |
+
{
|
347 |
+
"epoch": 0.78,
|
348 |
+
"learning_rate": 0.00019166858147856203,
|
349 |
+
"loss": 1.5673,
|
350 |
+
"step": 570
|
351 |
+
},
|
352 |
+
{
|
353 |
+
"epoch": 0.8,
|
354 |
+
"learning_rate": 0.00019137799797423126,
|
355 |
+
"loss": 1.5469,
|
356 |
+
"step": 580
|
357 |
+
},
|
358 |
+
{
|
359 |
+
"epoch": 0.81,
|
360 |
+
"learning_rate": 0.00019108266151427673,
|
361 |
+
"loss": 1.5499,
|
362 |
+
"step": 590
|
363 |
+
},
|
364 |
+
{
|
365 |
+
"epoch": 0.83,
|
366 |
+
"learning_rate": 0.00019078258746039507,
|
367 |
+
"loss": 1.5502,
|
368 |
+
"step": 600
|
369 |
+
},
|
370 |
+
{
|
371 |
+
"epoch": 0.84,
|
372 |
+
"learning_rate": 0.00019047779142070527,
|
373 |
+
"loss": 1.5402,
|
374 |
+
"step": 610
|
375 |
+
},
|
376 |
+
{
|
377 |
+
"epoch": 0.85,
|
378 |
+
"learning_rate": 0.0001901682892489367,
|
379 |
+
"loss": 1.5444,
|
380 |
+
"step": 620
|
381 |
+
},
|
382 |
+
{
|
383 |
+
"epoch": 0.87,
|
384 |
+
"learning_rate": 0.00018985409704360456,
|
385 |
+
"loss": 1.5524,
|
386 |
+
"step": 630
|
387 |
+
},
|
388 |
+
{
|
389 |
+
"epoch": 0.88,
|
390 |
+
"learning_rate": 0.00018953523114717245,
|
391 |
+
"loss": 1.5338,
|
392 |
+
"step": 640
|
393 |
+
},
|
394 |
+
{
|
395 |
+
"epoch": 0.89,
|
396 |
+
"learning_rate": 0.00018921170814520247,
|
397 |
+
"loss": 1.5416,
|
398 |
+
"step": 650
|
399 |
+
},
|
400 |
+
{
|
401 |
+
"epoch": 0.91,
|
402 |
+
"learning_rate": 0.00018888354486549237,
|
403 |
+
"loss": 1.5524,
|
404 |
+
"step": 660
|
405 |
+
},
|
406 |
+
{
|
407 |
+
"epoch": 0.92,
|
408 |
+
"learning_rate": 0.00018855075837720034,
|
409 |
+
"loss": 1.544,
|
410 |
+
"step": 670
|
411 |
+
},
|
412 |
+
{
|
413 |
+
"epoch": 0.94,
|
414 |
+
"learning_rate": 0.0001882133659899573,
|
415 |
+
"loss": 1.5317,
|
416 |
+
"step": 680
|
417 |
+
},
|
418 |
+
{
|
419 |
+
"epoch": 0.95,
|
420 |
+
"learning_rate": 0.0001878713852529663,
|
421 |
+
"loss": 1.5516,
|
422 |
+
"step": 690
|
423 |
+
},
|
424 |
+
{
|
425 |
+
"epoch": 0.96,
|
426 |
+
"learning_rate": 0.00018752483395408987,
|
427 |
+
"loss": 1.5479,
|
428 |
+
"step": 700
|
429 |
+
},
|
430 |
+
{
|
431 |
+
"epoch": 0.98,
|
432 |
+
"learning_rate": 0.00018717373011892474,
|
433 |
+
"loss": 1.5328,
|
434 |
+
"step": 710
|
435 |
+
},
|
436 |
+
{
|
437 |
+
"epoch": 0.99,
|
438 |
+
"learning_rate": 0.0001868180920098644,
|
439 |
+
"loss": 1.524,
|
440 |
+
"step": 720
|
441 |
+
},
|
442 |
+
{
|
443 |
+
"epoch": 1.01,
|
444 |
+
"learning_rate": 0.00018645793812514894,
|
445 |
+
"loss": 1.4712,
|
446 |
+
"step": 730
|
447 |
+
},
|
448 |
+
{
|
449 |
+
"epoch": 1.02,
|
450 |
+
"learning_rate": 0.0001860932871979031,
|
451 |
+
"loss": 1.3509,
|
452 |
+
"step": 740
|
453 |
+
},
|
454 |
+
{
|
455 |
+
"epoch": 1.03,
|
456 |
+
"learning_rate": 0.00018572415819516174,
|
457 |
+
"loss": 1.3227,
|
458 |
+
"step": 750
|
459 |
+
},
|
460 |
+
{
|
461 |
+
"epoch": 1.05,
|
462 |
+
"learning_rate": 0.00018535057031688335,
|
463 |
+
"loss": 1.3216,
|
464 |
+
"step": 760
|
465 |
+
},
|
466 |
+
{
|
467 |
+
"epoch": 1.06,
|
468 |
+
"learning_rate": 0.00018497254299495146,
|
469 |
+
"loss": 1.3022,
|
470 |
+
"step": 770
|
471 |
+
},
|
472 |
+
{
|
473 |
+
"epoch": 1.07,
|
474 |
+
"learning_rate": 0.00018459009589216364,
|
475 |
+
"loss": 1.308,
|
476 |
+
"step": 780
|
477 |
+
},
|
478 |
+
{
|
479 |
+
"epoch": 1.09,
|
480 |
+
"learning_rate": 0.00018420324890120916,
|
481 |
+
"loss": 1.3295,
|
482 |
+
"step": 790
|
483 |
+
},
|
484 |
+
{
|
485 |
+
"epoch": 1.1,
|
486 |
+
"learning_rate": 0.0001838120221436338,
|
487 |
+
"loss": 1.3249,
|
488 |
+
"step": 800
|
489 |
+
},
|
490 |
+
{
|
491 |
+
"epoch": 1.12,
|
492 |
+
"learning_rate": 0.00018341643596879367,
|
493 |
+
"loss": 1.3109,
|
494 |
+
"step": 810
|
495 |
+
},
|
496 |
+
{
|
497 |
+
"epoch": 1.13,
|
498 |
+
"learning_rate": 0.00018301651095279655,
|
499 |
+
"loss": 1.328,
|
500 |
+
"step": 820
|
501 |
+
},
|
502 |
+
{
|
503 |
+
"epoch": 1.14,
|
504 |
+
"learning_rate": 0.00018261226789743172,
|
505 |
+
"loss": 1.3215,
|
506 |
+
"step": 830
|
507 |
+
},
|
508 |
+
{
|
509 |
+
"epoch": 1.16,
|
510 |
+
"learning_rate": 0.00018220372782908777,
|
511 |
+
"loss": 1.3378,
|
512 |
+
"step": 840
|
513 |
+
},
|
514 |
+
{
|
515 |
+
"epoch": 1.17,
|
516 |
+
"learning_rate": 0.00018179091199765926,
|
517 |
+
"loss": 1.3289,
|
518 |
+
"step": 850
|
519 |
+
},
|
520 |
+
{
|
521 |
+
"epoch": 1.18,
|
522 |
+
"learning_rate": 0.00018137384187544116,
|
523 |
+
"loss": 1.3362,
|
524 |
+
"step": 860
|
525 |
+
},
|
526 |
+
{
|
527 |
+
"epoch": 1.2,
|
528 |
+
"learning_rate": 0.00018095253915601206,
|
529 |
+
"loss": 1.3263,
|
530 |
+
"step": 870
|
531 |
+
},
|
532 |
+
{
|
533 |
+
"epoch": 1.21,
|
534 |
+
"learning_rate": 0.00018052702575310588,
|
535 |
+
"loss": 1.3238,
|
536 |
+
"step": 880
|
537 |
+
},
|
538 |
+
{
|
539 |
+
"epoch": 1.23,
|
540 |
+
"learning_rate": 0.00018009732379947188,
|
541 |
+
"loss": 1.3278,
|
542 |
+
"step": 890
|
543 |
+
},
|
544 |
+
{
|
545 |
+
"epoch": 1.24,
|
546 |
+
"learning_rate": 0.0001796634556457236,
|
547 |
+
"loss": 1.3277,
|
548 |
+
"step": 900
|
549 |
+
},
|
550 |
+
{
|
551 |
+
"epoch": 1.25,
|
552 |
+
"learning_rate": 0.00017922544385917628,
|
553 |
+
"loss": 1.3332,
|
554 |
+
"step": 910
|
555 |
+
},
|
556 |
+
{
|
557 |
+
"epoch": 1.27,
|
558 |
+
"learning_rate": 0.00017878331122267284,
|
559 |
+
"loss": 1.3268,
|
560 |
+
"step": 920
|
561 |
+
},
|
562 |
+
{
|
563 |
+
"epoch": 1.28,
|
564 |
+
"learning_rate": 0.00017833708073339922,
|
565 |
+
"loss": 1.3316,
|
566 |
+
"step": 930
|
567 |
+
},
|
568 |
+
{
|
569 |
+
"epoch": 1.29,
|
570 |
+
"learning_rate": 0.00017788677560168784,
|
571 |
+
"loss": 1.337,
|
572 |
+
"step": 940
|
573 |
+
},
|
574 |
+
{
|
575 |
+
"epoch": 1.31,
|
576 |
+
"learning_rate": 0.0001774324192498105,
|
577 |
+
"loss": 1.3307,
|
578 |
+
"step": 950
|
579 |
+
},
|
580 |
+
{
|
581 |
+
"epoch": 1.32,
|
582 |
+
"learning_rate": 0.0001769740353107602,
|
583 |
+
"loss": 1.3295,
|
584 |
+
"step": 960
|
585 |
+
},
|
586 |
+
{
|
587 |
+
"epoch": 1.34,
|
588 |
+
"learning_rate": 0.0001765116476270216,
|
589 |
+
"loss": 1.3148,
|
590 |
+
"step": 970
|
591 |
+
},
|
592 |
+
{
|
593 |
+
"epoch": 1.35,
|
594 |
+
"learning_rate": 0.00017604528024933115,
|
595 |
+
"loss": 1.3269,
|
596 |
+
"step": 980
|
597 |
+
},
|
598 |
+
{
|
599 |
+
"epoch": 1.36,
|
600 |
+
"learning_rate": 0.00017557495743542585,
|
601 |
+
"loss": 1.3488,
|
602 |
+
"step": 990
|
603 |
+
},
|
604 |
+
{
|
605 |
+
"epoch": 1.38,
|
606 |
+
"learning_rate": 0.00017510070364878177,
|
607 |
+
"loss": 1.3377,
|
608 |
+
"step": 1000
|
609 |
+
},
|
610 |
+
{
|
611 |
+
"epoch": 1.39,
|
612 |
+
"learning_rate": 0.0001746225435573415,
|
613 |
+
"loss": 1.3396,
|
614 |
+
"step": 1010
|
615 |
+
},
|
616 |
+
{
|
617 |
+
"epoch": 1.4,
|
618 |
+
"learning_rate": 0.0001741405020322309,
|
619 |
+
"loss": 1.3375,
|
620 |
+
"step": 1020
|
621 |
+
},
|
622 |
+
{
|
623 |
+
"epoch": 1.42,
|
624 |
+
"learning_rate": 0.00017365460414646574,
|
625 |
+
"loss": 1.326,
|
626 |
+
"step": 1030
|
627 |
+
},
|
628 |
+
{
|
629 |
+
"epoch": 1.43,
|
630 |
+
"learning_rate": 0.00017316487517364721,
|
631 |
+
"loss": 1.3297,
|
632 |
+
"step": 1040
|
633 |
+
},
|
634 |
+
{
|
635 |
+
"epoch": 1.45,
|
636 |
+
"learning_rate": 0.00017267134058664775,
|
637 |
+
"loss": 1.3429,
|
638 |
+
"step": 1050
|
639 |
+
},
|
640 |
+
{
|
641 |
+
"epoch": 1.46,
|
642 |
+
"learning_rate": 0.00017217402605628572,
