zihoo commited on
Commit
91900c7
·
verified ·
1 Parent(s): b948cf1

Add new SentenceTransformer model.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 384,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,381 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - sentence-transformers
4
+ - sentence-similarity
5
+ - feature-extraction
6
+ - generated_from_trainer
7
+ - dataset_size:8000
8
+ - loss:SoftmaxLoss
9
+ base_model: sentence-transformers/all-MiniLM-L6-v2
10
+ widget:
11
+ - source_sentence: I suspect their compliments are disingenuous
12
+ sentences:
13
+ - I feel skeptical about their ideas during planning sessions
14
+ - I believe they intentionally withhold information from me
15
+ - I notice the tension in rushed work hours.
16
+ - source_sentence: I decline their invitations to mutual events
17
+ sentences:
18
+ - I accept moments of uncertainty as part of the job.
19
+ - I embrace constructive criticism for personal growth.
20
+ - I accept change as an integral part of progress.
21
+ - source_sentence: I feel anger simmering when they speak up in meetings
22
+ sentences:
23
+ - I concentrate on tasks without getting sidetracked by emails.
24
+ - I maintain focus by taking regular breaks.
25
+ - I focus on one work task at a time.
26
+ - source_sentence: I stay conscious of my patterned responses to pressure.
27
+ sentences:
28
+ - I ignore background noise to maintain task concentration.
29
+ - I concentrate fully on reading reports.
30
+ - I accept that criticism is a growth opportunity.
31
+ - source_sentence: I accept my mistakes as part of my learning process.
32
+ sentences:
33
+ - I fully concentrate on client communications.
34
+ - I suspect their compliments are disingenuous
35
+ - I remain conscious of my work-life balance.
36
+ pipeline_tag: sentence-similarity
37
+ library_name: sentence-transformers
38
+ ---
39
+
40
+ # SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2
41
+
42
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
43
+
44
+ ## Model Details
45
+
46
+ ### Model Description
47
+ - **Model Type:** Sentence Transformer
48
+ - **Base model:** [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) <!-- at revision fa97f6e7cb1a59073dff9e6b13e2715cf7475ac9 -->
49
+ - **Maximum Sequence Length:** 256 tokens
50
+ - **Output Dimensionality:** 384 dimensions
51
+ - **Similarity Function:** Cosine Similarity
52
+ <!-- - **Training Dataset:** Unknown -->
53
+ <!-- - **Language:** Unknown -->
54
+ <!-- - **License:** Unknown -->
55
+
56
+ ### Model Sources
57
+
58
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
59
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
60
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
61
+
62
+ ### Full Model Architecture
63
+
64
+ ```
65
+ SentenceTransformer(
66
+ (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
67
+ (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
68
+ (2): Normalize()
69
+ )
70
+ ```
71
+
72
+ ## Usage
73
+
74
+ ### Direct Usage (Sentence Transformers)
75
+
76
+ First install the Sentence Transformers library:
77
+
78
+ ```bash
79
+ pip install -U sentence-transformers
80
+ ```
81
+
82
+ Then you can load this model and run inference.
83
+ ```python
84
+ from sentence_transformers import SentenceTransformer
85
+
86
+ # Download from the 🤗 Hub
87
+ model = SentenceTransformer("zihoo/all-MiniLM-L6-v2-WMNLI-10epoch")
88
+ # Run inference
89
+ sentences = [
90
+ 'I accept my mistakes as part of my learning process.',
91
+ 'I fully concentrate on client communications.',
92
+ 'I remain conscious of my work-life balance.',
93
+ ]
94
+ embeddings = model.encode(sentences)
95
+ print(embeddings.shape)
96
+ # [3, 384]
97
+
98
+ # Get the similarity scores for the embeddings
99
+ similarities = model.similarity(embeddings, embeddings)
100
+ print(similarities.shape)
101
+ # [3, 3]
102
+ ```
103
+
104
+ <!--
105
+ ### Direct Usage (Transformers)
106
+
107
+ <details><summary>Click to see the direct usage in Transformers</summary>
108
+
109
+ </details>
110
+ -->
111
+
112
+ <!--
113
+ ### Downstream Usage (Sentence Transformers)
114
+
115
+ You can finetune this model on your own dataset.
