File size: 21,596 Bytes
2d42aa2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
base_model.py# -*- encoding: utf-8 -*-
'''
@File    :   base_model.py
@Time    :   2021/10/01 22:40:33
@Author  :   Ming Ding 
@Contact :   [email protected]
'''

# here put the import lib
from functools import partial
import os
import sys
import math
import random
import torch
import inspect
import warnings
import argparse
from sat.model.registry import model_registry, MetaModel

from sat.model.transformer import BaseTransformer, standard_attention
from sat.arguments import update_args_with_file, overwrite_args_by_dict, set_random_seed
from sat.training.model_io import load_checkpoint
from sat.helpers import print_rank0

from sat.transformer_defaults import HOOKS_DEFAULT, ARGS_DEFAULT
from sat.resources import auto_create
from sat.mpu.initialize import get_node_rank, get_model_parallel_rank, destroy_model_parallel, initialize_model_parallel
from sat.mpu.operation import mp_split_model_rank0, mp_split_model_receive, mp_merge_model_rank0, mp_merge_model_send
from sat.arguments import reset_random_seed

def non_conflict(func):
    '''mark a hook function as non-conflict,
    so that it can be compatible with any already defined hooks.
    e.g. PrefixTuningMixin.attention_fn
    '''
    func.non_conflict = True
    return func

def replacable(func):
    '''mark a hook function as replacable,
    so that it can be replaced by mixins added after it.
    e.g. FP32AttentionMixin.attention_fn
    '''
    func.replacable = True
    return func

class BaseMixin(torch.nn.Module):
    non_conflict = non_conflict
    replacable = replacable
    def __init__(self):
        super(BaseMixin, self).__init__()
        # define new params

    def reinit(self, parent_model=None):
        # reload the initial params from previous trained modules
        # you can also get access to other mixins through parent_model.get_mixin().
        pass

    # can define hook-functions here
    # a hook, if default or replacable, can be overrided by mixins added after it.
    # a hook can be augmented by non_conflict hooks added after it.
    # default -> 0~n replacable  -> 0~n non_conflict
    # ...

    # If the hook is just a pre- or post- transformation,
    # You can use @non_conflict to mark it,
    # and run `old_impl` to make it compatible with other mixins.
    # Eg., 
    # 
    # @non_conflict
    # def attention_fn(q, k, v, mask, dropout_fn, old_impl=standard_attention, **kw_args):
    #     new_q, new_k, new_v = pre_hack(q, k, v)
    #     attn_result = old_impl(q, k, v, mask, dropout_fn, **kw_args)
    #     attn_result = post_hack(attn_result)
    #     return attn_result


class BaseModel(torch.nn.Module, metaclass=MetaModel):
    def __init__(self, args, transformer=None, params_dtype=torch.float, **kwargs):
        super(BaseModel, self).__init__()
        self.mixins = torch.nn.ModuleDict()
        self.collect_hooks_()
        if transformer is not None:
            self.transformer = transformer
        else:
            # check if model-only mode
            from sat.arguments import _simple_init
            success = _simple_init(model_parallel_size=args.model_parallel_size, seed=args.seed if hasattr(args, 'seed') else 1234)

            args_dict = {k: (getattr(args, v[0]) if hasattr(args, v[0]) else v[1]) for k, v in ARGS_DEFAULT.items()}

            self.transformer = BaseTransformer(
                num_layers=args.num_layers,
                vocab_size=args.vocab_size,
                hidden_size=args.hidden_size,
                num_attention_heads=args.num_attention_heads,
                max_sequence_length=args.max_sequence_length,
                layernorm_order=args.layernorm_order,
                **args_dict,
                hooks=self.hooks,
                params_dtype=params_dtype,
                skip_init=args.skip_init,
                device=torch.cuda.current_device() if hasattr(args, 'use_gpu_initialization') and args.use_gpu_initialization else torch.device('cpu'),
                **kwargs
            )

    def reinit(self, mixin_names=None):  # will be called when loading model, None means all
        # if some mixins are loaded, overrides this function
        for k, m in self.mixins.items():
            if mixin_names is None or k in mixin_names:
                m.reinit(self)

    def add_mixin(self, name, new_mixin, reinit=False):
        assert name not in self.mixins
        assert isinstance(new_mixin, BaseMixin)

        self.mixins[name] = new_mixin  # will auto-register parameters
        object.__setattr__(new_mixin, 'transformer', self.transformer)  # cannot use pytorch set_attr

        self.collect_hooks_()
        if reinit:
            new_mixin.reinit(self)  # also pass current mixins

    def del_mixin(self, name):
        assert name in self.mixins
        del self.mixins[name]
        self.collect_hooks_()

    def get_mixin(self, name):
        return self.mixins[name]