|
643 |
+
"loss": 1.3339,
|
644 |
+
"step": 1060
|
645 |
+
},
|
646 |
+
{
|
647 |
+
"epoch": 1.47,
|
648 |
+
"learning_rate": 0.00017167295744999027,
|
649 |
+
"loss": 1.3375,
|
650 |
+
"step": 1070
|
651 |
+
},
|
652 |
+
{
|
653 |
+
"epoch": 1.49,
|
654 |
+
"learning_rate": 0.00017116816083045602,
|
655 |
+
"loss": 1.3161,
|
656 |
+
"step": 1080
|
657 |
+
},
|
658 |
+
{
|
659 |
+
"epoch": 1.5,
|
660 |
+
"learning_rate": 0.00017065966245428723,
|
661 |
+
"loss": 1.3281,
|
662 |
+
"step": 1090
|
663 |
+
},
|
664 |
+
{
|
665 |
+
"epoch": 1.51,
|
666 |
+
"learning_rate": 0.00017014748877063214,
|
667 |
+
"loss": 1.322,
|
668 |
+
"step": 1100
|
669 |
+
},
|
670 |
+
{
|
671 |
+
"epoch": 1.53,
|
672 |
+
"learning_rate": 0.0001696316664198073,
|
673 |
+
"loss": 1.3344,
|
674 |
+
"step": 1110
|
675 |
+
},
|
676 |
+
{
|
677 |
+
"epoch": 1.54,
|
678 |
+
"learning_rate": 0.00016911222223191182,
|
679 |
+
"loss": 1.3607,
|
680 |
+
"step": 1120
|
681 |
+
},
|
682 |
+
{
|
683 |
+
"epoch": 1.56,
|
684 |
+
"learning_rate": 0.00016858918322543186,
|
685 |
+
"loss": 1.34,
|
686 |
+
"step": 1130
|
687 |
+
},
|
688 |
+
{
|
689 |
+
"epoch": 1.57,
|
690 |
+
"learning_rate": 0.00016806257660583534,
|
691 |
+
"loss": 1.3324,
|
692 |
+
"step": 1140
|
693 |
+
},
|
694 |
+
{
|
695 |
+
"epoch": 1.58,
|
696 |
+
"learning_rate": 0.00016753242976415666,
|
697 |
+
"loss": 1.3249,
|
698 |
+
"step": 1150
|
699 |
+
},
|
700 |
+
{
|
701 |
+
"epoch": 1.6,
|
702 |
+
"learning_rate": 0.00016699877027557226,
|
703 |
+
"loss": 1.3363,
|
704 |
+
"step": 1160
|
705 |
+
},
|
706 |
+
{
|
707 |
+
"epoch": 1.61,
|
708 |
+
"learning_rate": 0.00016646162589796615,
|
709 |
+
"loss": 1.3403,
|
710 |
+
"step": 1170
|
711 |
+
},
|
712 |
+
{
|
713 |
+
"epoch": 1.62,
|
714 |
+
"learning_rate": 0.0001659210245704861,
|
715 |
+
"loss": 1.3283,
|
716 |
+
"step": 1180
|
717 |
+
},
|
718 |
+
{
|
719 |
+
"epoch": 1.64,
|
720 |
+
"learning_rate": 0.00016537699441209047,
|
721 |
+
"loss": 1.3258,
|
722 |
+
"step": 1190
|
723 |
+
},
|
724 |
+
{
|
725 |
+
"epoch": 1.65,
|
726 |
+
"learning_rate": 0.0001648295637200856,
|
727 |
+
"loss": 1.3258,
|
728 |
+
"step": 1200
|
729 |
+
},
|
730 |
+
{
|
731 |
+
"epoch": 1.67,
|
732 |
+
"learning_rate": 0.00016427876096865394,
|
733 |
+
"loss": 1.3581,
|
734 |
+
"step": 1210
|
735 |
+
},
|
736 |
+
{
|
737 |
+
"epoch": 1.68,
|
738 |
+
"learning_rate": 0.00016372461480737297,
|
739 |
+
"loss": 1.3337,
|
740 |
+
"step": 1220
|
741 |
+
},
|
742 |
+
{
|
743 |
+
"epoch": 1.69,
|
744 |
+
"learning_rate": 0.00016316715405972508,
|
745 |
+
"loss": 1.3432,
|
746 |
+
"step": 1230
|
747 |
+
},
|
748 |
+
{
|
749 |
+
"epoch": 1.71,
|
750 |
+
"learning_rate": 0.0001626064077215983,
|
751 |
+
"loss": 1.3385,
|
752 |
+
"step": 1240
|
753 |
+
},
|
754 |
+
{
|
755 |
+
"epoch": 1.72,
|
756 |
+
"learning_rate": 0.00016204240495977805,
|
757 |
+
"loss": 1.3474,
|
758 |
+
"step": 1250
|
759 |
+
},
|
760 |
+
{
|
761 |
+
"epoch": 1.73,
|
762 |
+
"learning_rate": 0.0001614751751104301,
|
763 |
+
"loss": 1.3198,
|
764 |
+
"step": 1260
|
765 |
+
},
|
766 |
+
{
|
767 |
+
"epoch": 1.75,
|
768 |
+
"learning_rate": 0.00016090474767757474,
|
769 |
+
"loss": 1.3407,
|
770 |
+
"step": 1270
|
771 |
+
},
|
772 |
+
{
|
773 |
+
"epoch": 1.76,
|
774 |
+
"learning_rate": 0.00016033115233155202,
|
775 |
+
"loss": 1.3203,
|
776 |
+
"step": 1280
|
777 |
+
},
|
778 |
+
{
|
779 |
+
"epoch": 1.78,
|
780 |
+
"learning_rate": 0.00015975441890747855,
|
781 |
+
"loss": 1.3311,
|
782 |
+
"step": 1290
|
783 |
+
},
|
784 |
+
{
|
785 |
+
"epoch": 1.79,
|
786 |
+
"learning_rate": 0.00015917457740369565,
|
787 |
+
"loss": 1.3271,
|
788 |
+
"step": 1300
|
789 |
+
},
|
790 |
+
{
|
791 |
+
"epoch": 1.8,
|
792 |
+
"learning_rate": 0.000158591657980209,
|
793 |
+
"loss": 1.3432,
|
794 |
+
"step": 1310
|
795 |
+
},
|
796 |
+
{
|
797 |
+
"epoch": 1.82,
|
798 |
+
"learning_rate": 0.00015800569095711982,
|
799 |
+
"loss": 1.3302,
|
800 |
+
"step": 1320
|
801 |
+
},
|
802 |
+
{
|
803 |
+
"epoch": 1.83,
|
804 |
+
"learning_rate": 0.00015741670681304796,
|
805 |
+
"loss": 1.3326,
|
806 |
+
"step": 1330
|
807 |
+
},
|
808 |
+
{
|
809 |
+
"epoch": 1.84,
|
810 |
+
"learning_rate": 0.00015682473618354635,
|
811 |
+
"loss": 1.3358,
|
812 |
+
"step": 1340
|
813 |
+
},
|
814 |
+
{
|
815 |
+
"epoch": 1.86,
|
816 |
+
"learning_rate": 0.0001562298098595078,
|
817 |
+
"loss": 1.3343,
|
818 |
+
"step": 1350
|
819 |
+
},
|
820 |
+
{
|
821 |
+
"epoch": 1.87,
|
822 |
+
"learning_rate": 0.0001556319587855631,
|
823 |
+
"loss": 1.3214,
|
824 |
+
"step": 1360
|
825 |
+
},
|
826 |
+
{
|
827 |
+
"epoch": 1.89,
|
828 |
+
"learning_rate": 0.0001550312140584718,
|
829 |
+
"loss": 1.3342,
|
830 |
+
"step": 1370
|
831 |
+
},
|
832 |
+
{
|
833 |
+
"epoch": 1.9,
|
834 |
+
"learning_rate": 0.00015442760692550443,
|
835 |
+
"loss": 1.3253,
|
836 |
+
"step": 1380
|
837 |
+
},
|
838 |
+
{
|
839 |
+
"epoch": 1.91,
|
840 |
+
"learning_rate": 0.0001538211687828174,
|
841 |
+
"loss": 1.3494,
|
842 |
+
"step": 1390
|
843 |
+
},
|
844 |
+
{
|
845 |
+
"epoch": 1.93,
|
846 |
+
"learning_rate": 0.00015321193117381996,
|
847 |
+
"loss": 1.324,
|
848 |
+
"step": 1400
|
849 |
+
},
|
850 |
+
{
|
851 |
+
"epoch": 1.94,
|
852 |
+
"learning_rate": 0.00015259992578753334,
|
853 |
+
"loss": 1.3267,
|
854 |
+
"step": 1410
|
855 |
+
},
|
856 |
+
{
|
857 |
+
"epoch": 1.96,
|
858 |
+
"learning_rate": 0.00015198518445694255,
|
859 |
+
"loss": 1.343,
|
860 |
+
"step": 1420
|
861 |
+
},
|
862 |
+
{
|
863 |
+
"epoch": 1.97,
|
864 |
+
"learning_rate": 0.00015136773915734066,
|
865 |
+
"loss": 1.3209,
|
866 |
+
"step": 1430
|
867 |
+
},
|
868 |
+
{
|
869 |
+
"epoch": 1.98,
|
870 |
+
"learning_rate": 0.00015074762200466556,
|
871 |
+
"loss": 1.3224,
|
872 |
+
"step": 1440
|
873 |
+
},
|
874 |
+
{
|
875 |
+
"epoch": 2.0,
|
876 |
+
"learning_rate": 0.0001501248652538296,
|
877 |
+
"loss": 1.3481,
|
878 |
+
"step": 1450
|
879 |
+
},
|
880 |
+
{
|
881 |
+
"epoch": 2.01,
|
882 |
+
"learning_rate": 0.00014949950129704162,
|
883 |
+
"loss": 1.1061,
|
884 |
+
"step": 1460
|
885 |
+
},
|
886 |
+
{
|
887 |
+
"epoch": 2.02,
|
888 |
+
"learning_rate": 0.00014887156266212237,
|
889 |
+
"loss": 0.9927,
|
890 |
+
"step": 1470
|
891 |
+
},
|
892 |
+
{
|
893 |
+
"epoch": 2.04,
|
894 |
+
"learning_rate": 0.00014824108201081247,
|
895 |
+
"loss": 0.9946,
|
896 |
+
"step": 1480
|
897 |
+
},
|
898 |
+
{
|
899 |
+
"epoch": 2.05,
|
900 |
+
"learning_rate": 0.00014760809213707344,
|
901 |
+
"loss": 0.9764,
|
902 |
+
"step": 1490
|
903 |
+
},
|
904 |
+
{
|
905 |
+
"epoch": 2.07,
|
906 |
+
"learning_rate": 0.00014697262596538227,
|
907 |
+
"loss": 0.9851,
|
908 |
+
"step": 1500
|
909 |
+
},
|
910 |
+
{
|
911 |
+
"epoch": 2.08,
|
912 |
+
"learning_rate": 0.00014633471654901842,
|
913 |
+
"loss": 0.9941,
|
914 |
+
"step": 1510
|
915 |
+
},
|
916 |
+
{
|
917 |
+
"epoch": 2.09,
|
918 |
+
"learning_rate": 0.000145694397068345,
|
919 |
+
"loss": 0.9875,
|
920 |
+
"step": 1520
|
921 |
+
},
|
922 |
+
{
|
923 |
+
"epoch": 2.11,
|
924 |
+
"learning_rate": 0.0001450517008290827,
|
925 |
+
"loss": 0.9828,
|
926 |
+
"step": 1530
|
927 |
+
},
|
928 |
+
{
|
929 |
+
"epoch": 2.12,
|
930 |
+
"learning_rate": 0.00014440666126057744,
|
931 |
+
"loss": 0.9913,
|
932 |
+
"step": 1540
|
933 |
+
},
|
934 |
+
{
|
935 |
+
"epoch": 2.13,
|
936 |
+
"learning_rate": 0.00014375931191406159,
|
937 |