116
+
117
+ <details><summary>Click to expand</summary>
118
+
119
+ </details>
120
+ -->
121
+
122
+ <!--
123
+ ### Out-of-Scope Use
124
+
125
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
126
+ -->
127
+
128
+ <!--
129
+ ## Bias, Risks and Limitations
130
+
131
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
132
+ -->
133
+
134
+ <!--
135
+ ### Recommendations
136
+
137
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
138
+ -->
139
+
140
+ ## Training Details
141
+
142
+ ### Training Dataset
143
+
144
+ #### Unnamed Dataset
145
+
146
+
147
+ * Size: 8,000 training samples
148
+ * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>label</code>
149
+ * Approximate statistics based on the first 1000 samples:
150
+ | | sentence1 | sentence2 | label |
151
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:-------------------------------------------------------------------|
152
+ | type | string | string | int |
153
+ | details | <ul><li>min: 8 tokens</li><li>mean: 11.65 tokens</li><li>max: 17 tokens</li></ul> | <ul><li>min: 8 tokens</li><li>mean: 11.77 tokens</li><li>max: 17 tokens</li></ul> | <ul><li>0: ~25.80%</li><li>1: ~36.80%</li><li>2: ~37.40%</li></ul> |
154
+ * Samples:
155
+ | sentence1 | sentence2 | label |
156
+ |:----------------------------------------------------------------|:---------------------------------------------------------------------|:---------------|
157
+ | <code>I focus on one work task at a time.</code> | <code>I keep my attention on the task despite office chatter.</code> | <code>0</code> |
158
+ | <code>I worry they might spread false rumors about me</code> | <code>I return focus to my work when my mind drifts.</code> | <code>2</code> |
159
+ | <code>I stay aware of my posture when working at a desk.</code> | <code>I pay attention to non-verbal cues from others.</code> | <code>0</code> |
160
+ * Loss: [<code>SoftmaxLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#softmaxloss)
161
+
162
+ ### Evaluation Dataset
163
+
164
+ #### Unnamed Dataset
165
+
166
+
167
+ * Size: 2,000 evaluation samples
168
+ * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>label</code>
169
+ * Approximate statistics based on the first 1000 samples:
170
+ | | sentence1 | sentence2 | label |
171
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:-------------------------------------------------------------------|
172
+ | type | string | string | int |
173
+ | details | <ul><li>min: 8 tokens</li><li>mean: 11.68 tokens</li><li>max: 17 tokens</li></ul> | <ul><li>min: 8 tokens</li><li>mean: 11.79 tokens</li><li>max: 17 tokens</li></ul> | <ul><li>0: ~24.40%</li><li>1: ~36.30%</li><li>2: ~39.30%</li></ul> |
174
+ * Samples:
175
+ | sentence1 | sentence2 | label |
176
+ |:----------------------------------------------------------------------------|:-----------------------------------------------------------------------|:---------------|
177
+ | <code>I stay conscious of my emotional responses to work challenges.</code> | <code>I pay close attention to verbal instructions.</code> | <code>1</code> |
178
+ | <code>I accept varied perspectives from my team graciously.</code> | <code>I accept team dynamics as they naturally evolve.</code> | <code>0</code> |
179
+ | <code>I accept technology upgrades with an open heart.</code> | <code>I am mindful of my facial expressions during discussions.</code> | <code>1</code> |
180
+ * Loss: [<code>SoftmaxLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#softmaxloss)
181
+
182
+ ### Training Hyperparameters
183
+ #### Non-Default Hyperparameters
184
+
185
+ - `eval_strategy`: steps
186
+ - `per_device_train_batch_size`: 32
187
+ - `per_device_eval_batch_size`: 32
188
+ - `num_train_epochs`: 9
189
+ - `warmup_ratio`: 0.01
190
+
191
+ #### All Hyperparameters
192
+ <details><summary>Click to expand</summary>
