zhibinlu commited on
Commit
a308509
·
1 Parent(s): 14bd3ef

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +3 -3
README.md CHANGED
@@ -18,10 +18,10 @@ This model is a VGCN-BERT model based on [DistilBert-base-uncased](https://huggi
18
 
19
  ```python
20
  import transformers as tfr
21
- from transformers.models.vgcn_bert.modeling_graph import WordGraph,_normalize_adj
22
 
23
  tokenizer = tfr.AutoTokenizer.from_pretrained(
24
- "zhibinlu/vgcn-bert-distilbert-base-uncased"
25
  )
26
  # 1st method: Build graph using NPMI statistical method from training corpus
27
  wgraph = WordGraph(rows=train_valid_df["text"], tokenizer=tokenizer)
@@ -42,7 +42,7 @@ from transformers.models.vgcn_bert.modeling_vgcn_bert import VGCNBertModel
42
  model = VGCNBertModel.from_pretrained(
43
  "zhibinlu/vgcn-bert-distilbert-base-uncased", trust_remote_code=True,
44
  wgraphs=[wgraph.to_torch_sparse()],
45
- wgraph_id_to_tokenizer_id_maps=[wgraph.wgraph_id_to_tokenizer_id_map])
46
  )
47
  text = "Replace me by any text you'd like."
48
  encoded_input = tokenizer(text, return_tensors="pt")
 
18
 
19
  ```python
20
  import transformers as tfr
21
+ from transformers.models.vgcn_bert.modeling_graph import WordGraph
22
 
23
  tokenizer = tfr.AutoTokenizer.from_pretrained(
24
+ "zhibinlu/distilbert-base-uncased"
25
  )
26
  # 1st method: Build graph using NPMI statistical method from training corpus
27
  wgraph = WordGraph(rows=train_valid_df["text"], tokenizer=tokenizer)
 
42
  model = VGCNBertModel.from_pretrained(
43
  "zhibinlu/vgcn-bert-distilbert-base-uncased", trust_remote_code=True,
44
  wgraphs=[wgraph.to_torch_sparse()],
45
+ wgraph_id_to_tokenizer_id_maps=[wgraph.wgraph_id_to_tokenizer_id_map]
46
  )
47
  text = "Replace me by any text you'd like."
48
  encoded_input = tokenizer(text, return_tensors="pt")