+
"loss": 0.9881,
|
938 |
+
"step": 1550
|
939 |
+
},
|
940 |
+
{
|
941 |
+
"epoch": 2.15,
|
942 |
+
"learning_rate": 0.00014310968646090883,
|
943 |
+
"loss": 0.9866,
|
944 |
+
"step": 1560
|
945 |
+
},
|
946 |
+
{
|
947 |
+
"epoch": 2.16,
|
948 |
+
"learning_rate": 0.0001424578186908828,
|
949 |
+
"loss": 0.9934,
|
950 |
+
"step": 1570
|
951 |
+
},
|
952 |
+
{
|
953 |
+
"epoch": 2.18,
|
954 |
+
"learning_rate": 0.0001418037425103795,
|
955 |
+
"loss": 0.9963,
|
956 |
+
"step": 1580
|
957 |
+
},
|
958 |
+
{
|
959 |
+
"epoch": 2.19,
|
960 |
+
"learning_rate": 0.00014114749194066363,
|
961 |
+
"loss": 0.9791,
|
962 |
+
"step": 1590
|
963 |
+
},
|
964 |
+
{
|
965 |
+
"epoch": 2.2,
|
966 |
+
"learning_rate": 0.00014048910111609915,
|
967 |
+
"loss": 0.9851,
|
968 |
+
"step": 1600
|
969 |
+
},
|
970 |
+
{
|
971 |
+
"epoch": 2.22,
|
972 |
+
"learning_rate": 0.0001398286042823736,
|
973 |
+
"loss": 0.9829,
|
974 |
+
"step": 1610
|
975 |
+
},
|
976 |
+
{
|
977 |
+
"epoch": 2.23,
|
978 |
+
"learning_rate": 0.00013916603579471705,
|
979 |
+
"loss": 0.9995,
|
980 |
+
"step": 1620
|
981 |
+
},
|
982 |
+
{
|
983 |
+
"epoch": 2.24,
|
984 |
+
"learning_rate": 0.00013850143011611497,
|
985 |
+
"loss": 0.9843,
|
986 |
+
"step": 1630
|
987 |
+
},
|
988 |
+
{
|
989 |
+
"epoch": 2.26,
|
990 |
+
"learning_rate": 0.0001378348218155158,
|
991 |
+
"loss": 1.0025,
|
992 |
+
"step": 1640
|
993 |
+
},
|
994 |
+
{
|
995 |
+
"epoch": 2.27,
|
996 |
+
"learning_rate": 0.00013716624556603274,
|
997 |
+
"loss": 1.0135,
|
998 |
+
"step": 1650
|
999 |
+
},
|
1000 |
+
{
|
1001 |
+
"epoch": 2.29,
|
1002 |
+
"learning_rate": 0.00013649573614314044,
|
1003 |
+
"loss": 1.0007,
|
1004 |
+
"step": 1660
|
1005 |
+
},
|
1006 |
+
{
|
1007 |
+
"epoch": 2.3,
|
1008 |
+
"learning_rate": 0.00013582332842286592,
|
1009 |
+
"loss": 1.0117,
|
1010 |
+
"step": 1670
|
1011 |
+
},
|
1012 |
+
{
|
1013 |
+
"epoch": 2.31,
|
1014 |
+
"learning_rate": 0.00013514905737997473,
|
1015 |
+
"loss": 1.0068,
|
1016 |
+
"step": 1680
|
1017 |
+
},
|
1018 |
+
{
|
1019 |
+
"epoch": 2.33,
|
1020 |
+
"learning_rate": 0.0001344729580861517,
|
1021 |
+
"loss": 0.998,
|
1022 |
+
"step": 1690
|
1023 |
+
},
|
1024 |
+
{
|
1025 |
+
"epoch": 2.34,
|
1026 |
+
"learning_rate": 0.0001337950657081768,
|
1027 |
+
"loss": 0.9995,
|
1028 |
+
"step": 1700
|
1029 |
+
},
|
1030 |
+
{
|
1031 |
+
"epoch": 2.35,
|
1032 |
+
"learning_rate": 0.00013311541550609565,
|
1033 |
+
"loss": 0.9975,
|
1034 |
+
"step": 1710
|
1035 |
+
},
|
1036 |
+
{
|
1037 |
+
"epoch": 2.37,
|
1038 |
+
"learning_rate": 0.00013243404283138597,
|
1039 |
+
"loss": 1.014,
|
1040 |
+
"step": 1720
|
1041 |
+
},
|
1042 |
+
{
|
1043 |
+
"epoch": 2.38,
|
1044 |
+
"learning_rate": 0.0001317509831251184,
|
1045 |
+
"loss": 0.9954,
|
1046 |
+
"step": 1730
|
1047 |
+
},
|
1048 |
+
{
|
1049 |
+
"epoch": 2.4,
|
1050 |
+
"learning_rate": 0.00013106627191611332,
|
1051 |
+
"loss": 1.0051,
|
1052 |
+
"step": 1740
|
1053 |
+
},
|
1054 |
+
{
|
1055 |
+
"epoch": 2.41,
|
1056 |
+
"learning_rate": 0.00013037994481909264,
|
1057 |
+
"loss": 1.0156,
|
1058 |
+
"step": 1750
|
1059 |
+
},
|
1060 |
+
{
|
1061 |
+
"epoch": 2.42,
|
1062 |
+
"learning_rate": 0.0001296920375328275,
|
1063 |
+
"loss": 1.0155,
|
1064 |
+
"step": 1760
|
1065 |
+
},
|
1066 |
+
{
|
1067 |
+
"epoch": 2.44,
|
1068 |
+
"learning_rate": 0.00012900258583828137,
|
1069 |
+
"loss": 1.0223,
|
1070 |
+
"step": 1770
|
1071 |
+
},
|
1072 |
+
{
|
1073 |
+
"epoch": 2.45,
|
1074 |
+
"learning_rate": 0.00012831162559674887,
|
1075 |
+
"loss": 1.0181,
|
1076 |
+
"step": 1780
|
1077 |
+
},
|
1078 |
+
{
|
1079 |
+
"epoch": 2.46,
|
1080 |
+
"learning_rate": 0.00012761919274799054,
|
1081 |
+
"loss": 1.0023,
|
1082 |
+
"step": 1790
|
1083 |
+
},
|
1084 |
+
{
|
1085 |
+
"epoch": 2.48,
|
1086 |
+
"learning_rate": 0.00012692532330836346,
|
1087 |
+
"loss": 0.9917,
|
1088 |
+
"step": 1800
|
1089 |
+
},
|
1090 |
+
{
|
1091 |
+
"epoch": 2.49,
|
1092 |
+
"learning_rate": 0.0001262300533689478,
|
1093 |
+
"loss": 1.0132,
|
1094 |
+
"step": 1810
|
1095 |
+
},
|
1096 |
+
{
|
1097 |
+
"epoch": 2.51,
|
1098 |
+
"learning_rate": 0.00012553341909366978,
|
1099 |
+
"loss": 1.0136,
|
1100 |
+
"step": 1820
|
1101 |
+
},
|
1102 |
+
{
|
1103 |
+
"epoch": 2.52,
|
1104 |
+
"learning_rate": 0.0001248354567174203,
|
1105 |
+
"loss": 0.9961,
|
1106 |
+
"step": 1830
|
1107 |
+
},
|
1108 |
+
{
|
1109 |
+
"epoch": 2.53,
|
1110 |
+
"learning_rate": 0.00012413620254417057,
|
1111 |
+
"loss": 1.0244,
|
1112 |
+
"step": 1840
|
1113 |
+
},
|
1114 |
+
{
|
1115 |
+
"epoch": 2.55,
|
1116 |
+
"learning_rate": 0.0001234356929450835,
|
1117 |
+
"loss": 1.0126,
|
1118 |
+
"step": 1850
|
1119 |
+
},
|
1120 |
+
{
|
1121 |
+
"epoch": 2.56,
|
1122 |
+
"learning_rate": 0.00012273396435662212,
|
1123 |
+
"loss": 1.0121,
|
1124 |
+
"step": 1860
|
1125 |
+
},
|
1126 |
+
{
|
1127 |
+
"epoch": 2.57,
|
1128 |
+
"learning_rate": 0.00012203105327865407,
|
1129 |
+
"loss": 1.0293,
|
1130 |
+
"step": 1870
|
1131 |
+
},
|
1132 |
+
{
|
1133 |
+
"epoch": 2.59,
|
1134 |
+
"learning_rate": 0.00012132699627255347,
|
1135 |
+
"loss": 1.0104,
|
1136 |
+
"step": 1880
|
1137 |
+
},
|
1138 |
+
{
|
1139 |
+
"epoch": 2.6,
|
1140 |
+
"learning_rate": 0.00012062182995929882,
|
1141 |
+
"loss": 1.0119,
|
1142 |
+
"step": 1890
|
1143 |
+
},
|
1144 |
+
{
|
1145 |
+
"epoch": 2.62,
|
1146 |
+
"learning_rate": 0.00011991559101756852,
|
1147 |
+
"loss": 1.0047,
|
1148 |
+
"step": 1900
|
1149 |
+
},
|
1150 |
+
{
|
1151 |
+
"epoch": 2.63,
|
1152 |
+
"learning_rate": 0.00011920831618183282,
|
1153 |
+
"loss": 1.0095,
|
1154 |
+
"step": 1910
|
1155 |
+
},
|
1156 |
+
{
|
1157 |
+
"epoch": 2.64,
|
1158 |
+
"learning_rate": 0.00011850004224044315,
|
1159 |
+
"loss": 1.0112,
|
1160 |
+
"step": 1920
|
1161 |
+
},
|
1162 |
+
{
|
1163 |
+
"epoch": 2.66,
|
1164 |
+
"learning_rate": 0.0001177908060337188,
|
1165 |
+
"loss": 1.0131,
|
1166 |
+
"step": 1930
|
1167 |
+
},
|
1168 |
+
{
|
1169 |
+
"epoch": 2.67,
|
1170 |
+
"learning_rate": 0.00011708064445203042,
|
1171 |
+
"loss": 1.0082,
|
1172 |
+
"step": 1940
|
1173 |
+
},
|
1174 |
+
{
|
1175 |
+
"epoch": 2.68,
|
1176 |
+
"learning_rate": 0.00011636959443388132,
|
1177 |
+
"loss": 1.0246,
|
1178 |
+
"step": 1950
|
1179 |
+
},
|
1180 |
+
{
|
1181 |
+
"epoch": 2.7,
|
1182 |
+
"learning_rate": 0.00011565769296398618,
|
1183 |
+
"loss": 1.0102,
|
1184 |
+
"step": 1960
|
1185 |
+
},
|
1186 |
+
{
|
1187 |
+
"epoch": 2.71,
|
1188 |
+
"learning_rate": 0.00011494497707134731,
|
1189 |
+
"loss": 1.0103,
|
1190 |
+
"step": 1970
|
1191 |
+
},
|
1192 |
+
{
|
1193 |
+
"epoch": 2.73,
|
1194 |
+
"learning_rate": 0.00011423148382732853,
|
1195 |
+
"loss": 1.0081,
|
1196 |
+
"step": 1980
|
1197 |
+
},
|
1198 |
+
{
|
1199 |
+
"epoch": 2.74,
|
1200 |
+
"learning_rate": 0.000113517250343727,
|
1201 |
+
"loss": 1.0092,
|
1202 |
+
"step": 1990
|
1203 |
+
},
|
1204 |
+
{
|
1205 |
+
"epoch": 2.75,
|
1206 |
+
"learning_rate": 0.0001128023137708429,
|
1207 |
+
"loss": 0.9983,
|
1208 |
+
"step": 2000
|
1209 |
+
},
|
1210 |
+
{
|
1211 |
+
"epoch": 2.77,
|
1212 |
+
"learning_rate": 0.00011208671129554702,
|
1213 |
+
"loss": 1.0136,
|
1214 |
+
"step": 2010
|
1215 |
+
},
|
1216 |
+
{
|
1217 |
+
"epoch": 2.78,
|
1218 |
+
"learning_rate": 0.00011137048013934656,
|
1219 |
+
"loss": 1.0348,
|
1220 |
+
"step": 2020
|
1221 |
+
},
|
1222 |
+
{
|
1223 |
+
"epoch": 2.79,
|
1224 |
+
"learning_rate": 0.00011065365755644906,
|
1225 |
+
"loss": 0.9996,
|
1226 |
+
"step": 2030
|
1227 |
+
},
|
1228 |
+
{
|
1229 |
+
"epoch": 2.81,
|
1230 |
+
"learning_rate": 0.00010993628083182467,
|
1231 |
+
"loss": 1.0142,
|
1232 |
+
"step": 2040
|
1233 |
+
},
|
1234 |
+
{
|
1235 |
+
"epoch": 2.82,
|
1236 |
+
"learning_rate": 0.00010921838727926681,
|
1237 |
+
"loss": 1.0101,
|
1238 |
+
"step": 2050
|
1239 |
+
},
|
1240 |
+
{
|
1241 |
+
"epoch": 2.84,
|
1242 |
+
"learning_rate": 0.00010850001423945126,
|
1243 |
+
"loss": 1.0126,
|
1244 |
+
"step": 2060
|
1245 |
+
},
|
1246 |
+
{
|
1247 |
+
"epoch": 2.85,
|
1248 |
+
"learning_rate": 0.00010778119907799398,
|
1249 |
+
"loss": 1.0188,
|
1250 |
+
"step": 2070
|
1251 |
+
},
|
1252 |
+
{
|
1253 |
+
"epoch": 2.86,
|
1254 |
+
"learning_rate": 0.00010706197918350758,
|
1255 |
+
"loss": 1.0232,
|
1256 |
+
"step": 2080
|
1257 |
+
},
|
1258 |
+
{
|
1259 |
+
"epoch": 2.88,
|
1260 |
+
"learning_rate": 0.00010634239196565646,
|
1261 |
+
"loss": 1.0161,
|
1262 |
+
"step": 2090
|
1263 |
+
},
|
1264 |
+
{
|
1265 |
+
"epoch": 2.89,
|
1266 |
+
"learning_rate": 0.00010562247485321115,
|
1267 |
+
"loss": 1.0213,
|
1268 |
+
"step": 2100
|
1269 |
+
},
|
1270 |
+
{
|
1271 |
+
"epoch": 2.91,
|
1272 |
+
"learning_rate": 0.0001049022652921013,
|
1273 |
+
"loss": 0.9976,
|
1274 |
+
"step": 2110
|
1275 |
+
},
|
1276 |
+
{
|
1277 |
+
"epoch": 2.92,
|
1278 |
+
"learning_rate": 0.00010418180074346815,
|
1279 |
+
"loss": 1.0324,
|
1280 |
+
"step": 2120
|
1281 |
+
},
|
1282 |
+
{
|
1283 |
+
"epoch": 2.93,
|
1284 |
+
"learning_rate": 0.00010346111868171584,
|
1285 |
+
"loss": 1.0132,
|
1286 |
+
"step": 2130
|
1287 |
+
},
|
1288 |
+
{
|
1289 |
+
"epoch": 2.95,
|
1290 |
+
"learning_rate": 0.00010274025659256232,
|
1291 |
+
"loss": 1.0003,
|
1292 |
+
"step": 2140
|
1293 |
+
},
|
1294 |
+
{
|
1295 |
+
"epoch": 2.96,
|
1296 |
+
"learning_rate": 0.00010201925197108953,
|
1297 |
+
"loss": 1.0046,
|
1298 |
+
"step": 2150
|
1299 |
+
},
|
1300 |
+
{
|
1301 |
+
"epoch": 2.97,
|
1302 |
+
"learning_rate": 0.0001012981423197931,
|
1303 |
+
"loss": 1.0093,
|
1304 |
+
"step": 2160
|
1305 |
+
},
|
1306 |
+
{
|
1307 |
+
"epoch": 2.99,
|
1308 |
+
"learning_rate": 0.00010057696514663169,
|
1309 |
+
"loss": 1.0065,
|
1310 |
+
"step": 2170
|
1311 |
+
},
|
1312 |
+
{
|
1313 |
+
"epoch": 3.0,
|
1314 |
+
"learning_rate": 9.985575796307615e-05,
|
1315 |
+
"loss": 0.9698,
|
1316 |
+
"step": 2180
|
1317 |
+
},
|
1318 |
+
{
|
1319 |
+
"epoch": 3.02,
|
1320 |
+
"learning_rate": 9.913455828215814e-05,
|
1321 |
+
"loss": 0.6643,
|
1322 |
+
"step": 2190
|
1323 |
+
},
|
1324 |
+
{
|
1325 |
+
"epoch": 3.03,
|
1326 |
+
"learning_rate": 9.84134036165192e-05,
|
1327 |
+
"loss": 0.6469,
|
1328 |
+
"step": 2200
|
1329 |
+
},
|
1330 |
+
{
|
1331 |
+
"epoch": 3.04,
|
1332 |
+
"learning_rate": 9.769233147645943e-05,
|
1333 |
+
"loss": 0.6258,
|
1334 |
+
"step": 2210
|
1335 |
+
},
|
1336 |
+
{
|
1337 |
+
"epoch": 3.06,
|
1338 |
+
"learning_rate": 9.697137936798634e-05,
|
1339 |
+
"loss": 0.6403,
|
1340 |
+
"step": 2220
|
1341 |
+
},
|
1342 |
+
{
|
1343 |
+
"epoch": 3.07,
|
1344 |
+
"learning_rate": 9.625058479086418e-05,
|
1345 |
+
"loss": 0.6438,
|
1346 |
+
"step": 2230
|
1347 |
+
},
|
1348 |
+
{
|
1349 |
+
"epoch": 3.08,
|
1350 |
+
"learning_rate": 9.552998523666326e-05,
|
1351 |
+
"loss": 0.6249,
|
1352 |
+
"step": 2240
|
1353 |
+
},
|
1354 |
+
{
|
1355 |
+
"epoch": 3.1,
|
1356 |
+
"learning_rate": 9.480961818681004e-05,
|
1357 |
+
"loss": 0.6426,
|
1358 |
+
"step": 2250
|
1359 |
+
},
|
1360 |
+
{
|
1361 |
+
"epoch": 3.11,
|
1362 |
+
"learning_rate": 9.408952111063727e-05,
|
1363 |
+
"loss": 0.652,
|
1364 |
+
"step": 2260
|
1365 |
+
},
|
1366 |
+
{
|
1367 |
+
"epoch": 3.13,
|
1368 |
+
"learning_rate": 9.336973146343537e-05,
|
1369 |
+
"loss": 0.644,
|
1370 |
+
"step": 2270
|
1371 |
+
},
|
1372 |
+
{
|
1373 |
+
"epoch": 3.14,
|
1374 |
+
"learning_rate": 9.265028668450402e-05,
|
1375 |
+
"loss": 0.6364,
|
1376 |
+
"step": 2280
|
1377 |
+
},
|
1378 |
+
{
|
1379 |
+
"epoch": 3.15,
|
1380 |
+
"learning_rate": 9.193122419520485e-05,
|
1381 |
+
"loss": 0.6513,
|
1382 |
+
"step": 2290
|
1383 |
+
},
|
1384 |
+
{
|
1385 |
+
"epoch": 3.17,
|
1386 |
+
"learning_rate": 9.121258139701502e-05,
|
1387 |
+
"loss": 0.6501,
|
1388 |
+
"step": 2300
|
1389 |
+
},
|
1390 |
+
{
|
1391 |
+
"epoch": 3.18,
|
1392 |
+
"learning_rate": 9.049439566958175e-05,
|
1393 |
+
"loss": 0.6431,
|
1394 |
+
"step": 2310
|
1395 |
+
},
|
1396 |
+
{
|
1397 |
+
"epoch": 3.19,
|
1398 |
+
"learning_rate": 8.977670436877811e-05,
|
1399 |
+
"loss": 0.652,
|
1400 |
+
"step": 2320
|
1401 |
+
},
|
1402 |
+
{
|
1403 |
+
"epoch": 3.21,
|
1404 |
+
"learning_rate": 8.905954482475991e-05,
|
1405 |
+
"loss": 0.6494,
|
1406 |
+
"step": 2330
|
1407 |
+
},
|
1408 |
+
{
|
1409 |
+
"epoch": 3.22,
|
1410 |
+
"learning_rate": 8.83429543400241e-05,
|
1411 |
+
"loss": 0.6486,
|
1412 |
+
"step": 2340
|
1413 |
+
},
|
1414 |
+
{
|
1415 |
+
"epoch": 3.24,
|
1416 |
+
"learning_rate": 8.76269701874684e-05,
|
1417 |
+
"loss": 0.6399,
|
1418 |
+
"step": 2350
|
1419 |
+
},
|
1420 |
+
{
|
1421 |
+
"epoch": 3.25,
|
1422 |
+
"learning_rate": 8.691162960845264e-05,
|
1423 |
+
"loss": 0.6452,
|
1424 |
+
"step": 2360
|
1425 |
+
},
|
1426 |
+
{
|
1427 |
+
"epoch": 3.26,
|
1428 |
+
"learning_rate": 8.619696981086172e-05,
|
1429 |
+
"loss": 0.6448,
|
1430 |
+
"step": 2370
|
1431 |
+
},
|
1432 |
+
{
|
1433 |
+
"epoch": 3.28,
|
1434 |
+
"learning_rate": 8.548302796717019e-05,
|
1435 |
+
"loss": 0.6541,
|
1436 |
+
"step": 2380
|
1437 |
+
},
|
1438 |
+
{
|
1439 |
+
"epoch": 3.29,
|
1440 |
+
"learning_rate": 8.476984121250875e-05,
|
1441 |
+
"loss": 0.6405,
|
1442 |
+
"step": 2390
|
1443 |
+
},
|
1444 |
+
{
|
1445 |
+
"epoch": 3.3,
|
1446 |
+
"learning_rate": 8.405744664273278e-05,
|
1447 |
+
"loss": 0.6419,
|
1448 |
+
"step": 2400
|
1449 |
+
},
|
1450 |
+
{
|
1451 |
+
"epoch": 3.32,
|
1452 |
+
"learning_rate": 8.334588131249277e-05,
|
1453 |
+
"loss": 0.6369,
|
1454 |
+
"step": 2410
|
1455 |
+
},
|
1456 |
+
{
|
1457 |
+
"epoch": 3.33,
|
1458 |
+
"learning_rate": 8.263518223330697e-05,
|
1459 |
+
"loss": 0.6585,
|
1460 |
+
"step": 2420
|
1461 |
+
},
|
1462 |
+
{
|
1463 |
+
"epoch": 3.35,
|
1464 |
+
"learning_rate": 8.192538637163621e-05,
|
1465 |
+
"loss": 0.6461,
|
1466 |
+
"step": 2430
|
1467 |
+
},
|
1468 |
+
{
|
1469 |
+
"epoch": 3.36,
|
1470 |
+
"learning_rate": 8.121653064696118e-05,
|
1471 |
+
"loss": 0.6614,
|
1472 |
+
"step": 2440
|
1473 |
+
},
|
1474 |
+
{
|
1475 |
+
"epoch": 3.37,
|
1476 |
+
"learning_rate": 8.050865192986211e-05,
|
1477 |
+
"loss": 0.6536,
|
1478 |
+
"step": 2450
|
1479 |
+
},
|
1480 |
+
{
|
1481 |
+
"epoch": 3.39,
|
1482 |
+
"learning_rate": 7.980178704010089e-05,
|
1483 |
+
"loss": 0.6559,
|
1484 |
+
"step": 2460
|
1485 |
+
},
|
1486 |
+
{
|
1487 |
+
"epoch": 3.4,
|
1488 |
+
"learning_rate": 7.9095972744706e-05,
|
1489 |
+
"loss": 0.6605,
|
1490 |
+
"step": 2470
|
1491 |
+
},
|
1492 |
+
{
|
1493 |
+
"epoch": 3.41,
|
1494 |
+
"learning_rate": 7.839124575606004e-05,
|
1495 |
+
"loss": 0.6631,
|
1496 |
+
"step": 2480
|
1497 |
+
},
|
1498 |
+
{
|
1499 |
+
"epoch": 3.43,
|
1500 |
+
"learning_rate": 7.76876427299903e-05,
|
1501 |
+
"loss": 0.6666,
|
1502 |
+
"step": 2490
|
1503 |
+
},
|
1504 |
+
{
|
1505 |
+
"epoch": 3.44,
|
1506 |
+
"learning_rate": 7.69852002638618e-05,
|
1507 |
+
"loss": 0.6646,
|
1508 |
+
"step": 2500
|
1509 |
+
},
|
1510 |
+
{
|
1511 |
+
"epoch": 3.46,
|
1512 |
+
"learning_rate": 7.62839548946742e-05,
|
1513 |
+
"loss": 0.6526,
|
1514 |
+
"step": 2510
|
1515 |
+
},
|
1516 |
+
{
|
1517 |
+
"epoch": 3.47,
|
1518 |
+
"learning_rate": 7.558394309716088e-05,
|
1519 |
+
"loss": 0.657,
|
1520 |
+
"step": 2520
|
1521 |
+
},
|
1522 |
+
{
|
1523 |
+
"epoch": 3.48,
|
1524 |
+
"learning_rate": 7.488520128189209e-05,
|
1525 |
+
"loss": 0.6546,
|
1526 |
+
"step": 2530
|
1527 |
+
},
|
1528 |
+
{
|
1529 |
+
"epoch": 3.5,
|
1530 |
+
"learning_rate": 7.41877657933809e-05,
|
1531 |
+
"loss": 0.657,
|
1532 |
+
"step": 2540
|
1533 |
+
},
|
1534 |
+
{
|
1535 |
+
"epoch": 3.51,
|
1536 |
+
"learning_rate": 7.349167290819274e-05,
|
1537 |
+
"loss": 0.6594,
|
1538 |
+
"step": 2550
|
1539 |
+
},
|
1540 |
+
{
|
1541 |
+
"epoch": 3.52,
|
1542 |
+
"learning_rate": 7.279695883305866e-05,
|
1543 |
+
"loss": 0.6676,
|
1544 |
+
"step": 2560
|
1545 |
+
},
|
1546 |
+
{
|
1547 |
+
"epoch": 3.54,
|
1548 |
+
"learning_rate": 7.210365970299194e-05,
|
1549 |
+
"loss": 0.6527,
|
1550 |
+
"step": 2570
|
1551 |
+
},
|
1552 |
+
{
|
1553 |
+
"epoch": 3.55,
|
1554 |
+
"learning_rate": 7.141181157940859e-05,
|
1555 |
+
"loss": 0.6494,
|
1556 |
+
"step": 2580
|
1557 |
+
},
|
1558 |
+
{
|
1559 |
+
"epoch": 3.57,
|
1560 |
+
"learning_rate": 7.072145044825162e-05,
|
1561 |
+
"loss": 0.6525,
|
1562 |
+
"step": 2590
|
1563 |
+
},
|
1564 |
+
{
|
1565 |
+
"epoch": 3.58,
|
1566 |
+
"learning_rate": 7.003261221811934e-05,
|
1567 |
+
"loss": 0.6521,
|
1568 |
+
"step": 2600
|
1569 |
+
},
|
1570 |
+
{
|
1571 |
+
"epoch": 3.59,
|
1572 |
+
"learning_rate": 6.934533271839752e-05,
|
1573 |
+
"loss": 0.6669,
|
1574 |
+
"step": 2610
|
1575 |
+
},
|
1576 |
+
{
|
1577 |
+
"epoch": 3.61,
|
1578 |
+
"learning_rate": 6.865964769739575e-05,
|
1579 |
+
"loss": 0.6548,
|
1580 |
+
"step": 2620
|
1581 |
+
},
|
1582 |
+
{
|
1583 |
+
"epoch": 3.62,
|
1584 |
+
"learning_rate": 6.797559282048806e-05,
|
1585 |
+
"loss": 0.6668,
|
1586 |
+
"step": 2630
|
1587 |
+
},
|
1588 |
+
{
|
1589 |
+
"epoch": 3.63,
|
1590 |
+
"learning_rate": 6.729320366825784e-05,
|
1591 |
+
"loss": 0.6516,
|
1592 |
+
"step": 2640
|
1593 |
+
},
|
1594 |
+
{
|
1595 |
+
"epoch": 3.65,
|
1596 |
+
"learning_rate": 6.661251573464706e-05,
|
1597 |
+
"loss": 0.655,
|
1598 |
+
"step": 2650
|
1599 |
+
},
|
1600 |
+
{
|
1601 |
+
"epoch": 3.66,
|
1602 |
+
"learning_rate": 6.593356442511015e-05,
|
1603 |
+
"loss": 0.6641,
|
1604 |
+
"step": 2660
|
1605 |
+
},
|
1606 |
+
{
|
1607 |
+
"epoch": 3.68,
|
1608 |
+
"learning_rate": 6.525638505477231e-05,
|
1609 |
+
"loss": 0.6592,
|
1610 |
+
"step": 2670
|
1611 |
+
},
|
1612 |
+
{
|
1613 |
+
"epoch": 3.69,
|
1614 |
+
"learning_rate": 6.458101284659286e-05,
|
1615 |
+
"loss": 0.6582,
|
1616 |
+
"step": 2680
|
1617 |
+
},
|
1618 |
+
{
|
1619 |
+
"epoch": 3.7,
|
1620 |
+
"learning_rate": 6.390748292953284e-05,
|
1621 |
+
"loss": 0.6814,
|
1622 |
+
"step": 2690
|
1623 |
+
},
|
1624 |
+
{
|
1625 |
+
"epoch": 3.72,
|
1626 |
+
"learning_rate": 6.323583033672799e-05,
|
1627 |
+
"loss": 0.658,
|
1628 |
+
"step": 2700
|
1629 |
+
},
|
1630 |
+
{
|
1631 |
+
"epoch": 3.73,
|
1632 |
+
"learning_rate": 6.256609000366649e-05,
|
1633 |
+
"loss": 0.6653,
|
1634 |
+
"step": 2710
|
1635 |
+
},
|
1636 |
+
{
|
1637 |
+
"epoch": 3.74,
|
1638 |
+
"learning_rate": 6.189829676637182e-05,
|
1639 |
+
"loss": 0.654,
|
1640 |
+
"step": 2720
|
1641 |
+
},
|
1642 |
+
{
|
1643 |
+
"epoch": 3.76,
|
1644 |
+
"learning_rate": 6.123248535959083e-05,
|
1645 |
+
"loss": 0.6626,
|
1646 |
+
"step": 2730
|
1647 |
+
},
|
1648 |
+
{
|
1649 |
+
"epoch": 3.77,
|
1650 |
+
"learning_rate": 6.056869041498687e-05,
|
1651 |
+
"loss": 0.6696,
|
1652 |
+
"step": 2740
|
1653 |
+
},
|
1654 |
+
{
|
1655 |
+
"epoch": 3.79,
|
1656 |
+
"learning_rate": 5.9906946459338656e-05,
|
1657 |
+
"loss": 0.6635,
|
1658 |
+
"step": 2750
|
1659 |
+
},
|
1660 |
+
{
|
1661 |
+
"epoch": 3.8,
|
1662 |
+
"learning_rate": 5.924728791274432e-05,
|
1663 |
+
"loss": 0.6593,
|
1664 |
+
"step": 2760
|
1665 |
+
},
|
1666 |
+
{
|
1667 |
+
"epoch": 3.81,
|
1668 |
+
"learning_rate": 5.858974908683105e-05,
|
1669 |
+
"loss": 0.6622,
|
1670 |
+
"step": 2770
|
1671 |
+
},
|
1672 |
+
{
|
1673 |
+
"epoch": 3.83,
|
1674 |
+
"learning_rate": 5.79343641829704e-05,
|
1675 |
+
"loss": 0.6605,
|
1676 |
+
"step": 2780
|
1677 |
+
},
|
1678 |
+
{
|
1679 |
+
"epoch": 3.84,
|
1680 |
+
"learning_rate": 5.728116729049928e-05,
|
1681 |
+
"loss": 0.6664,
|
1682 |
+
"step": 2790
|
1683 |
+
},
|
1684 |
+
{
|
1685 |
+
"epoch": 3.85,
|
1686 |
+
"learning_rate": 5.663019238494704e-05,
|
1687 |
+
"loss": 0.6575,
|
1688 |
+
"step": 2800
|
1689 |
+
},
|
1690 |
+
{
|
1691 |
+
"epoch": 3.87,
|
1692 |
+
"learning_rate": 5.5981473326267976e-05,
|
1693 |
+
"loss": 0.6792,
|
1694 |
+
"step": 2810
|
1695 |
+
},
|
1696 |
+
{
|
1697 |
+
"epoch": 3.88,
|
1698 |
+
"learning_rate": 5.533504385708024e-05,
|
1699 |
+
"loss": 0.6841,
|
1700 |
+
"step": 2820
|
1701 |
+
},
|
1702 |
+
{
|
1703 |
+
"epoch": 3.9,
|
1704 |
+
"learning_rate": 5.4690937600910905e-05,
|
1705 |
+
"loss": 0.6625,
|
1706 |
+
"step": 2830
|
1707 |
+
},
|
1708 |
+
{
|
1709 |
+
"epoch": 3.91,
|
1710 |
+
"learning_rate": 5.404918806044679e-05,
|
1711 |
+
"loss": 0.6637,
|
1712 |
+
"step": 2840
|
1713 |
+
},
|
1714 |
+
{
|
1715 |
+
"epoch": 3.92,
|
1716 |
+
"learning_rate": 5.340982861579199e-05,
|
1717 |
+
"loss": 0.6587,
|
1718 |
+
"step": 2850
|
1719 |
+
},
|
1720 |
+
{
|
1721 |
+
"epoch": 3.94,
|
1722 |
+
"learning_rate": 5.277289252273174e-05,
|
1723 |
+
"loss": 0.6641,
|
1724 |
+
"step": 2860
|
1725 |
+
},
|
1726 |
+
{
|
1727 |
+
"epoch": 3.95,
|
1728 |
+
"learning_rate": 5.213841291100239e-05,
|
1729 |
+
"loss": 0.6515,
|
1730 |
+
"step": 2870
|
1731 |
+
},
|
1732 |
+
{
|
1733 |
+
"epoch": 3.97,
|
1734 |
+
"learning_rate": 5.1506422782568345e-05,
|
1735 |
+
"loss": 0.6596,
|
1736 |
+
"step": 2880
|
1737 |
+
},
|
1738 |
+
{
|
1739 |
+
"epoch": 3.98,
|
1740 |
+
"learning_rate": 5.087695500990555e-05,
|
1741 |
+
"loss": 0.6508,
|
1742 |
+
"step": 2890
|
1743 |
+
},
|
1744 |
+
{
|
1745 |
+
"epoch": 3.99,
|
1746 |
+
"learning_rate": 5.025004233429145e-05,
|
1747 |
+
"loss": 0.6552,
|
1748 |
+
"step": 2900
|
1749 |
+
},
|
1750 |
+
{
|
1751 |
+
"epoch": 4.01,
|
1752 |
+
"learning_rate": 4.962571736410223e-05,
|
1753 |
+
"loss": 0.5383,
|
1754 |
+
"step": 2910
|
1755 |
+
},
|
1756 |
+
{
|
1757 |
+
"epoch": 4.02,
|
1758 |
+
"learning_rate": 4.90040125731165e-05,
|
1759 |
+
"loss": 0.4324,
|
1760 |
+
"step": 2920
|
1761 |
+
},
|
1762 |
+
{
|
1763 |
+
"epoch": 4.03,
|
1764 |
+
"learning_rate": 4.8384960298826274e-05,
|
1765 |
+
"loss": 0.4194,
|
1766 |
+
"step": 2930
|
1767 |
+
},
|
1768 |
+
{
|
1769 |
+
"epoch": 4.05,
|
1770 |
+
"learning_rate": 4.776859274075506e-05,
|
1771 |
+
"loss": 0.4238,
|
1772 |
+
"step": 2940
|
1773 |
+
},
|
1774 |
+
{
|
1775 |
+
"epoch": 4.06,
|
1776 |
+
"learning_rate": 4.715494195878285e-05,
|
1777 |
+
"loss": 0.419,
|
1778 |
+
"step": 2950
|
1779 |
+
},
|
1780 |
+
{
|
1781 |
+
"epoch": 4.08,
|
1782 |
+
"learning_rate": 4.654403987147865e-05,
|
1783 |
+
"loss": 0.4239,
|
1784 |
+
"step": 2960
|
1785 |
+
},
|
1786 |
+
{
|
1787 |
+
"epoch": 4.09,
|
1788 |
+
"learning_rate": 4.593591825444028e-05,
|
1789 |
+
"loss": 0.4261,
|
1790 |
+
"step": 2970
|
1791 |
+
},
|
1792 |
+
{
|
1793 |
+
"epoch": 4.1,
|
1794 |
+
"learning_rate": 4.5330608738641486e-05,
|
1795 |
+
"loss": 0.4415,
|
1796 |
+
"step": 2980
|
1797 |
+
},
|
1798 |
+
{
|
1799 |
+
"epoch": 4.12,
|
1800 |
+
"learning_rate": 4.472814280878689e-05,
|
1801 |
+
"loss": 0.4236,
|
1802 |
+
"step": 2990
|
1803 |
+
},
|
1804 |
+
{
|
1805 |
+
"epoch": 4.13,
|
1806 |
+
"learning_rate": 4.412855180167406e-05,
|
1807 |
+
"loss": 0.4334,
|
1808 |
+
"step": 3000
|
1809 |
+
},
|
1810 |
+
{
|
1811 |
+
"epoch": 4.14,
|
1812 |
+
"learning_rate": 4.353186690456371e-05,
|
1813 |
+
"loss": 0.422,
|
1814 |
+
"step": 3010
|
1815 |
+
},
|
1816 |
+
{
|
1817 |
+
"epoch": 4.16,
|
1818 |
+
"learning_rate": 4.293811915355761e-05,
|
1819 |
+
"loss": 0.4361,
|
1820 |
+
"step": 3020
|
1821 |
+
},
|
1822 |
+
{
|
1823 |
+
"epoch": 4.17,
|
1824 |
+
"learning_rate": 4.234733943198399e-05,
|
1825 |
+
"loss": 0.4339,
|
1826 |
+
"step": 3030
|
1827 |
+
},
|
1828 |
+
{
|
1829 |
+
"epoch": 4.19,
|
1830 |
+
"learning_rate": 4.175955846879151e-05,
|
1831 |
+
"loss": 0.44,
|
1832 |
+
"step": 3040
|
1833 |
+
},
|
1834 |
+
{
|
1835 |
+
"epoch": 4.2,
|
1836 |
+
"learning_rate": 4.11748068369506e-05,
|
1837 |
+
"loss": 0.4328,
|
1838 |
+
"step": 3050
|
1839 |
+
},
|
1840 |
+
{
|
1841 |
+
"epoch": 4.21,
|
1842 |
+
"learning_rate": 4.059311495186338e-05,
|
1843 |
+
"loss": 0.4297,
|
1844 |
+
"step": 3060
|
1845 |
+
},
|
1846 |
+
{
|
1847 |
+
"epoch": 4.23,
|
1848 |
+
"learning_rate": 4.001451306978174e-05,
|
1849 |
+
"loss": 0.4225,
|
1850 |
+
"step": 3070
|
1851 |
+
},
|
1852 |
+
{
|
1853 |
+
"epoch": 4.24,
|
1854 |
+
"learning_rate": 3.943903128623335e-05,
|
1855 |
+
"loss": 0.4288,
|
1856 |
+
"step": 3080
|
1857 |
+
},
|
1858 |
+
{
|
1859 |
+
"epoch": 4.25,
|
1860 |
+
"learning_rate": 3.886669953445637e-05,
|
1861 |
+
"loss": 0.4198,
|
1862 |
+
"step": 3090
|
1863 |
+
},
|
1864 |
+
{
|
1865 |
+
"epoch": 4.27,
|
1866 |
+
"learning_rate": 3.829754758384262e-05,
|
1867 |
+
"loss": 0.4199,
|
1868 |
+
"step": 3100
|
1869 |
+
},
|
1870 |
+
{
|
1871 |
+
"epoch": 4.28,
|
1872 |
+
"learning_rate": 3.77316050383889e-05,
|
1873 |
+
"loss": 0.4308,
|
1874 |
+
"step": 3110
|
1875 |
+
},
|
1876 |
+
{
|
1877 |
+
"epoch": 4.3,
|
1878 |
+
"learning_rate": 3.7168901335157315e-05,
|
1879 |
+
"loss": 0.4335,
|
1880 |
+
"step": 3120
|
1881 |
+
},
|
1882 |
+
{
|
1883 |
+
"epoch": 4.31,
|
1884 |
+
"learning_rate": 3.660946574274421e-05,
|
1885 |
+
"loss": 0.4267,
|
1886 |
+
"step": 3130
|
1887 |
+
},
|
1888 |
+
{
|
1889 |
+
"epoch": 4.32,
|
1890 |
+
"learning_rate": 3.6053327359757535e-05,
|
1891 |
+
"loss": 0.4348,
|
1892 |
+
"step": 3140
|
1893 |
+
},
|
1894 |
+
{
|
1895 |
+
"epoch": 4.34,
|
1896 |
+
"learning_rate": 3.550051511330361e-05,
|
1897 |
+
"loss": 0.4403,
|
1898 |
+
"step": 3150
|
1899 |
+
},
|
1900 |
+
{
|
1901 |
+
"epoch": 4.35,
|
1902 |
+
"learning_rate": 3.4951057757482205e-05,
|
1903 |
+
"loss": 0.4252,
|
1904 |
+
"step": 3160
|
1905 |
+
},
|
1906 |
+
{
|
1907 |
+
"epoch": 4.36,
|
1908 |
+
"learning_rate": 3.440498387189111e-05,
|
1909 |
+
"loss": 0.4212,
|
1910 |
+
"step": 3170
|
1911 |
+
},
|
1912 |
+
{
|
1913 |
+
"epoch": 4.38,
|
1914 |
+
"learning_rate": 3.3862321860139576e-05,
|
1915 |
+
"loss": 0.4336,
|
1916 |
+
"step": 3180
|
1917 |
+
},
|
1918 |
+
{
|
1919 |
+
"epoch": 4.39,
|
1920 |
+
"learning_rate": 3.332309994837085e-05,
|
1921 |
+
"loss": 0.4304,
|
1922 |
+
"step": 3190
|
1923 |
+
},
|
1924 |
+
{
|
1925 |
+
"epoch": 4.41,
|
1926 |
+
"learning_rate": 3.278734618379402e-05,
|
1927 |
+
"loss": 0.4245,
|
1928 |
+
"step": 3200
|
1929 |
+
},
|
1930 |
+
{
|
1931 |
+
"epoch": 4.42,
|
1932 |
+
"learning_rate": 3.225508843322524e-05,
|
1933 |
+
"loss": 0.4113,
|
1934 |
+
"step": 3210
|
1935 |
+
},
|
1936 |
+
{
|
1937 |
+
"epoch": 4.43,
|
1938 |
+
"learning_rate": 3.172635438163816e-05,
|
1939 |
+
"loss": 0.4389,
|
1940 |
+
"step": 3220
|
1941 |
+
},
|
1942 |
+
{
|
1943 |
+
"epoch": 4.45,
|
1944 |
+
"learning_rate": 3.120117153072404e-05,
|
1945 |
+
"loss": 0.427,
|
1946 |
+
"step": 3230
|
1947 |
+
},
|
1948 |
+
{
|
1949 |
+
"epoch": 4.46,
|
1950 |
+
"learning_rate": 3.0679567197461134e-05,
|
1951 |
+
"loss": 0.4162,
|
1952 |
+
"step": 3240
|
1953 |
+
},
|
1954 |
+
{
|
1955 |
+
"epoch": 4.47,
|
1956 |
+
"learning_rate": 3.016156851269384e-05,
|
1957 |
+
"loss": 0.4347,
|
1958 |
+
"step": 3250
|
1959 |
+
},
|
1960 |
+
{
|
1961 |
+
"epoch": 4.49,
|
1962 |
+
"learning_rate": 2.9647202419721687e-05,
|
1963 |
+
"loss": 0.4259,
|
1964 |
+
"step": 3260
|
1965 |
+
},
|
1966 |
+
{
|
1967 |
+
"epoch": 4.5,
|
1968 |
+
"learning_rate": 2.913649567289759e-05,
|
1969 |
+
"loss": 0.4399,
|
1970 |
+
"step": 3270
|
1971 |
+
},
|
1972 |
+
{
|
1973 |
+
"epoch": 4.52,
|
1974 |
+
"learning_rate": 2.862947483623659e-05,
|
1975 |
+
"loss": 0.4278,
|
1976 |
+
"step": 3280
|
1977 |
+
},
|
1978 |
+
{
|
1979 |
+
"epoch": 4.53,
|
1980 |
+
"learning_rate": 2.812616628203383e-05,
|
1981 |
+
"loss": 0.4344,
|
1982 |
+
"step": 3290
|
1983 |
+
},
|
1984 |
+
{
|
1985 |
+
"epoch": 4.54,
|
1986 |
+
"learning_rate": 2.7626596189492983e-05,
|
1987 |
+
"loss": 0.4339,
|
1988 |
+
"step": 3300
|
1989 |
+
},
|
1990 |
+
{
|
1991 |
+
"epoch": 4.56,
|
1992 |
+
"learning_rate": 2.7130790543364646e-05,
|
1993 |
+
"loss": 0.4353,
|
1994 |
+
"step": 3310
|
1995 |
+
},
|
1996 |
+
{
|
1997 |
+
"epoch": 4.57,
|
1998 |
+
"learning_rate": 2.6638775132594553e-05,
|
1999 |
+
"loss": 0.4333,
|
2000 |
+
"step": 3320
|
2001 |
+
},
|
2002 |
+
{
|
2003 |
+
"epoch": 4.58,
|
2004 |
+
"learning_rate": 2.6150575548982292e-05,
|
2005 |
+
"loss": 0.4336,
|
2006 |
+
"step": 3330
|
2007 |
+
},
|
2008 |
+
{
|
2009 |
+
"epoch": 4.6,
|
2010 |
+
"learning_rate": 2.5666217185850262e-05,
|
2011 |
+
"loss": 0.4388,
|
2012 |
+
"step": 3340
|
2013 |
+
},
|
2014 |
+
{
|
2015 |
+
"epoch": 4.61,
|
2016 |
+
"learning_rate": 2.5185725236722636e-05,
|
2017 |
+
"loss": 0.4322,
|
2018 |
+
"step": 3350
|
2019 |
+
},
|
2020 |
+
{
|
2021 |
+
"epoch": 4.63,
|
2022 |
+
"learning_rate": 2.4709124694015116e-05,
|
2023 |
+
"loss": 0.4435,
|
2024 |
+
"step": 3360
|
2025 |
+
},
|
2026 |
+
{
|
2027 |
+
"epoch": 4.64,
|
2028 |
+
"learning_rate": 2.423644034773498e-05,
|
2029 |
+
"loss": 0.4358,
|
2030 |
+
"step": 3370
|
2031 |
+
},
|
2032 |
+
{
|
2033 |
+
"epoch": 4.65,
|
2034 |
+
"learning_rate": 2.3767696784191463e-05,
|
2035 |
+
"loss": 0.4471,
|
2036 |
+
"step": 3380
|
2037 |
+
},
|
2038 |
+
{
|
2039 |
+
"epoch": 4.67,
|
2040 |
+
"learning_rate": 2.3302918384717177e-05,
|
2041 |
+
"loss": 0.4227,
|
2042 |
+
"step": 3390
|
2043 |
+
},
|
2044 |
+
{
|
2045 |
+
"epoch": 4.68,
|
2046 |
+
"learning_rate": 2.284212932439972e-05,
|
2047 |
+
"loss": 0.4269,
|
2048 |
+
"step": 3400
|
2049 |
+
},
|
2050 |
+
{
|
2051 |
+
"epoch": 4.69,
|
2052 |
+
"learning_rate": 2.2385353570824308e-05,
|
2053 |
+
"loss": 0.4393,
|
2054 |
+
"step": 3410
|
2055 |
+
},
|
2056 |
+
{
|
2057 |
+
"epoch": 4.71,
|
2058 |
+
"learning_rate": 2.1932614882827197e-05,
|
2059 |
+
"loss": 0.4331,
|
2060 |
+
"step": 3420
|
2061 |
+
},
|
2062 |
+
{
|
2063 |
+
"epoch": 4.72,
|
2064 |
+
"learning_rate": 2.148393680925973e-05,
|
2065 |
+
"loss": 0.4407,
|
2066 |
+
"step": 3430
|
2067 |
+
},
|
2068 |
+
{
|
2069 |
+
"epoch": 4.74,
|
2070 |
+
"learning_rate": 2.1039342687763586e-05,
|
2071 |
+
"loss": 0.4335,
|
2072 |
+
"step": 3440
|
2073 |
+
},
|
2074 |
+
{
|
2075 |
+
"epoch": 4.75,
|
2076 |
+
"learning_rate": 2.0598855643556826e-05,
|
2077 |
+
"loss": 0.4196,
|
2078 |
+
"step": 3450
|
2079 |
+
},
|
2080 |
+
{
|
2081 |
+
"epoch": 4.76,
|
2082 |
+
"learning_rate": 2.016249858823106e-05,
|
2083 |
+
"loss": 0.4298,
|
2084 |
+
"step": 3460
|
2085 |
+
},
|
2086 |
+
{
|
2087 |
+
"epoch": 4.78,
|
2088 |
+
"learning_rate": 1.973029421855981e-05,
|
2089 |
+
"loss": 0.4392,
|
2090 |
+
"step": 3470
|
2091 |
+
},
|
2092 |
+
{
|
2093 |
+
"epoch": 4.79,
|
2094 |
+
"learning_rate": 1.93022650153178e-05,
|
2095 |
+
"loss": 0.4368,
|
2096 |
+
"step": 3480
|
2097 |
+
},
|
2098 |
+
{
|
2099 |
+
"epoch": 4.8,
|
2100 |
+
"learning_rate": 1.8878433242111716e-05,
|
2101 |
+
"loss": 0.4373,
|
2102 |
+
"step": 3490
|
2103 |
+
},
|
2104 |
+
{
|
2105 |
+
"epoch": 4.82,
|
2106 |
+
"learning_rate": 1.8458820944222255e-05,
|
2107 |
+
"loss": 0.4409,
|
2108 |
+
"step": 3500
|
2109 |
+
},
|
2110 |
+
{
|
2111 |
+
"epoch": 4.83,
|
2112 |
+
"learning_rate": 1.804344994745727e-05,
|
2113 |
+
"loss": 0.4263,
|
2114 |
+
"step": 3510
|
2115 |
+
},
|
2116 |
+
{
|
2117 |
+
"epoch": 4.85,
|
2118 |
+
"learning_rate": 1.763234185701673e-05,
|
2119 |
+
"loss": 0.4119,
|
2120 |
+
"step": 3520
|
2121 |
+
},
|
2122 |
+
{
|
2123 |
+
"epoch": 4.86,
|
2124 |
+
"learning_rate": 1.7225518056368785e-05,
|
2125 |
+
"loss": 0.4381,
|
2126 |
+
"step": 3530
|
2127 |
+
},
|
2128 |
+
{
|
2129 |
+
"epoch": 4.87,
|
2130 |
+
"learning_rate": 1.6822999706137567e-05,
|
2131 |
+
"loss": 0.4296,
|
2132 |
+
"step": 3540
|
2133 |
+
},
|
2134 |
+
{
|
2135 |
+
"epoch": 4.89,
|
2136 |
+
"learning_rate": 1.6424807743002612e-05,
|
2137 |
+
"loss": 0.4212,
|
2138 |
+
"step": 3550
|
2139 |
+
},
|
2140 |
+
{
|
2141 |
+
"epoch": 4.9,
|
2142 |
+
"learning_rate": 1.6030962878609725e-05,
|
2143 |
+
"loss": 0.4228,
|
2144 |
+
"step": 3560
|
2145 |
+
},
|
2146 |
+
{
|
2147 |
+
"epoch": 4.92,
|
2148 |
+
"learning_rate": 1.5641485598493743e-05,
|
2149 |
+
"loss": 0.4132,
|
2150 |
+
"step": 3570
|
2151 |
+
},
|
2152 |
+
{
|
2153 |
+
"epoch": 4.93,
|
2154 |
+
"learning_rate": 1.5256396161013075e-05,
|
2155 |
+
"loss": 0.4433,
|
2156 |
+
"step": 3580
|
2157 |
+
},
|
2158 |
+
{
|
2159 |
+
"epoch": 4.94,
|
2160 |
+
"learning_rate": 1.487571459629582e-05,
|
2161 |
+
"loss": 0.4401,
|
2162 |
+
"step": 3590
|
2163 |
+
},
|
2164 |
+
{
|
2165 |
+
"epoch": 4.96,
|
2166 |
+
"learning_rate": 1.4499460705197998e-05,
|
2167 |
+
"loss": 0.4329,
|
2168 |
+
"step": 3600
|
2169 |
+
},
|
2170 |
+
{
|
2171 |
+
"epoch": 4.97,
|
2172 |
+
"learning_rate": 1.412765405827372e-05,
|
2173 |
+
"loss": 0.43,
|
2174 |
+
"step": 3610
|
2175 |
+
},
|
2176 |
+
{
|
2177 |
+
"epoch": 4.98,
|
2178 |
+
"learning_rate": 1.3760313994757001e-05,
|
2179 |
+
"loss": 0.4292,
|
2180 |
+
"step": 3620
|
2181 |
+
},
|
2182 |
+
{
|
2183 |
+
"epoch": 5.0,
|
2184 |
+
"learning_rate": 1.339745962155613e-05,
|
2185 |
+
"loss": 0.4316,
|
2186 |
+
"step": 3630
|
2187 |
+
},
|
2188 |
+
{
|
2189 |
+
"epoch": 5.01,
|
2190 |
+
"learning_rate": 1.3039109812259598e-05,
|
2191 |
+
"loss": 0.353,
|
2192 |
+
"step": 3640
|
2193 |
+
},
|
2194 |
+
{
|
2195 |
+
"epoch": 5.03,
|
2196 |
+
"learning_rate": 1.268528320615452e-05,
|
2197 |
+
"loss": 0.3517,
|
2198 |
+
"step": 3650
|
2199 |
+
},
|
2200 |
+
{
|
2201 |
+
"epoch": 5.04,
|
2202 |
+
"learning_rate": 1.2335998207257137e-05,
|
2203 |
+
"loss": 0.3451,
|
2204 |
+
"step": 3660
|
2205 |
+
},
|
2206 |
+
{
|
2207 |
+
"epoch": 5.05,
|
2208 |
+
"learning_rate": 1.1991272983355505e-05,
|
2209 |
+
"loss": 0.3536,
|
2210 |
+
"step": 3670
|
2211 |
+
},
|
2212 |
+
{
|
2213 |
+
"epoch": 5.07,
|
2214 |
+
"learning_rate": 1.1651125465064516e-05,
|
2215 |
+
"loss": 0.3435,
|
2216 |
+
"step": 3680
|
2217 |
+
},
|
2218 |
+
{
|
2219 |
+
"epoch": 5.08,
|
2220 |
+
"learning_rate": 1.131557334489326e-05,
|
2221 |
+
"loss": 0.3361,
|
2222 |
+
"step": 3690
|
2223 |
+
},
|
2224 |
+
{
|
2225 |
+
"epoch": 5.09,
|
2226 |
+
"learning_rate": 1.098463407632474e-05,
|
2227 |
+
"loss": 0.3415,
|
2228 |
+
"step": 3700
|
2229 |
+
},
|
2230 |
+
{
|
2231 |
+
"epoch": 5.11,
|
2232 |
+
"learning_rate": 1.0658324872908121e-05,
|
2233 |
+
"loss": 0.3426,
|
2234 |
+
"step": 3710
|
2235 |
+
},
|
2236 |
+
{
|
2237 |
+
"epoch": 5.12,
|
2238 |
+
"learning_rate": 1.0336662707363287e-05,
|
2239 |
+
"loss": 0.3476,
|
2240 |
+
"step": 3720
|
2241 |
+
},
|
2242 |
+
{
|
2243 |
+
"epoch": 5.14,
|
2244 |
+
"learning_rate": 1.0019664310698029e-05,
|
2245 |
+
"loss": 0.3474,
|
2246 |
+
"step": 3730
|
2247 |
+
},
|
2248 |
+
{
|
2249 |
+
"epoch": 5.15,
|
2250 |
+
"learning_rate": 9.707346171337894e-06,
|
2251 |
+
"loss": 0.3476,
|
2252 |
+
"step": 3740
|
2253 |
+
},
|
2254 |
+
{
|
2255 |
+
"epoch": 5.16,
|
2256 |
+
"learning_rate": 9.399724534268384e-06,
|
2257 |
+
"loss": 0.3354,
|
2258 |
+
"step": 3750
|
2259 |
+
},
|
2260 |
+
{
|
2261 |
+
"epoch": 5.18,
|
2262 |
+
"learning_rate": 9.096815400190172e-06,
|
2263 |
+
"loss": 0.3514,
|
2264 |
+
"step": 3760
|
2265 |
+
},
|
2266 |
+
{
|
2267 |
+
"epoch": 5.19,
|
2268 |
+
"learning_rate": 8.798634524686699e-06,
|
2269 |
+
"loss": 0.3519,
|
2270 |
+
"step": 3770
|
2271 |
+
},
|
2272 |
+
{
|
2273 |
+
"epoch": 5.2,
|
2274 |
+
"learning_rate": 8.505197417404687e-06,
|
2275 |
+
"loss": 0.3387,
|
2276 |
+
"step": 3780
|
2277 |
+
},
|
2278 |
+
{
|
2279 |
+
"epoch": 5.22,
|
2280 |
+
"learning_rate": 8.216519341247486e-06,
|
2281 |
+
"loss": 0.3458,
|
2282 |
+
"step": 3790
|
2283 |
+
},
|
2284 |
+
{
|
2285 |
+
"epoch": 5.23,
|
2286 |
+
"learning_rate": 7.932615311581126e-06,
|
2287 |
+
"loss": 0.3403,
|
2288 |
+
"step": 3800
|
2289 |
+
},
|
2290 |
+
{
|
2291 |
+
"epoch": 5.25,
|
2292 |
+
"learning_rate": 7.653500095453248e-06,
|
2293 |
+
"loss": 0.3461,
|
2294 |
+
"step": 3810
|
2295 |
+
},
|
2296 |
+
{
|
2297 |
+
"epoch": 5.26,
|
2298 |
+
"learning_rate": 7.3791882108251945e-06,
|
2299 |
+
"loss": 0.3445,
|
2300 |
+
"step": 3820
|
2301 |
+
},
|
2302 |
+
{
|
2303 |
+
"epoch": 5.27,
|
2304 |
+
"learning_rate": 7.109693925816651e-06,
|
2305 |
+
"loss": 0.3439,
|
2306 |
+
"step": 3830
|
2307 |
+
},
|
2308 |
+
{
|
2309 |
+
"epoch": 5.29,
|
2310 |
+
"learning_rate": 6.845031257963619e-06,
|
2311 |
+
"loss": 0.3446,
|
2312 |
+
"step": 3840
|
2313 |
+
},
|
2314 |
+
{
|
2315 |
+
"epoch": 5.3,
|
2316 |
+
"learning_rate": 6.585213973489335e-06,
|
2317 |
+
"loss": 0.3577,
|
2318 |
+
"step": 3850
|
2319 |
+
},
|
2320 |
+
{
|
2321 |
+
"epoch": 5.31,
|
2322 |
+
"learning_rate": 6.3302555865880965e-06,
|
2323 |
+
"loss": 0.3368,
|
2324 |
+
"step": 3860
|
2325 |
+
},
|
2326 |
+
{
|
2327 |
+
"epoch": 5.33,
|
2328 |
+
"learning_rate": 6.08016935872251e-06,
|
2329 |
+
"loss": 0.338,
|
2330 |
+
"step": 3870
|
2331 |
+
},
|
2332 |
+
{
|
2333 |
+
"epoch": 5.34,
|
2334 |
+
"learning_rate": 5.834968297933541e-06,
|
2335 |
+
"loss": 0.3552,
|
2336 |
+
"step": 3880
|
2337 |
+
},
|
2338 |
+
{
|
2339 |
+
"epoch": 5.36,
|
2340 |
+
"learning_rate": 5.594665158163992e-06,
|
2341 |
+
"loss": 0.3489,
|
2342 |
+
"step": 3890
|
2343 |
+
},
|
2344 |
+
{
|
2345 |
+
"epoch": 5.37,
|
2346 |
+
"learning_rate": 5.359272438595153e-06,
|
2347 |
+
"loss": 0.354,
|
2348 |
+
"step": 3900
|
2349 |
+
},
|
2350 |
+
{
|
2351 |
+
"epoch": 5.38,
|
2352 |
+
"learning_rate": 5.128802382996567e-06,
|
2353 |
+
"loss": 0.3512,
|
2354 |
+
"step": 3910
|
2355 |
+
},
|
2356 |
+
{
|
2357 |
+
"epoch": 5.4,
|
2358 |
+
"learning_rate": 4.903266979089249e-06,
|
2359 |
+
"loss": 0.3333,
|
2360 |
+
"step": 3920
|
2361 |
+
},
|
2362 |
+
{
|
2363 |
+
"epoch": 5.41,
|
2364 |
+
"learning_rate": 4.682677957922155e-06,
|
2365 |
+
"loss": 0.3523,
|
2366 |
+
"step": 3930
|
2367 |
+
},
|
2368 |
+
{
|
2369 |
+
"epoch": 5.42,
|
2370 |
+
"learning_rate": 4.467046793261931e-06,
|
2371 |
+
"loss": 0.3462,
|
2372 |
+
"step": 3940
|
2373 |
+
},
|
2374 |
+
{
|
2375 |
+
"epoch": 5.44,
|
2376 |
+
"learning_rate": 4.256384700996252e-06,
|
2377 |
+
"loss": 0.34,
|
2378 |
+
"step": 3950
|
2379 |
+
},
|
2380 |
+
{
|
2381 |
+
"epoch": 5.45,
|
2382 |
+
"learning_rate": 4.050702638550275e-06,
|
2383 |
+
"loss": 0.3555,
|
2384 |
+
"step": 3960
|
2385 |
+
},
|
2386 |
+
{
|
2387 |
+
"epoch": 5.47,
|
2388 |
+
"learning_rate": 3.850011304316781e-06,
|
2389 |
+
"loss": 0.357,
|
2390 |
+
"step": 3970
|
2391 |
+
},
|
2392 |
+
{
|
2393 |
+
"epoch": 5.48,
|
2394 |
+
"learning_rate": 3.6543211370997587e-06,
|
2395 |
+
"loss": 0.3549,
|
2396 |
+
"step": 3980
|
2397 |
+
},
|
2398 |
+
{
|
2399 |
+
"epoch": 5.49,
|
2400 |
+
"learning_rate": 3.4636423155712916e-06,
|
2401 |
+
"loss": 0.3455,
|
2402 |
+
"step": 3990
|
2403 |
+
},
|
2404 |
+
{
|
2405 |
+
"epoch": 5.51,
|
2406 |
+
"learning_rate": 3.2779847577422697e-06,
|
2407 |
+
"loss": 0.3513,
|
2408 |
+
"step": 4000
|
2409 |
+
},
|
2410 |
+
{
|
2411 |
+
"epoch": 5.52,
|
2412 |
+
"learning_rate": 3.0973581204464362e-06,
|
2413 |
+
"loss": 0.3554,
|
2414 |
+
"step": 4010
|
2415 |
+
},
|
2416 |
+
{
|
2417 |
+
"epoch": 5.53,
|
2418 |
+
"learning_rate": 2.921771798838069e-06,
|
2419 |
+
"loss": 0.3433,
|
2420 |
+
"step": 4020
|
2421 |
+
},
|
2422 |
+
{
|
2423 |
+
"epoch": 5.55,
|
2424 |
+
"learning_rate": 2.751234925903412e-06,
|
2425 |
+
"loss": 0.3544,
|
2426 |
+
"step": 4030
|
2427 |
+
},
|
2428 |
+
{
|
2429 |
+
"epoch": 5.56,
|
2430 |
+
"learning_rate": 2.585756371985493e-06,
|
2431 |
+
"loss": 0.3466,
|
2432 |
+
"step": 4040
|
2433 |
+
},
|
2434 |
+
{
|
2435 |
+
"epoch": 5.58,
|
2436 |
+
"learning_rate": 2.4253447443228106e-06,
|
2437 |
+
"loss": 0.3459,
|
2438 |
+
"step": 4050
|
2439 |
+
},
|
2440 |
+
{
|
2441 |
+
"epoch": 5.59,
|
2442 |
+
"learning_rate": 2.270008386601685e-06,
|
2443 |
+
"loss": 0.3462,
|
2444 |
+
"step": 4060
|
2445 |
+
},
|
2446 |
+
{
|
2447 |
+
"epoch": 5.6,
|
2448 |
+
"learning_rate": 2.119755378522137e-06,
|
2449 |
+
"loss": 0.3398,
|
2450 |
+
"step": 4070
|
2451 |
+
},
|
2452 |
+
{
|
2453 |
+
"epoch": 5.62,
|
2454 |
+
"learning_rate": 1.974593535377722e-06,
|
2455 |
+
"loss": 0.3488,
|
2456 |
+
"step": 4080
|
2457 |
+
},
|
2458 |
+
{
|
2459 |
+
"epoch": 5.63,
|
2460 |
+
"learning_rate": 1.83453040764906e-06,
|
2461 |
+
"loss": 0.349,
|
2462 |
+
"step": 4090
|
2463 |
+
},
|
2464 |
+
{
|
2465 |
+
"epoch": 5.64,
|
2466 |
+
"learning_rate": 1.6995732806109554e-06,
|
2467 |
+
"loss": 0.3416,
|
2468 |
+
"step": 4100
|
2469 |
+
},
|
2470 |
+
{
|
2471 |
+
"epoch": 5.66,
|
2472 |
+
"learning_rate": 1.569729173953638e-06,
|
2473 |
+
"loss": 0.3556,
|
2474 |
+
"step": 4110
|
2475 |
+
},
|
2476 |
+
{
|
2477 |
+
"epoch": 5.67,
|
2478 |
+
"learning_rate": 1.4450048414174854e-06,
|
2479 |
+
"loss": 0.3341,
|
2480 |
+
"step": 4120
|
2481 |
+
},
|
2482 |
+
{
|
2483 |
+
"epoch": 5.69,
|
2484 |
+
"learning_rate": 1.3254067704418283e-06,
|
2485 |
+
"loss": 0.3511,
|
2486 |
+
"step": 4130
|
2487 |
+
},
|
2488 |
+
{
|
2489 |
+
"epoch": 5.7,
|
2490 |
+
"learning_rate": 1.2109411818274852e-06,
|
2491 |
+
"loss": 0.3536,
|
2492 |
+
"step": 4140
|
2493 |
+
},
|
2494 |
+
{
|
2495 |
+
"epoch": 5.71,
|
2496 |
+
"learning_rate": 1.1016140294131894e-06,
|
2497 |
+
"loss": 0.3318,
|
2498 |
+
"step": 4150
|
2499 |
+
},
|
2500 |
+
{
|
2501 |
+
"epoch": 5.73,
|
2502 |
+
"learning_rate": 9.974309997658915e-07,
|
2503 |
+
"loss": 0.3383,
|
2504 |
+
"step": 4160
|
2505 |
+
},
|
2506 |
+
{
|
2507 |
+
"epoch": 5.74,
|
2508 |
+
"learning_rate": 8.983975118849852e-07,
|
2509 |
+
"loss": 0.3465,
|
2510 |
+
"step": 4170
|
2511 |
+
},
|
2512 |
+
{
|
2513 |
+
"epoch": 5.75,
|
2514 |
+
"learning_rate": 8.04518716920466e-07,
|
2515 |
+
"loss": 0.3512,
|
2516 |
+
"step": 4180
|
2517 |
+
},
|
2518 |
+
{
|
2519 |
+
"epoch": 5.77,
|
2520 |
+
"learning_rate": 7.157994979049898e-07,
|
2521 |
+
"loss": 0.3377,
|
2522 |
+
"step": 4190
|
2523 |
+
},
|
2524 |
+
{
|
2525 |
+
"epoch": 5.78,
|
2526 |
+
"learning_rate": 6.322444694998319e-07,
|
2527 |
+
"loss": 0.3473,
|
2528 |
+
"step": 4200
|
2529 |
+
},
|
2530 |
+
{
|
2531 |
+
"epoch": 5.8,
|
2532 |
+
"learning_rate": 5.538579777549347e-07,
|
2533 |
+
"loss": 0.3423,
|
2534 |
+
"step": 4210
|
2535 |
+
},
|
2536 |
+
{
|
2537 |
+
"epoch": 5.81,
|
2538 |
+
"learning_rate": 4.80644099882821e-07,
|
2539 |
+
"loss": 0.3424,
|
2540 |
+
"step": 4220
|
2541 |
+
},
|
2542 |
+
{
|
2543 |
+
"epoch": 5.82,
|
2544 |
+
"learning_rate": 4.126066440464982e-07,
|
2545 |
+
"loss": 0.3448,
|
2546 |
+
"step": 4230
|
2547 |
+
},
|
2548 |
+
{
|
2549 |
+
"epoch": 5.84,
|
2550 |
+
"learning_rate": 3.497491491614158e-07,
|
2551 |
+
"loss": 0.3438,
|
2552 |
+
"step": 4240
|
2553 |
+
},
|
2554 |
+
{
|
2555 |
+
"epoch": 5.85,
|
2556 |
+
"learning_rate": 2.920748847113686e-07,
|
2557 |
+
"loss": 0.3514,
|
2558 |
+
"step": 4250
|
2559 |
+
},
|
2560 |
+
{
|
2561 |
+
"epoch": 5.87,
|
2562 |
+
"learning_rate": 2.395868505784438e-07,
|
2563 |
+
"loss": 0.3395,
|
2564 |
+
"step": 4260
|
2565 |
+
},
|
2566 |
+
{
|
2567 |
+
"epoch": 5.88,
|
2568 |
+
"learning_rate": 1.9228777688700127e-07,
|
2569 |
+
"loss": 0.353,
|
2570 |
+
"step": 4270
|
2571 |
+
},
|
2572 |
+
{
|
2573 |
+
"epoch": 5.89,
|
2574 |
+
"learning_rate": 1.5018012386162072e-07,
|
2575 |
+
"loss": 0.3474,
|
2576 |
+
"step": 4280
|
2577 |
+
},
|
2578 |
+
{
|
2579 |
+
"epoch": 5.91,
|
2580 |
+
"learning_rate": 1.1326608169920372e-07,
|
2581 |
+
"loss": 0.345,
|
2582 |
+
"step": 4290
|
2583 |
+
},
|
2584 |
+
{
|
2585 |
+
"epoch": 5.92,
|
2586 |
+
"learning_rate": 8.154757045497619e-08,
|
2587 |
+
"loss": 0.3494,
|
2588 |
+
"step": 4300
|
2589 |
+
},
|
2590 |
+
{
|
2591 |
+
"epoch": 5.93,
|
2592 |
+
"learning_rate": 5.50262399426904e-08,
|
2593 |
+
"loss": 0.3439,
|
2594 |
+
"step": 4310
|
2595 |
+
},
|
2596 |
+
{
|
2597 |
+
"epoch": 5.95,
|
2598 |
+
"learning_rate": 3.370346964876036e-08,
|
2599 |
+
"loss": 0.3474,
|
2600 |
+
"step": 4320
|
2601 |
+
},
|
2602 |
+
{
|
2603 |
+
"epoch": 5.96,
|
2604 |
+
"learning_rate": 1.7580368660519152e-08,
|
2605 |
+
"loss": 0.335,
|
2606 |
+
"step": 4330
|
2607 |
+
},
|
2608 |
+
{
|
2609 |
+
"epoch": 5.98,
|
2610 |
+
"learning_rate": 6.657775608553962e-09,
|
2611 |
+
"loss": 0.3516,
|
2612 |
+
"step": 4340
|
2613 |
+
},
|
2614 |
+
{
|
2615 |
+
"epoch": 5.99,
|
2616 |
+
"learning_rate": 9.362586230632354e-10,
|
2617 |
+
"loss": 0.3405,
|
2618 |
+
"step": 4350
|
2619 |
+
},
|
2620 |
+
{
|
2621 |
+
"epoch": 6.0,
|
2622 |
+
"step": 4356,
|
2623 |
+
"total_flos": 5.268602572020646e+18,
|
2624 |
+
"train_loss": 0.8953271216487972,
|
2625 |
+
"train_runtime": 33942.058,
|
2626 |
+
"train_samples_per_second": 12.326,
|
2627 |
+
"train_steps_per_second": 0.128
|
2628 |
+
}
|
2629 |
+
],
|
2630 |
+
"max_steps": 4356,
|
2631 |
+
"num_train_epochs": 6,
|
2632 |
+
"total_flos": 5.268602572020646e+18,
|
2633 |
+
"trial_name": null,
|
2634 |
+
"trial_params": null
|
2635 |
+
}
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:326a38cf0f9916b8ede07877300460617478f67a798b1bed6b7d9bf33cb7066b
|
3 |
+
size 3289
|
training_loss.png
ADDED
![]() |