193
+
194
+ - `overwrite_output_dir`: False
195
+ - `do_predict`: False
196
+ - `eval_strategy`: steps
197
+ - `prediction_loss_only`: True
198
+ - `per_device_train_batch_size`: 32
199
+ - `per_device_eval_batch_size`: 32
200
+ - `per_gpu_train_batch_size`: None
201
+ - `per_gpu_eval_batch_size`: None
202
+ - `gradient_accumulation_steps`: 1
203
+ - `eval_accumulation_steps`: None
204
+ - `torch_empty_cache_steps`: None
205
+ - `learning_rate`: 5e-05
206
+ - `weight_decay`: 0.0
207
+ - `adam_beta1`: 0.9
208
+ - `adam_beta2`: 0.999
209
+ - `adam_epsilon`: 1e-08
210
+ - `max_grad_norm`: 1.0
211
+ - `num_train_epochs`: 9
212
+ - `max_steps`: -1
213
+ - `lr_scheduler_type`: linear
214
+ - `lr_scheduler_kwargs`: {}
215
+ - `warmup_ratio`: 0.01
216
+ - `warmup_steps`: 0
217
+ - `log_level`: passive
218
+ - `log_level_replica`: warning
219
+ - `log_on_each_node`: True
220
+ - `logging_nan_inf_filter`: True
221
+ - `save_safetensors`: True
222
+ - `save_on_each_node`: False
223
+ - `save_only_model`: False
224
+ - `restore_callback_states_from_checkpoint`: False
225
+ - `no_cuda`: False
226
+ - `use_cpu`: False
227
+ - `use_mps_device`: False
228
+ - `seed`: 42
229
+ - `data_seed`: None
230
+ - `jit_mode_eval`: False
231
+ - `use_ipex`: False
232
+ - `bf16`: False
233
+ - `fp16`: False
234
+ - `fp16_opt_level`: O1
235
+ - `half_precision_backend`: auto
236
+ - `bf16_full_eval`: False
237
+ - `fp16_full_eval`: False
238
+ - `tf32`: None
239
+ - `local_rank`: 0
240
+ - `ddp_backend`: None
241
+ - `tpu_num_cores`: None
242
+ - `tpu_metrics_debug`: False
243
+ - `debug`: []
244
+ - `dataloader_drop_last`: False
245
+ - `dataloader_num_workers`: 0
246
+ - `dataloader_prefetch_factor`: None
247
+ - `past_index`: -1
248
+ - `disable_tqdm`: False
249
+ - `remove_unused_columns`: True
250
+ - `label_names`: None
251
+ - `load_best_model_at_end`: False
252
+ - `ignore_data_skip`: False
253
+ - `fsdp`: []
254
+ - `fsdp_min_num_params`: 0
255
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
256
+ - `fsdp_transformer_layer_cls_to_wrap`: None
257
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
258
+ - `deepspeed`: None
259
+ - `label_smoothing_factor`: 0.0
260
+ - `optim`: adamw_torch
261
+ - `optim_args`: None
262
+ - `adafactor`: False
263
+ - `group_by_length`: False
264
+ - `length_column_name`: length
265
+ - `ddp_find_unused_parameters`: None
266
+ - `ddp_bucket_cap_mb`: None
267
+ - `ddp_broadcast_buffers`: False
268
+ - `dataloader_pin_memory`: True
269
+ - `dataloader_persistent_workers`: False
270
+ - `skip_memory_metrics`: True
271
+ - `use_legacy_prediction_loop`: False
272
+ - `push_to_hub`: False
273
+ - `resume_from_checkpoint`: None
274
+ - `hub_model_id`: None
275
+ - `hub_strategy`: every_save
276
+ - `hub_private_repo`: None
277
+ - `hub_always_push`: False
278
+ - `gradient_checkpointing`: False
279
+ - `gradient_checkpointing_kwargs`: None
280
+ - `include_inputs_for_metrics`: False
281
+ - `include_for_metrics`: []
282
+ - `eval_do_concat_batches`: True
283
+ - `fp16_backend`: auto
284
+ - `push_to_hub_model_id`: None
285
+ - `push_to_hub_organization`: None
286
+ - `mp_parameters`:
287
+ - `auto_find_batch_size`: False
288
+ - `full_determinism`: False
289
+ - `torchdynamo`: None
290
+ - `ray_scope`: last
291
+ - `ddp_timeout`: 1800
292
+ - `torch_compile`: False
293
+ - `torch_compile_backend`: None
294
+ - `torch_compile_mode`: None
295
+ - `dispatch_batches`: None
296
+ - `split_batches`: None
297
+ - `include_tokens_per_second`: False
298
+ - `include_num_input_tokens_seen`: False
299
+ - `neftune_noise_alpha`: None
300
+ - `optim_target_modules`: None
301
+ - `batch_eval_metrics`: False
302
+ - `eval_on_start`: False
303
+ - `use_liger_kernel`: False
304
+ - `eval_use_gather_object`: False
305