    def forward(self, *args, **kwargs):
        # update hooks as the current model (overrided forwards)
        # Attention! the transformer might be shared by multiple models
        self.transformer.hooks.clear()
        self.transformer.hooks.update(self.hooks)
        return self.transformer(*args, **kwargs)

    def collect_hooks_(self):
        names = list(HOOKS_DEFAULT.keys())
        hooks = {}
        hook_origins = {}
        for name in names:
            if hasattr(self, name):
                hooks[name] = getattr(self, name)
                hook_origins[name] = 'model'

            for mixin_name, m in self.mixins.items():
                if hasattr(m, name):
                    if hasattr(getattr(m, name), 'non_conflict'):
                        # check getattr(m, name), who must accept old_impl as an argument
                        signature = inspect.signature(getattr(m, name))
                        if 'old_impl' not in signature.parameters:
                            raise ValueError(f'Hook {name} at {mixin_name} must accept old_impl as an argument.')
                        # -------------
                        if name in hooks:
                            old_impl = hooks[name]
                        elif name == 'attention_fn': # the only hook without self
                            old_impl = HOOKS_DEFAULT[name]
                        else:
                            old_impl = partial(HOOKS_DEFAULT[name], self) # relax! `partial` does not affect the signature
                        old_origin = hook_origins.get(name, 'default')
                        hooks[name] = partial(getattr(m, name), old_impl=old_impl)
                        hook_origins[name] = mixin_name + ' -> ' + old_origin
                    elif name in hooks and not hasattr(hooks[name], 'replacable'): # if this hook name is already registered
                        raise ValueError(f'Hook {name} conflicts at {mixin_name} and {hook_origins[name]}.')
                    else: # new hook
                        if name in hooks and hasattr(hooks[name], 'replacable'):
                            warnings.warn(f'Hook {name} at {mixin_name} replaces {hook_origins[name]}.')
                        hooks[name] = getattr(m, name)
                        hook_origins[name] = mixin_name

        self.hooks = hooks
        self.hook_origins = hook_origins
        return hooks

    def disable_untrainable_params(self):
        pass

    @classmethod
    def add_model_specific_args(cls, parser):
        # recorded in arguments.py: add_model_config_args
        return parser

    @classmethod
    def from_pretrained_base(cls, name, args=None, *, home_path=None, url=None, prefix='', build_only=False, overwrite_args={}, **kwargs):
        '''Load a pretrained checkpoint of the current model.
            Args:
                name: The identifier of the pretrained model.
                args: NameSpace. will add the loaded args into it. None will create a new model-only one with defaults.
                path: the parent folder of existing `name` model. Default: SAT_HOME.
                url: the url of the model. Default: SAT_URL.
                prefix: the prefix of the checkpoint. Default: ''.
            Returns:
                model: the loaded model.
                args: the loaded args.
        '''
        if os.path.exists(name) and os.path.isdir(name):
            model_path = name
        else:
            model_path = auto_create(name, path=home_path, url=url)
        # create a new args if not provided
        if args is None:
            args = cls.get_args()
        args = update_args_with_file(args, path=os.path.join(model_path, 'model_config.json'))
        args = overwrite_args_by_dict(args, overwrite_args=overwrite_args)
        specific_iteration = kwargs.pop('specific_iteration', None)
        model = get_model(args, cls, **kwargs)
        if not build_only:
            load_checkpoint(model, args, load_path=model_path, prefix=prefix, specific_iteration=specific_iteration)
        return model, args
    
    @classmethod
    def from_pretrained(cls, name, args=None, *, home_path=None, url=None, prefix='', build_only=False, use_node_group=True, overwrite_args={}, **kwargs):
        if build_only or 'model_parallel_size' not in overwrite_args:
            return cls.from_pretrained_base(name, args=args, home_path=home_path, url=url, prefix=prefix, build_only=build_only, overwrite_args=overwrite_args, **kwargs)
        else:
            new_model_parallel_size = overwrite_args['model_parallel_size']
            if new_model_parallel_size != 1 or new_model_parallel_size == 1 and args.model_parallel_size == 1:
                model, model_args = cls.from_pretrained_base(name, args=args, home_path=home_path, url=url, prefix=prefix, build_only=True, overwrite_args=overwrite_args, **kwargs)
                local_rank = get_node_rank() if use_node_group else get_model_parallel_rank()
                world_size = torch.distributed.get_world_size()
                assert world_size % new_model_parallel_size == 0, "world size should be a multiplier of new model_parallel_size."
                destroy_model_parallel()
                initialize_model_parallel(1)
                if local_rank == 0:
                    args.skip_init = True
                    args.use_gpu_initialization = False
                    args.device = 'cpu'
                    overwrite_args.pop('model_parallel_size')
                    model_full, args_ = cls.from_pretrained_base(name, args=args, home_path=home_path, url=url, prefix=prefix, build_only=False, overwrite_args=overwrite_args, **kwargs)
                    if args_.model_parallel_size != 1:
                        raise Exception("We do not support overwriting model_parallel_size when original model_parallel_size != 1. Try merging the model using `from_pretrained(xxx,overwrite_args={'model_parallel_size':1})` first if you still want to change model_parallel_size!")
                if hasattr(args, 'mode') and args.mode == 'inference': # For multi-node inference, we should prevent rank 0 eagerly printing some info.
                    torch.distributed.barrier()
                destroy_model_parallel()
                initialize_model_parallel(new_model_parallel_size)
                if local_rank == 0:
                    mp_split_model_rank0(model, model_full, use_node_group=use_node_group)
                    del model_full
                else:
                    mp_split_model_receive(model, use_node_group=use_node_group)
                reset_random_seed(6)
            else:
                overwrite_args.pop('model_parallel_size')
                model, model_args = cls.from_pretrained_base(name, args=args, home_path=home_path, url=url, prefix=prefix, build_only=False, overwrite_args=overwrite_args, **kwargs)
                rank = torch.distributed.get_rank()
                world_size = torch.distributed.get_world_size()
                assert world_size == model_args.model_parallel_size, "world size should be equal to model_parallel_size."
                destroy_model_parallel()
                initialize_model_parallel(1)
                if rank == 0:
                    args.use_gpu_initialization = False
                    args.device = 'cpu'
                    overwrite_args['model_parallel_size'] = 1
                    model_full, args_ = cls.from_pretrained_base(name, args=args, home_path=home_path, url=url, prefix=prefix, build_only=True, overwrite_args=overwrite_args, **kwargs)
                torch.distributed.barrier()
                destroy_model_parallel()
                initialize_model_parallel(model_args.model_parallel_size)
                if rank == 0:
                    mp_merge_model_rank0(model, model_full)
                    model, model_args = model_full, args_
                else:
                    mp_merge_model_send(model)
                    model_args.model_parallel_size = 1
                destroy_model_parallel()
                initialize_model_parallel(1)
            return model, model_args
    
    @classmethod
    def list_avail_args(cls, print=True):
        '''List all available args of the current model.'''
        parser = argparse.ArgumentParser()
        from sat.arguments import add_model_config_args
        add_model_config_args(parser)
        # add args of the current model
        if hasattr(cls, 'add_model_specific_args'):
            cls.add_model_specific_args(parser)
        if print:
            from sat.helpers import print_parser
            print_parser(parser)
        return parser

    @classmethod
    def get_args(cls, **kwargs):
        '''Get the parsed args of the current model.
            Args:
                **kwargs: will override the default args.
            Returns:
                args: the parsed args.
        '''
        parser = cls.list_avail_args(print=False)
        # use parser to parse kwargs
        args = parser.parse_args([])
        for k, v in kwargs.items():
            if hasattr(args, k) or k in ['fp16']: # non-arch args but affect building models
                setattr(args, k, v)
            else:
                print_rank0(f'warning: Unknown arg {k} for class {cls.__name__}.', level='DEBUG')
                setattr(args, k, v)
        return args

class AutoModel():
    @classmethod
    def from_pretrained_base(cls, name, args=None, *, home_path=None, url=None, prefix='', build_only=False, overwrite_args={}, **kwargs):
        '''Automatically find the class and instantiate it. Auto-download.
            Args:
                name: The identifier of the pretrained model.
                args: NameSpace. will add the loaded args into it.
                path: the parent folder of existing `name` model. Default: SAT_HOME.
                url: manually specified url for the `name` model.
        '''
        if os.path.exists(name) and os.path.isdir(name):
            model_path = name
        else:
            model_path = auto_create(name, path=home_path, url=url)
        if args is None:
            args = argparse.Namespace() # null, fill later
            null_args = True
        else:
            null_args = False
        args = update_args_with_file(args, path=os.path.join(model_path, 'model_config.json'))
        args = overwrite_args_by_dict(args, overwrite_args=overwrite_args)
        if not hasattr(args, 'model_class'):
            raise ValueError('model_config.json must have key "model_class" for AutoModel.from_pretrained.')
        model_cls = model_registry.get(args.model_class)
        if null_args:
            # fill args with default values, if not provided
            model_default_args = model_cls.get_args()
            for k, v in model_default_args.__dict__.items():
                if not hasattr(args, k):
                    setattr(args, k, v)
        model = get_model(args, model_cls, **kwargs)
        if not build_only:
            load_checkpoint(model, args, load_path=model_path, prefix=prefix)
        return model, args
    
    @classmethod
    def from_pretrained(cls, name, args=None, *, home_path=None, url=None, prefix='', build_only=False, use_node_group=True, overwrite_args={}, **kwargs):
        if build_only or 'model_parallel_size' not in overwrite_args:
            return cls.from_pretrained_base(name, args=args, home_path=home_path, url=url, prefix=prefix, build_only=build_only, overwrite_args=overwrite_args, **kwargs)
        else:
            new_model_parallel_size = overwrite_args['model_parallel_size']
            if new_model_parallel_size != 1 or new_model_parallel_size == 1 and args.model_parallel_size == 1:
                model, model_args = cls.from_pretrained_base(name, args=args, home_path=home_path, url=url, prefix=prefix, build_only=True, overwrite_args=overwrite_args, **kwargs)
                local_rank = get_node_rank() if use_node_group else get_model_parallel_rank()
                world_size = torch.distributed.get_world_size()
                assert world_size % new_model_parallel_size == 0, "world size should be a multiplier of new model_parallel_size."
                destroy_model_parallel()
                initialize_model_parallel(1)
                if local_rank == 0:
                    args.skip_init = True
                    args.use_gpu_initialization = False
                    args.device = 'cpu'
                    overwrite_args.pop('model_parallel_size')
                    model_full, args_ = cls.from_pretrained_base(name, args=args, home_path=home_path, url=url, prefix=prefix, build_only=False, overwrite_args=overwrite_args, **kwargs)
                    if args_.model_parallel_size != 1:
                        raise Exception("We do not support overwriting model_parallel_size when original model_parallel_size != 1. Try merging the model using `from_pretrained(xxx,overwrite_args={'model_parallel_size':1})` first if you still want to change model_parallel_size!")
                if hasattr(args, 'mode') and args.mode == 'inference': # For multi-node inference, we should prevent rank 0 eagerly printing some info.
                    torch.distributed.barrier()
                destroy_model_parallel()
                initialize_model_parallel(new_model_parallel_size)
                if local_rank == 0:
                    mp_split_model_rank0(model, model_full, use_node_group=use_node_group)
                    del model_full
                else:
                    mp_split_model_receive(model, use_node_group=use_node_group)
                reset_random_seed(6)
            else:
                overwrite_args.pop('model_parallel_size')
                model, model_args = cls.from_pretrained_base(name, args=args, home_path=home_path, url=url, prefix=prefix, build_only=False, overwrite_args=overwrite_args, **kwargs)
                rank = torch.distributed.get_rank()
                world_size = torch.distributed.get_world_size()
                assert world_size == model_args.model_parallel_size, "world size should be equal to model_parallel_size."
                destroy_model_parallel()
                initialize_model_parallel(1)
                if rank == 0:
                    args.use_gpu_initialization = False
                    args.device = 'cpu'
                    overwrite_args['model_parallel_size'] = 1
                    model_full, args_ = cls.from_pretrained_base(name, args=args, home_path=home_path, url=url, prefix=prefix, build_only=True, overwrite_args=overwrite_args, **kwargs)
                torch.distributed.barrier()
                destroy_model_parallel()
                initialize_model_parallel(model_args.model_parallel_size)
                if rank == 0:
                    mp_merge_model_rank0(model, model_full)
                    model, model_args = model_full, args_
                else:
                    mp_merge_model_send(model)
                    model_args.model_parallel_size = 1
                destroy_model_parallel()
                initialize_model_parallel(1)
            return model, model_args
    
def get_model(args, model_cls, **kwargs):
    """Build the model."""
    import torch
    from sat.helpers import print_rank0,print_all
    from sat import mpu

    print_rank0(f'building {model_cls.__name__} model ...')
    if 'params_dtype' not in kwargs:
        if hasattr(args, 'fp16') and args.fp16:
            params_dtype = torch.half
        elif hasattr(args, 'bf16') and args.bf16:
            params_dtype = torch.bfloat16
        else:
            params_dtype = torch.float32
    else:
        # pop params_dtype from kwargs
        params_dtype = kwargs.pop('params_dtype')

    from sat.helpers import check_if_zero3
    if check_if_zero3(args):
        import deepspeed
        with deepspeed.zero.Init():
            model = model_cls(args, params_dtype=params_dtype, **kwargs)
    else:
        model = model_cls(args, params_dtype=params_dtype, **kwargs)

    if mpu.get_data_parallel_rank() == 0:
        print_all(' > number of parameters on model parallel rank {}: {}'.format(
            mpu.get_model_parallel_rank(),
            sum([p.nelement() for p in model.parameters()])), flush=True)
    
    if hasattr(args, 'fp16') and args.fp16:
        model.half()
    elif hasattr(args, 'bf16') and args.bf16:
        model.bfloat16()

    try: # TODO: is this useful?
        if not hasattr(args, 'device'):
            args.device = torch.cuda.current_device() if torch.cuda.is_available() else 'cpu'
        model = model.to(args.device)
    except Exception as e:
        print_all(e)
    
    return model