zineddine commited on
Commit
1de0108
·
1 Parent(s): c06fd17

my-first-hfh-model

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 276.12 +/- 11.71
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7e66f0288430>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7e66f02884c0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7e66f0288550>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7e66f02885e0>", "_build": "<function ActorCriticPolicy._build at 0x7e66f0288670>", "forward": "<function ActorCriticPolicy.forward at 0x7e66f0288700>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7e66f0288790>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7e66f0288820>", "_predict": "<function ActorCriticPolicy._predict at 0x7e66f02888b0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7e66f0288940>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7e66f02889d0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7e66f0288a60>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7e66f028c600>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1695474404439229248, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM2OIzwpWB+6aJinPFx6MTxaP7C5f+k8PAAAgD8AAIA/8+qlPYz1pD6FtA++xRtnvsmAYL3eAEc9AAAAAAAAAABzR4u9cbBnPGZIED7/T3K+aLdAPYRGlb0AAAAAAAAAABpmjr2eMJc9q5OJPcuGZL7ZyGy88IsVvQAAAAAAAAAAgFTKPUDvgD6riTi+vrmRvql4r70i2s29AAAAAAAAAACaZ1c8BfLMu+5kkTvcex889H8fPcf1C70AAIA/AACAP5p6gTxcuxq6I15eu906UTgHHjs7ACP9OQAAgD8AAIA/syQHvnarQbzD4ly9ZQNQPJlKsD2Hoyq9AACAPwAAgD/mw8u9sEyIP15HTL7wWM2++Wryvfu7bzwAAAAAAAAAABP8fz7UCxw/ETeavjduw775D4M7jDmDvQAAAAAAAAAAmhm7PLDetD+WKUM/ZjqfOx0MxbygCAa+AAAAAAAAAACzaZg9ruWyutdZITiCWAkz+oFAuFhbOLcAAIA/AACAP+ZkUj0UWoO6QJMus9+U86693Go7rV7TMwAAgD8AAIA/sxuvvcPxarp68K86gh3WvKW9Tbva0bs9AAAAAAAAAAAa3zM9WQQUP+MVar5cvKW+ydLtvTFVkDwAAAAAAAAAANoiiT0yKUA+u29ovYnGSL768ue7P9KQPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVNQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHCRbMX7+DSMAWyUS/iMAXSUR0CmGidS/CZXdX2UKGgGR0BvgD7qIJqqaAdNEQFoCEdAphrfa6BiC3V9lChoBkdAc6jl+3H7xmgHTQQBaAhHQKYbctaIN3J1fZQoaAZHQHBwn1SOzY5oB00dAWgIR0CmG59/8VHndX2UKGgGR0Bt/jUy57PZaAdNPQFoCEdAphu65qdpZnV9lChoBkdAbiUDyvs7dWgHTQQBaAhHQKYcL3V09yN1fZQoaAZHQEy6WQfZElVoB0vBaAhHQKYcOy/KyOd1fZQoaAZHQG70lfZ26kJoB00KAWgIR0CmHF40/GEPdX2UKGgGR0Bv8JWq94/vaAdNOAFoCEdAphx5YvFm4HV9lChoBkdAbrGeIVM232gHTQABaAhHQKYcgU6gdwN1fZQoaAZHQHB/taMaS9xoB0v/aAhHQKYcsZxaPjp1fZQoaAZHQHHyr3wkPc1oB00LAWgIR0CmHSAHmig1dX2UKGgGR0BzZV3Qla8paAdNEwFoCEdAph0uTV2A5XV9lChoBkdAb+pf+CK77WgHTRQBaAhHQKYdbZsbedl1fZQoaAZHQHGoAvDgqExoB00eAWgIR0CmHZllTWGzdX2UKGgGR0BtVcMw1zhhaAdNAAFoCEdAph2v2bobGXV9lChoBkdAcK1mkFfReGgHTRUBaAhHQKYeH6cAiml1fZQoaAZHQHIZfSYw7DFoB0v9aAhHQKYfBmz0HyF1fZQoaAZHQHL/8580DU5oB00qAWgIR0CmHyhLf1pTdX2UKGgGR0Bw8tXEIgNgaAdNDwFoCEdAph+GZmZmZnV9lChoBkdAcsqNOdoWYWgHTR4BaAhHQKYfqMqjJuF1fZQoaAZHQHAHbdnCfpVoB0vzaAhHQKYgDQzDXOJ1fZQoaAZHQHHggj2SMcZoB00sAWgIR0CmIMc+aBqcdX2UKGgGR0Bx5s3rD63zaAdNSwFoCEdApiD2jGkvb3V9lChoBkdAcejUuL74z2gHTUwBaAhHQKYhB/aQFLZ1fZQoaAZHQG7bY9gWrOtoB00UAWgIR0CmITM495hSdX2UKGgGR0BwtfuXu3MIaAdNEQFoCEdApiF3dyksSXV9lChoBkdAcOT/eLvTgGgHTRkBaAhHQKYh67cwg1Z1fZQoaAZHQHBIuNo8IRhoB01lAWgIR0CmInWfK6nSdX2UKGgGR0BwyPMxGlQ/aAdNQgFoCEdApiJ/ybx3FHV9lChoBkdAcZ0TwDvE0mgHTR8BaAhHQKYimBLf1pV1fZQoaAZHQHKZ5HEuQIVoB00bAWgIR0CmJBrYwqRVdX2UKGgGR0Bw9JMh5gPVaAdNNQFoCEdApiSJdyDIzXV9lChoBkdAbQOFFlTWG2gHTQ0BaAhHQKYknsk6cRV1fZQoaAZHQHDmQLmZE2JoB0v6aAhHQKYkwJUHY6J1fZQoaAZHQHJaZJ5E+gVoB008AWgIR0CmJW+tjkMkdX2UKGgGR0BvqISFoL5RaAdNEwFoCEdApiZ8clw97nV9lChoBkdAceBCIUJv52gHTTUBaAhHQKYnDI3BHkN1fZQoaAZHQHE/QhOgxrVoB00qAWgIR0CmJyVTisGQdX2UKGgGR0BzELqbBoEkaAdNTQFoCEdApihCo86mwnV9lChoBkdAcCGznA6+4GgHTT8BaAhHQKYoWKSgXdl1fZQoaAZHQHA1hq9GqghoB00YAWgIR0CmKPS1NQCTdX2UKGgGR0Bu5s1yeZogaAdNIQFoCEdApikck0JnhHV9lChoBkdAcduUAT7EYWgHTVUBaAhHQKYplHjIaLp1fZQoaAZHQHBo+No8IRhoB01VAWgIR0CmM9YMF2V3dX2UKGgGR0BxFCBg/keZaAdNCQFoCEdApjQJzvJA+3V9lChoBkdAcIdkaMrEtWgHTRIBaAhHQKY0PcnE2pB1fZQoaAZHQHHzFQl8gIRoB01JAWgIR0CmNNKfvnbJdX2UKGgGR0Bx3pzijtXxaAdNMAFoCEdApjTaDwpe/3V9lChoBkdAbPd/Aj6eoWgHTRkBaAhHQKY0/b9If8x1fZQoaAZHQHDTcbNr0rdoB0vxaAhHQKY1FAzHjp91fZQoaAZHQGzkL4etCAtoB00jAWgIR0CmNmpiZv1ldX2UKGgGR0BwIGIuXeFdaAdL+mgIR0CmNo3yZrpJdX2UKGgGR0Br/3G8274BaAdNIgFoCEdApjfZKJ2t+3V9lChoBkdAb6OsTWXkYGgHTSQBaAhHQKY4BV2A5Jd1fZQoaAZHQGy+961LJ0ZoB018AWgIR0CmOCXL3bmEdX2UKGgGR0BbSMjZ+QU6aAdN6ANoCEdApjguLtNSInV9lChoBkdAYSt9lVcUumgHTegDaAhHQKY4TwjMV1x1fZQoaAZHQHArFMh5gPVoB00rAWgIR0CmOIDv3JxOdX2UKGgGR0BwqUIdELH/aAdNYwFoCEdApjiLfJmuknV9lChoBkdAUFWRkmQbM2gHS9hoCEdApji6jk+5fHV9lChoBkdAbn/VpblijWgHTRgBaAhHQKY499jPOY91fZQoaAZHQHLCPLowEhdoB00mAWgIR0CmOQHX2/SIdX2UKGgGR0Bvqw0oBq9HaAdNFQFoCEdApjkUxVQyh3V9lChoBkdAcWC+ajN6gWgHS/toCEdApjk20svqT3V9lChoBkdAcPeQXQ+lj2gHTSUBaAhHQKY57Kvmozh1fZQoaAZHQG2zUcwQDmtoB003AWgIR0CmOhPWH1vmdX2UKGgGR0BwvlTn7pFDaAdNIgFoCEdApjsculGgBnV9lChoBkdAcQqbLU1AJWgHTSoBaAhHQKY7IP+4smR1fZQoaAZHQEqedsi0OVhoB0vNaAhHQKY7YK9f1Hx1fZQoaAZHQHEfyEYfnwJoB0vvaAhHQKY7khzNliB1fZQoaAZHQHGac0k4WDZoB00DAWgIR0CmO6Axi5NHdX2UKGgGR0Bx2Ky5Zr57aAdNEQFoCEdApjv19Ujs2XV9lChoBkdAceYL7Gecx2gHTRIBaAhHQKY8EuOjqOd1fZQoaAZHQG+vCPQv6CVoB00WAWgIR0CmPEcK5TZQdX2UKGgGR0Bw7v7JnxrjaAdNMgFoCEdApjzb1mJ3xHV9lChoBkdAcGmnaFmFrWgHTQMBaAhHQKY89bg0j1R1fZQoaAZHQHCYqXWvr4ZoB00XAWgIR0CmPQFE7W/bdX2UKGgGR0ByMA2m51/2aAdNMQFoCEdApj0YFJQLu3V9lChoBkdAcNsst03fh2gHTUUBaAhHQKY9oieNDMN1fZQoaAZHQHMesa0hNdtoB01EAWgIR0CmPbwmVqvedX2UKGgGR0BxhEg1WKdhaAdL/GgIR0CmPdTlkpZwdX2UKGgGR0BwYtbTtsvaaAdNMwFoCEdApj5xvP1L8XV9lChoBkdAcEmtSQ5my2gHTQMBaAhHQKY+8cvM8ox1fZQoaAZHQHHwt8uzyBloB00CAWgIR0CmP2YcNpdsdX2UKGgGR0Bws/433pOfaAdNCAFoCEdApj+ONWEK3XV9lChoBkdAct1tRekYXWgHTTkBaAhHQKY/2ZF5Oah1fZQoaAZHQG9NaDoQnQZoB00yAWgIR0CmQACay8jBdX2UKGgGR0BxR9hTfixWaAdNCAFoCEdApkAOlhw2l3V9lChoBkdAVCTZxrBTGmgHS+hoCEdApkBjW5H3DnV9lChoBkdAcoG4s3AEdWgHTRYBaAhHQKZAfFI/Z/V1fZQoaAZHQGz4N7rs0HhoB00tAWgIR0CmQIbFsHjZdX2UKGgGR0BNyElVtGd7aAdL0GgIR0CmQMqkVN5/dX2UKGgGR0BxYH2zv7WNaAdNGgFoCEdApkFCEzwc53V9lChoBkdAcjL+H8CPqGgHTRsBaAhHQKZBXZSNwR51fZQoaAZHQHCQ8495hSdoB00mAWgIR0CmQWOpKjBVdX2UKGgGR0BsaUUCaJAMaAdNBQFoCEdApkHXqmj0tnV9lChoBkdAcU9HD7655WgHTSYBaAhHQKZCX8m8dxR1fZQoaAZHQHNtYGpuMuRoB00zAWgIR0CmQ7yFoL5RdX2UKGgGR0Bxl6wmmce9aAdNNwFoCEdApkSxa/yoXXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
lander1.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7cba797e53b355099717f7595bf4094217f19a33705193bb5cd6db4df2e6330b
3
+ size 146739
lander1/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a5
lander1/data ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7e66f0288430>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7e66f02884c0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7e66f0288550>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7e66f02885e0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7e66f0288670>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7e66f0288700>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7e66f0288790>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7e66f0288820>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7e66f02888b0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7e66f0288940>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7e66f02889d0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7e66f0288a60>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7e66f028c600>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 1015808,
25
+ "_total_timesteps": 1000000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1695474404439229248,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "_last_obs": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM2OIzwpWB+6aJinPFx6MTxaP7C5f+k8PAAAgD8AAIA/8+qlPYz1pD6FtA++xRtnvsmAYL3eAEc9AAAAAAAAAABzR4u9cbBnPGZIED7/T3K+aLdAPYRGlb0AAAAAAAAAABpmjr2eMJc9q5OJPcuGZL7ZyGy88IsVvQAAAAAAAAAAgFTKPUDvgD6riTi+vrmRvql4r70i2s29AAAAAAAAAACaZ1c8BfLMu+5kkTvcex889H8fPcf1C70AAIA/AACAP5p6gTxcuxq6I15eu906UTgHHjs7ACP9OQAAgD8AAIA/syQHvnarQbzD4ly9ZQNQPJlKsD2Hoyq9AACAPwAAgD/mw8u9sEyIP15HTL7wWM2++Wryvfu7bzwAAAAAAAAAABP8fz7UCxw/ETeavjduw775D4M7jDmDvQAAAAAAAAAAmhm7PLDetD+WKUM/ZjqfOx0MxbygCAa+AAAAAAAAAACzaZg9ruWyutdZITiCWAkz+oFAuFhbOLcAAIA/AACAP+ZkUj0UWoO6QJMus9+U86693Go7rV7TMwAAgD8AAIA/sxuvvcPxarp68K86gh3WvKW9Tbva0bs9AAAAAAAAAAAa3zM9WQQUP+MVar5cvKW+ydLtvTFVkDwAAAAAAAAAANoiiT0yKUA+u29ovYnGSL768ue7P9KQPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
+ },
36
+ "_last_episode_starts": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
39
+ },
40
+ "_last_original_obs": null,
41
+ "_episode_num": 0,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.015808000000000044,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWVNQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHCRbMX7+DSMAWyUS/iMAXSUR0CmGidS/CZXdX2UKGgGR0BvgD7qIJqqaAdNEQFoCEdAphrfa6BiC3V9lChoBkdAc6jl+3H7xmgHTQQBaAhHQKYbctaIN3J1fZQoaAZHQHBwn1SOzY5oB00dAWgIR0CmG59/8VHndX2UKGgGR0Bt/jUy57PZaAdNPQFoCEdAphu65qdpZnV9lChoBkdAbiUDyvs7dWgHTQQBaAhHQKYcL3V09yN1fZQoaAZHQEy6WQfZElVoB0vBaAhHQKYcOy/KyOd1fZQoaAZHQG70lfZ26kJoB00KAWgIR0CmHF40/GEPdX2UKGgGR0Bv8JWq94/vaAdNOAFoCEdAphx5YvFm4HV9lChoBkdAbrGeIVM232gHTQABaAhHQKYcgU6gdwN1fZQoaAZHQHB/taMaS9xoB0v/aAhHQKYcsZxaPjp1fZQoaAZHQHHyr3wkPc1oB00LAWgIR0CmHSAHmig1dX2UKGgGR0BzZV3Qla8paAdNEwFoCEdAph0uTV2A5XV9lChoBkdAb+pf+CK77WgHTRQBaAhHQKYdbZsbedl1fZQoaAZHQHGoAvDgqExoB00eAWgIR0CmHZllTWGzdX2UKGgGR0BtVcMw1zhhaAdNAAFoCEdAph2v2bobGXV9lChoBkdAcK1mkFfReGgHTRUBaAhHQKYeH6cAiml1fZQoaAZHQHIZfSYw7DFoB0v9aAhHQKYfBmz0HyF1fZQoaAZHQHL/8580DU5oB00qAWgIR0CmHyhLf1pTdX2UKGgGR0Bw8tXEIgNgaAdNDwFoCEdAph+GZmZmZnV9lChoBkdAcsqNOdoWYWgHTR4BaAhHQKYfqMqjJuF1fZQoaAZHQHAHbdnCfpVoB0vzaAhHQKYgDQzDXOJ1fZQoaAZHQHHggj2SMcZoB00sAWgIR0CmIMc+aBqcdX2UKGgGR0Bx5s3rD63zaAdNSwFoCEdApiD2jGkvb3V9lChoBkdAcejUuL74z2gHTUwBaAhHQKYhB/aQFLZ1fZQoaAZHQG7bY9gWrOtoB00UAWgIR0CmITM495hSdX2UKGgGR0BwtfuXu3MIaAdNEQFoCEdApiF3dyksSXV9lChoBkdAcOT/eLvTgGgHTRkBaAhHQKYh67cwg1Z1fZQoaAZHQHBIuNo8IRhoB01lAWgIR0CmInWfK6nSdX2UKGgGR0BwyPMxGlQ/aAdNQgFoCEdApiJ/ybx3FHV9lChoBkdAcZ0TwDvE0mgHTR8BaAhHQKYimBLf1pV1fZQoaAZHQHKZ5HEuQIVoB00bAWgIR0CmJBrYwqRVdX2UKGgGR0Bw9JMh5gPVaAdNNQFoCEdApiSJdyDIzXV9lChoBkdAbQOFFlTWG2gHTQ0BaAhHQKYknsk6cRV1fZQoaAZHQHDmQLmZE2JoB0v6aAhHQKYkwJUHY6J1fZQoaAZHQHJaZJ5E+gVoB008AWgIR0CmJW+tjkMkdX2UKGgGR0BvqISFoL5RaAdNEwFoCEdApiZ8clw97nV9lChoBkdAceBCIUJv52gHTTUBaAhHQKYnDI3BHkN1fZQoaAZHQHE/QhOgxrVoB00qAWgIR0CmJyVTisGQdX2UKGgGR0BzELqbBoEkaAdNTQFoCEdApihCo86mwnV9lChoBkdAcCGznA6+4GgHTT8BaAhHQKYoWKSgXdl1fZQoaAZHQHA1hq9GqghoB00YAWgIR0CmKPS1NQCTdX2UKGgGR0Bu5s1yeZogaAdNIQFoCEdApikck0JnhHV9lChoBkdAcduUAT7EYWgHTVUBaAhHQKYplHjIaLp1fZQoaAZHQHBo+No8IRhoB01VAWgIR0CmM9YMF2V3dX2UKGgGR0BxFCBg/keZaAdNCQFoCEdApjQJzvJA+3V9lChoBkdAcIdkaMrEtWgHTRIBaAhHQKY0PcnE2pB1fZQoaAZHQHHzFQl8gIRoB01JAWgIR0CmNNKfvnbJdX2UKGgGR0Bx3pzijtXxaAdNMAFoCEdApjTaDwpe/3V9lChoBkdAbPd/Aj6eoWgHTRkBaAhHQKY0/b9If8x1fZQoaAZHQHDTcbNr0rdoB0vxaAhHQKY1FAzHjp91fZQoaAZHQGzkL4etCAtoB00jAWgIR0CmNmpiZv1ldX2UKGgGR0BwIGIuXeFdaAdL+mgIR0CmNo3yZrpJdX2UKGgGR0Br/3G8274BaAdNIgFoCEdApjfZKJ2t+3V9lChoBkdAb6OsTWXkYGgHTSQBaAhHQKY4BV2A5Jd1fZQoaAZHQGy+961LJ0ZoB018AWgIR0CmOCXL3bmEdX2UKGgGR0BbSMjZ+QU6aAdN6ANoCEdApjguLtNSInV9lChoBkdAYSt9lVcUumgHTegDaAhHQKY4TwjMV1x1fZQoaAZHQHArFMh5gPVoB00rAWgIR0CmOIDv3JxOdX2UKGgGR0BwqUIdELH/aAdNYwFoCEdApjiLfJmuknV9lChoBkdAUFWRkmQbM2gHS9hoCEdApji6jk+5fHV9lChoBkdAbn/VpblijWgHTRgBaAhHQKY499jPOY91fZQoaAZHQHLCPLowEhdoB00mAWgIR0CmOQHX2/SIdX2UKGgGR0Bvqw0oBq9HaAdNFQFoCEdApjkUxVQyh3V9lChoBkdAcWC+ajN6gWgHS/toCEdApjk20svqT3V9lChoBkdAcPeQXQ+lj2gHTSUBaAhHQKY57Kvmozh1fZQoaAZHQG2zUcwQDmtoB003AWgIR0CmOhPWH1vmdX2UKGgGR0BwvlTn7pFDaAdNIgFoCEdApjsculGgBnV9lChoBkdAcQqbLU1AJWgHTSoBaAhHQKY7IP+4smR1fZQoaAZHQEqedsi0OVhoB0vNaAhHQKY7YK9f1Hx1fZQoaAZHQHEfyEYfnwJoB0vvaAhHQKY7khzNliB1fZQoaAZHQHGac0k4WDZoB00DAWgIR0CmO6Axi5NHdX2UKGgGR0Bx2Ky5Zr57aAdNEQFoCEdApjv19Ujs2XV9lChoBkdAceYL7Gecx2gHTRIBaAhHQKY8EuOjqOd1fZQoaAZHQG+vCPQv6CVoB00WAWgIR0CmPEcK5TZQdX2UKGgGR0Bw7v7JnxrjaAdNMgFoCEdApjzb1mJ3xHV9lChoBkdAcGmnaFmFrWgHTQMBaAhHQKY89bg0j1R1fZQoaAZHQHCYqXWvr4ZoB00XAWgIR0CmPQFE7W/bdX2UKGgGR0ByMA2m51/2aAdNMQFoCEdApj0YFJQLu3V9lChoBkdAcNsst03fh2gHTUUBaAhHQKY9oieNDMN1fZQoaAZHQHMesa0hNdtoB01EAWgIR0CmPbwmVqvedX2UKGgGR0BxhEg1WKdhaAdL/GgIR0CmPdTlkpZwdX2UKGgGR0BwYtbTtsvaaAdNMwFoCEdApj5xvP1L8XV9lChoBkdAcEmtSQ5my2gHTQMBaAhHQKY+8cvM8ox1fZQoaAZHQHHwt8uzyBloB00CAWgIR0CmP2YcNpdsdX2UKGgGR0Bws/433pOfaAdNCAFoCEdApj+ONWEK3XV9lChoBkdAct1tRekYXWgHTTkBaAhHQKY/2ZF5Oah1fZQoaAZHQG9NaDoQnQZoB00yAWgIR0CmQACay8jBdX2UKGgGR0BxR9hTfixWaAdNCAFoCEdApkAOlhw2l3V9lChoBkdAVCTZxrBTGmgHS+hoCEdApkBjW5H3DnV9lChoBkdAcoG4s3AEdWgHTRYBaAhHQKZAfFI/Z/V1fZQoaAZHQGz4N7rs0HhoB00tAWgIR0CmQIbFsHjZdX2UKGgGR0BNyElVtGd7aAdL0GgIR0CmQMqkVN5/dX2UKGgGR0BxYH2zv7WNaAdNGgFoCEdApkFCEzwc53V9lChoBkdAcjL+H8CPqGgHTRsBaAhHQKZBXZSNwR51fZQoaAZHQHCQ8495hSdoB00mAWgIR0CmQWOpKjBVdX2UKGgGR0BsaUUCaJAMaAdNBQFoCEdApkHXqmj0tnV9lChoBkdAcU9HD7655WgHTSYBaAhHQKZCX8m8dxR1fZQoaAZHQHNtYGpuMuRoB00zAWgIR0CmQ7yFoL5RdX2UKGgGR0Bxl6wmmce9aAdNNwFoCEdApkSxa/yoXXVlLg=="
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
+ },
54
+ "_n_updates": 248,
55
+ "observation_space": {
56
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
58
+ "dtype": "float32",
59
+ "bounded_below": "[ True True True True True True True True]",
60
+ "bounded_above": "[ True True True True True True True True]",
61
+ "_shape": [
62
+ 8
63
+ ],
64
+ "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
65
+ "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
66
+ "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
67
+ "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
68
+ "_np_random": null
69
+ },
70
+ "action_space": {
71
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
+ ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
73
+ "n": "4",
74
+ "start": "0",
75
+ "_shape": [],
76
+ "dtype": "int64",
77
+ "_np_random": null
78
+ },
79
+ "n_envs": 16,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null,
95
+ "lr_schedule": {
96
+ ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
98
+ }
99
+ }
lander1/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1ec931a926f407732fc0cfcf40ad02d0ee952b8f1a6f7f4ac441c11afbeec1d0
3
+ size 87929
lander1/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7604b881715677bcec07b5e11ca18c6e5c41f046623336d3600afae1491ae209
3
+ size 43329
lander1/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
lander1/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.0.1+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.23.5
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
replay.mp4 ADDED
Binary file (174 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 276.12226569999996, "std_reward": 11.7063450338953, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-09-23T13:40:40.686480"}