+ - `average_tokens_across_devices`: False
306
+ - `prompts`: None
307
+ - `batch_sampler`: batch_sampler
308
+ - `multi_dataset_batch_sampler`: proportional
309
+
310
+ </details>
311
+
312
+ ### Training Logs
313
+ | Epoch | Step | Training Loss | Validation Loss |
314
+ |:-----:|:----:|:-------------:|:---------------:|
315
+ | 0.4 | 100 | 0.9566 | 0.8119 |
316
+ | 0.8 | 200 | 0.7499 | 0.6819 |
317
+ | 1.2 | 300 | 0.6541 | 0.5908 |
318
+ | 1.6 | 400 | 0.5759 | 0.5258 |
319
+ | 2.0 | 500 | 0.5112 | 0.4811 |
320
+ | 2.4 | 600 | 0.4659 | 0.4377 |
321
+ | 2.8 | 700 | 0.44 | 0.4020 |
322
+ | 3.2 | 800 | 0.4112 | 0.3721 |
323
+ | 3.6 | 900 | 0.3751 | 0.3462 |
324
+ | 4.0 | 1000 | 0.3517 | 0.3233 |
325
+ | 4.4 | 1100 | 0.3232 | 0.3033 |
326
+ | 4.8 | 1200 | 0.3189 | 0.2871 |
327
+ | 5.2 | 1300 | 0.2961 | 0.2711 |
328
+ | 5.6 | 1400 | 0.2865 | 0.2597 |
329
+ | 6.0 | 1500 | 0.2715 | 0.2499 |
330
+ | 6.4 | 1600 | 0.2639 | 0.2403 |
331
+ | 6.8 | 1700 | 0.2528 | 0.2339 |
332
+ | 7.2 | 1800 | 0.2482 | 0.2277 |
333
+ | 7.6 | 1900 | 0.2406 | 0.2236 |
334
+ | 8.0 | 2000 | 0.2403 | 0.2207 |
335
+ | 8.4 | 2100 | 0.2382 | 0.2184 |
336
+ | 8.8 | 2200 | 0.2314 | 0.2166 |
337
+
338
+
339
+ ### Framework Versions
340
+ - Python: 3.11.11
341
+ - Sentence Transformers: 3.3.1
342
+ - Transformers: 4.47.1
343
+ - PyTorch: 2.5.1+cu121
344
+ - Accelerate: 1.2.1
345
+ - Datasets: 3.2.0
346
+ - Tokenizers: 0.21.0
347
+
348
+ ## Citation
349
+
350
+ ### BibTeX
351
+
352
+ #### Sentence Transformers and SoftmaxLoss
353
+ ```bibtex
354
+ @inproceedings{reimers-2019-sentence-bert,
355
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
356
+ author = "Reimers, Nils and Gurevych, Iryna",
357
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
358
+ month = "11",
359
+ year = "2019",
360
+ publisher = "Association for Computational Linguistics",
361
+ url = "https://arxiv.org/abs/1908.10084",
362
+ }
363
+ ```
364
+
365
+ <!--
366
+ ## Glossary
367
+
368
+ *Clearly define terms in order to be accessible across audiences.*
369
+ -->
370
+
371
+ <!--
372
+ ## Model Card Authors
373
+
374
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
375
+ -->
376
+
377
+ <!--
378
+ ## Model Card Contact
379
+
380
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
381
+ -->
config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "sentence-transformers/all-MiniLM-L6-v2",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 384,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 1536,
14
+ "layer_norm_eps": 1e-12,
15
+ "max_position_embeddings": 512,
16
+ "model_type": "bert",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 6,
19
+ "pad_token_id": 0,
20
+ "position_embedding_type": "absolute",
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.47.1",
23
+ "type_vocab_size": 2,
24
+ "use_cache": true,
25
+ "vocab_size": 30522
26
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.3.1",
4
+ "transformers": "4.47.1",
5
+ "pytorch": "2.5.1+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e7fc1029af341c08c324c52afe3683884714818c9bd3a57ea348bed34cc44d44
3
+ size 90864192
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 256,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": false,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "extra_special_tokens": {},
49
+ "mask_token": "[MASK]",
50
+ "max_length": 128,
51
+ "model_max_length": 256,
52
+ "never_split": null,
53
+ "pad_to_multiple_of": null,
54
+ "pad_token": "[PAD]",
55
+ "pad_token_type_id": 0,
56
+ "padding_side": "right",
57
+ "sep_token": "[SEP]",
58
+ "stride": 0,
59
+ "strip_accents": null,
60
+ "tokenize_chinese_chars": true,
61
+ "tokenizer_class": "BertTokenizer",
62
+ "truncation_side": "right",
63
+ "truncation_strategy": "longest_first",
64
+ "unk_token": "[UNK]"
65
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff