|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import os |
|
import time |
|
import copy |
|
import json |
|
import pickle |
|
import psutil |
|
import PIL.Image |
|
import numpy as np |
|
import torch |
|
import dnnlib |
|
from torch_utils import misc |
|
from torch_utils import training_stats |
|
from torch_utils.ops import conv2d_gradfix |
|
from torch_utils.ops import grid_sample_gradfix |
|
|
|
import legacy |
|
from metrics import metric_main |
|
|
|
|
|
|
|
def setup_snapshot_image_grid(training_set, random_seed=0): |
|
rnd = np.random.RandomState(random_seed) |
|
gw = np.clip(7680 // training_set.image_shape[2], 7, 32) |
|
gh = np.clip(4320 // training_set.image_shape[1], 4, 32) |
|
|
|
|
|
if not training_set.has_labels: |
|
all_indices = list(range(len(training_set))) |
|
rnd.shuffle(all_indices) |
|
grid_indices = [all_indices[i % len(all_indices)] for i in range(gw * gh)] |
|
|
|
else: |
|
|
|
label_groups = dict() |
|
for idx in range(len(training_set)): |
|
label = tuple(training_set.get_details(idx).raw_label.flat[::-1]) |
|
if label not in label_groups: |
|
label_groups[label] = [] |
|
label_groups[label].append(idx) |
|
|
|
|
|
label_order = sorted(label_groups.keys()) |
|
for label in label_order: |
|
rnd.shuffle(label_groups[label]) |
|
|
|
|
|
grid_indices = [] |
|
for y in range(gh): |
|
label = label_order[y % len(label_order)] |
|
indices = label_groups[label] |
|
grid_indices += [indices[x % len(indices)] for x in range(gw)] |
|
label_groups[label] = [indices[(i + gw) % len(indices)] for i in range(len(indices))] |
|
|
|
|
|
images, labels = zip(*[training_set[i] for i in grid_indices]) |
|
return (gw, gh), np.stack(images), np.stack(labels) |
|
|
|
|
|
|
|
def save_image_grid(img, fname, drange, grid_size): |
|
lo, hi = drange |
|
img = np.asarray(img, dtype=np.float32) |
|
img = (img - lo) * (255 / (hi - lo)) |
|
img = np.rint(img).clip(0, 255).astype(np.uint8) |
|
|
|
gw, gh = grid_size |
|
_N, C, H, W = img.shape |
|
img = img.reshape(gh, gw, C, H, W) |
|
img = img.transpose(0, 3, 1, 4, 2) |
|
img = img.reshape(gh * H, gw * W, C) |
|
|
|
assert C in [1, 3] |
|
if C == 1: |
|
PIL.Image.fromarray(img[:, :, 0], 'L').save(fname) |
|
if C == 3: |
|
PIL.Image.fromarray(img, 'RGB').save(fname) |
|
|
|
|
|
|
|
def training_loop( |
|
run_dir = '.', |
|
training_set_kwargs = {}, |
|
data_loader_kwargs = {}, |
|
G_kwargs = {}, |
|
D_kwargs = {}, |
|
G_opt_kwargs = {}, |
|
D_opt_kwargs = {}, |
|
DHead_kwargs = None, |
|
GHead_kwargs = None, |
|
no_cl_on_g = False, |
|
cl_loss_weight = {}, |
|
augment_kwargs = None, |
|
loss_kwargs = {}, |
|
metrics = [], |
|
random_seed = 0, |
|
num_gpus = 1, |
|
rank = 0, |
|
batch_size = 4, |
|
batch_gpu = 4, |
|
ema_kimg = 10, |
|
ema_rampup = None, |
|
G_reg_interval = 4, |
|
D_reg_interval = 16, |
|
augment_p = 0, |
|
ada_target = None, |
|
ada_interval = 4, |
|
ada_kimg = 100, |
|
ada_linear = False, |
|
total_kimg = 25000, |
|
kimg_per_tick = 4, |
|
image_snapshot_ticks = 50, |
|
network_snapshot_ticks = 50, |
|
resume_pkl = None, |
|
cudnn_benchmark = True, |
|
allow_tf32 = False, |
|
abort_fn = None, |
|
progress_fn = None, |
|
): |
|
|
|
start_time = time.time() |
|
device = torch.device('cuda', rank) |
|
np.random.seed(random_seed * num_gpus + rank) |
|
torch.manual_seed(random_seed * num_gpus + rank) |
|
torch.backends.cudnn.benchmark = cudnn_benchmark |
|
torch.backends.cuda.matmul.allow_tf32 = allow_tf32 |
|
torch.backends.cudnn.allow_tf32 = allow_tf32 |
|
conv2d_gradfix.enabled = True |
|
grid_sample_gradfix.enabled = True |
|
__CUR_NIMG__ = torch.tensor(0, dtype=torch.long, device=device) |
|
__CUR_TICK__ = torch.tensor(0, dtype=torch.long, device=device) |
|
__BATCH_IDX__ = torch.tensor(0, dtype=torch.long, device=device) |
|
best_fid = 9999 |
|
|
|
|
|
if rank == 0: |
|
print('Loading training set...') |
|
training_set = dnnlib.util.construct_class_by_name(**training_set_kwargs) |
|
training_set_sampler = misc.InfiniteSampler(dataset=training_set, rank=rank, num_replicas=num_gpus, seed=random_seed) |
|
training_set_iterator = iter(torch.utils.data.DataLoader(dataset=training_set, sampler=training_set_sampler, batch_size=batch_size//num_gpus, **data_loader_kwargs)) |
|
if rank == 0: |
|
print() |
|
print('Num images: ', len(training_set)) |
|
print('Image shape:', training_set.image_shape) |
|
print('Label shape:', training_set.label_shape) |
|
print() |
|
|
|
|
|
if rank == 0: |
|
print('Constructing networks...') |
|
common_kwargs = dict(c_dim=training_set.label_dim, img_resolution=training_set.resolution, img_channels=training_set.num_channels) |
|
G = dnnlib.util.construct_class_by_name(**G_kwargs, **common_kwargs).train().requires_grad_(False).to(device) |
|
D = dnnlib.util.construct_class_by_name(**D_kwargs, **common_kwargs).train().requires_grad_(False).to(device) |
|
G_ema = copy.deepcopy(G).eval() |
|
|
|
|
|
DHead = dnnlib.util.construct_class_by_name(**DHead_kwargs).train().to(device) if DHead_kwargs is not None else None |
|
GHead = dnnlib.util.construct_class_by_name(**GHead_kwargs).train().to(device) if GHead_kwargs is not None else None |
|
D_ema = copy.deepcopy(D).eval() |
|
|
|
|
|
if rank == 0: |
|
print('Setting up augmentation...') |
|
augment_pipe = None |
|
ada_stats = None |
|
if (augment_kwargs is not None) and (augment_p > 0 or ada_target is not None): |
|
augment_pipe = dnnlib.util.construct_class_by_name(**augment_kwargs).train().requires_grad_(False).to( |
|
device) |
|
augment_pipe.p = augment_p |
|
if ada_target is not None: |
|
ada_stats = training_stats.Collector(regex='Loss/signs/real') |
|
|
|
|
|
ckpt_pkl = None |
|
if os.path.isfile(misc.get_ckpt_path(run_dir)): |
|
ckpt_pkl = resume_pkl = misc.get_ckpt_path(run_dir) |
|
|
|
|
|
if (resume_pkl is not None) and (rank == 0): |
|
print(f'Resuming from "{resume_pkl}"') |
|
with dnnlib.util.open_url(resume_pkl) as f: |
|
resume_data = legacy.load_network_pkl(f) |
|
for name, module in [('G', G), ('D', D), ('G_ema', G_ema), ('D_ema', D_ema), ('DHead', DHead), ('GHead', GHead)]: |
|
if module is None: |
|
continue |
|
misc.copy_params_and_buffers(resume_data[name], module, require_all=False) |
|
|
|
__CUR_NIMG__ = resume_data['progress']['cur_nimg'].to(device) |
|
__CUR_TICK__ = resume_data['progress']['cur_tick'].to(device) |
|
__BATCH_IDX__ = resume_data['progress']['batch_idx'].to(device) |
|
best_fid = resume_data['progress']['best_fid'] |
|
augment_pipe.p = float(resume_data['progress']['cur_p'][0]) |
|
|
|
del resume_data |
|
|
|
|
|
if rank == 0: |
|
z = torch.empty([batch_gpu, G.z_dim], device=device) |
|
c = torch.empty([batch_gpu, G.c_dim], device=device) |
|
img = misc.print_module_summary(G, [z, c]) |
|
t = torch.empty([batch_gpu, D.t_dim], device=device) |
|
misc.print_module_summary(D, [img, c, t]) |
|
|
|
|
|
if rank == 0: |
|
print(f'Distributing across {num_gpus} GPUs...') |
|
ddp_modules = dict() |
|
for name, module in [('G_mapping', G.mapping), ('G_synthesis', G.synthesis), ('D', D), (None, G_ema), ('augment_pipe', augment_pipe), (None, D_ema)]: |
|
if (num_gpus > 1) and (module is not None) and len(list(module.parameters())) != 0: |
|
module.requires_grad_(True) |
|
module = torch.nn.parallel.DistributedDataParallel(module, device_ids=[device], broadcast_buffers=False) |
|
module.requires_grad_(False) |
|
if name is not None: |
|
ddp_modules[name] = module |
|
|
|
|
|
if rank == 0: |
|
print(f'Distributing Contrastive Heads across {num_gpus} GPUS...') |
|
if num_gpus > 1: |
|
if DHead is not None: |
|
DHead = torch.nn.parallel.DistributedDataParallel(DHead, device_ids=[device], broadcast_buffers=True) |
|
if GHead is not None: |
|
GHead = torch.nn.parallel.DistributedDataParallel(GHead, device_ids=[device], broadcast_buffers=True) |
|
|
|
|
|
if rank == 0: |
|
print('Setting up training phases...') |
|
loss = dnnlib.util.construct_class_by_name(device=device, **ddp_modules, **loss_kwargs) |
|
phases = [] |
|
for name, module, opt_kwargs, reg_interval in [('G', G, G_opt_kwargs, G_reg_interval), ('D', D, D_opt_kwargs, D_reg_interval)]: |
|
if reg_interval is None: |
|
opt = dnnlib.util.construct_class_by_name(params=module.parameters(), **opt_kwargs) |
|
phases += [dnnlib.EasyDict(name=name+'both', module=module, opt=opt, interval=1)] |
|
else: |
|
mb_ratio = reg_interval / (reg_interval + 1) |
|
opt_kwargs = dnnlib.EasyDict(opt_kwargs) |
|
opt_kwargs.lr = opt_kwargs.lr * mb_ratio |
|
opt_kwargs.betas = [beta ** mb_ratio for beta in opt_kwargs.betas] |
|
opt = dnnlib.util.construct_class_by_name(module.parameters(), **opt_kwargs) |
|
phases += [dnnlib.EasyDict(name=name+'main', module=module, opt=opt, interval=1)] |
|
phases += [dnnlib.EasyDict(name=name+'reg', module=module, opt=opt, interval=reg_interval)] |
|
for phase in phases: |
|
phase.start_event = None |
|
phase.end_event = None |
|
if rank == 0: |
|
phase.start_event = torch.cuda.Event(enable_timing=True) |
|
phase.end_event = torch.cuda.Event(enable_timing=True) |
|
|
|
|
|
if rank == 0: |
|
print('Setting up contrastive training phases...') |
|
cl_phases = dict() |
|
for name, module, opt_kwargs, reg_interval in [('GHead', GHead, G_opt_kwargs, G_reg_interval), ('DHead', DHead, D_opt_kwargs, D_reg_interval)]: |
|
if module is None: |
|
continue |
|
assert (reg_interval is not None) |
|
|
|
mb_ratio = reg_interval / (reg_interval + 1) |
|
opt_kwargs = dnnlib.EasyDict(opt_kwargs) |
|
opt_kwargs.lr = opt_kwargs.lr * mb_ratio |
|
opt_kwargs.betas = [beta ** mb_ratio for beta in opt_kwargs.betas] |
|
opt = dnnlib.util.construct_class_by_name(module.parameters(), **opt_kwargs) |
|
cl_phases.update({name+'main': dnnlib.EasyDict(name=name+'main', module=module, opt=opt, interval=1)}) |
|
|
|
|
|
grid_size = None |
|
grid_z = None |
|
grid_c = None |
|
if rank == 0: |
|
print('Exporting sample images...') |
|
grid_size, images, labels = setup_snapshot_image_grid(training_set=training_set) |
|
save_image_grid(images, os.path.join(run_dir, 'reals.png'), drange=[0,255], grid_size=grid_size) |
|
grid_z = torch.randn([labels.shape[0], G.z_dim], device=device).split(batch_gpu) |
|
grid_c = torch.from_numpy(labels).to(device).split(batch_gpu) |
|
images = torch.cat([G_ema(z=z, c=c, noise_mode='const').cpu() for z, c in zip(grid_z, grid_c)]).numpy() |
|
save_image_grid(images, os.path.join(run_dir, 'fakes_init.png'), drange=[-1,1], grid_size=grid_size) |
|
|
|
|
|
if rank == 0: |
|
print('Initializing logs...') |
|
stats_collector = training_stats.Collector(regex='.*') |
|
stats_metrics = dict() |
|
stats_jsonl = None |
|
stats_tfevents = None |
|
if rank == 0: |
|
stats_jsonl = open(os.path.join(run_dir, 'stats.jsonl'), 'wt') |
|
try: |
|
import torch.utils.tensorboard as tensorboard |
|
stats_tfevents = tensorboard.SummaryWriter(run_dir) |
|
except ImportError as err: |
|
print('Skipping tfevents export:', err) |
|
|
|
|
|
if rank == 0: |
|
print(f'Training for {total_kimg} kimg...') |
|
print() |
|
if num_gpus > 1: |
|
torch.distributed.broadcast(__CUR_NIMG__, 0) |
|
torch.distributed.broadcast(__CUR_TICK__, 0) |
|
torch.distributed.broadcast(__BATCH_IDX__, 0) |
|
torch.distributed.barrier() |
|
cur_nimg = __CUR_NIMG__.item() |
|
cur_tick = __CUR_TICK__.item() |
|
tick_start_nimg = cur_nimg |
|
tick_start_time = time.time() |
|
maintenance_time = tick_start_time - start_time |
|
batch_idx = 0 |
|
if progress_fn is not None: |
|
progress_fn(0, total_kimg) |
|
while True: |
|
|
|
|
|
with torch.autograd.profiler.record_function('data_fetch'): |
|
phase_real_img, phase_real_c = next(training_set_iterator) |
|
phase_real_img = (phase_real_img.to(device).to(torch.float32) / 127.5 - 1).split(batch_gpu) |
|
phase_real_c = phase_real_c.to(device).split(batch_gpu) |
|
all_gen_z = torch.randn([len(phases) * batch_size, G.z_dim], device=device) |
|
all_gen_z = [phase_gen_z.split(batch_gpu) for phase_gen_z in all_gen_z.split(batch_size)] |
|
all_gen_c = [training_set.get_label(np.random.randint(len(training_set))) for _ in range(len(phases) * batch_size)] |
|
all_gen_c = torch.from_numpy(np.stack(all_gen_c)).pin_memory().to(device) |
|
all_gen_c = [phase_gen_c.split(batch_gpu) for phase_gen_c in all_gen_c.split(batch_size)] |
|
|
|
|
|
with torch.autograd.profiler.record_function('Dema'): |
|
momentum = 0.999 if DHead_kwargs is None else DHead_kwargs.momentum |
|
for p_ema, p in zip(D_ema.parameters(), D.parameters()): |
|
p_ema.data = p_ema.data * momentum + p.data * (1. - momentum) |
|
|
|
|
|
for phase, phase_gen_z, phase_gen_c in zip(phases, all_gen_z, all_gen_c): |
|
if batch_idx % phase.interval != 0: |
|
continue |
|
|
|
|
|
if phase.start_event is not None: |
|
phase.start_event.record(torch.cuda.current_stream(device)) |
|
phase.opt.zero_grad(set_to_none=True) |
|
phase.module.requires_grad_(True) |
|
|
|
|
|
for round_idx, (real_img, real_c, gen_z, gen_c) in enumerate(zip(phase_real_img, phase_real_c, phase_gen_z, phase_gen_c)): |
|
sync = (round_idx == batch_size // (batch_gpu * num_gpus) - 1) |
|
gain = phase.interval |
|
loss.accumulate_gradients(phase=phase.name, real_img=real_img, real_c=real_c, gen_z=gen_z, gen_c=gen_c, sync=sync, gain=gain, cl_phases=cl_phases, D_ema=D_ema, g_fake_cl=not no_cl_on_g, **cl_loss_weight) |
|
|
|
|
|
phase.module.requires_grad_(False) |
|
with torch.autograd.profiler.record_function(phase.name + '_opt'): |
|
for param in phase.module.parameters(): |
|
if param.grad is not None: |
|
misc.nan_to_num(param.grad, nan=0, posinf=1e5, neginf=-1e5, out=param.grad) |
|
phase.opt.step() |
|
if phase.end_event is not None: |
|
phase.end_event.record(torch.cuda.current_stream(device)) |
|
|
|
|
|
with torch.autograd.profiler.record_function('Gema'): |
|
ema_nimg = ema_kimg * 1000 |
|
if ema_rampup is not None: |
|
ema_nimg = min(ema_nimg, cur_nimg * ema_rampup) |
|
ema_beta = 0.5 ** (batch_size / max(ema_nimg, 1e-8)) |
|
for p_ema, p in zip(G_ema.parameters(), G.parameters()): |
|
p_ema.copy_(p.lerp(p_ema, ema_beta)) |
|
for b_ema, b in zip(G_ema.buffers(), G.buffers()): |
|
b_ema.copy_(b) |
|
|
|
|
|
cur_nimg += batch_size |
|
batch_idx += 1 |
|
|
|
|
|
if (ada_stats is not None) and (batch_idx % ada_interval == 0): |
|
ada_stats.update() |
|
adjust = np.sign(ada_stats['Loss/signs/real'] - ada_target) * (batch_size * ada_interval) / (ada_kimg * 1000) |
|
augment_pipe.p = (augment_pipe.p + adjust).clip(min=0., max=1.) |
|
|
|
augment_pipe.update_T() |
|
|
|
|
|
done = (cur_nimg >= total_kimg * 1000) |
|
if (not done) and (cur_tick != 0) and (cur_nimg < tick_start_nimg + kimg_per_tick * 1000): |
|
continue |
|
|
|
|
|
tick_end_time = time.time() |
|
fields = [] |
|
fields += [f"tick {training_stats.report0('Progress/tick', cur_tick):<5d}"] |
|
fields += [f"kimg {training_stats.report0('Progress/kimg', cur_nimg / 1e3):<8.1f}"] |
|
fields += [f"time {dnnlib.util.format_time(training_stats.report0('Timing/total_sec', tick_end_time - start_time)):<12s}"] |
|
fields += [f"sec/tick {training_stats.report0('Timing/sec_per_tick', tick_end_time - tick_start_time):<7.1f}"] |
|
fields += [f"sec/kimg {training_stats.report0('Timing/sec_per_kimg', (tick_end_time - tick_start_time) / (cur_nimg - tick_start_nimg) * 1e3):<7.2f}"] |
|
fields += [f"maintenance {training_stats.report0('Timing/maintenance_sec', maintenance_time):<6.1f}"] |
|
fields += [f"cpumem {training_stats.report0('Resources/cpu_mem_gb', psutil.Process(os.getpid()).memory_info().rss / 2**30):<6.2f}"] |
|
fields += [f"gpumem {training_stats.report0('Resources/peak_gpu_mem_gb', torch.cuda.max_memory_allocated(device) / 2**30):<6.2f}"] |
|
torch.cuda.reset_peak_memory_stats() |
|
fields += [f"augment {training_stats.report0('Progress/augment', float(augment_pipe.p) if augment_pipe is not None else 0):.3f}"] |
|
fields += [f"T {training_stats.report0('Progress/augment_T', float(augment_pipe.num_timesteps) if augment_pipe is not None else 0)}"] |
|
training_stats.report0('Timing/total_hours', (tick_end_time - start_time) / (60 * 60)) |
|
training_stats.report0('Timing/total_days', (tick_end_time - start_time) / (24 * 60 * 60)) |
|
if rank == 0: |
|
print(' '.join(fields)) |
|
|
|
|
|
if (not done) and (abort_fn is not None) and abort_fn(): |
|
done = True |
|
if rank == 0: |
|
print() |
|
print('Aborting...') |
|
|
|
|
|
if (rank == 0) and (image_snapshot_ticks is not None) and (done or cur_tick % image_snapshot_ticks == 0): |
|
images = torch.cat([G_ema(z=z, c=c, noise_mode='const').cpu() for z, c in zip(grid_z, grid_c)]).numpy() |
|
save_image_grid(images, os.path.join(run_dir, f'fakes{cur_nimg//1000:06d}.png'), drange=[-1,1], grid_size=grid_size) |
|
|
|
|
|
snapshot_pkl = None |
|
snapshot_data = None |
|
if (network_snapshot_ticks is not None) and (done or cur_tick % network_snapshot_ticks == 0): |
|
snapshot_data = dict(training_set_kwargs=dict(training_set_kwargs)) |
|
for name, module in [('G', G), ('D', D), ('G_ema', G_ema), ('augment_pipe', augment_pipe), ('D_ema', D_ema), ('DHead', DHead), ('GHead', GHead)]: |
|
if module is not None: |
|
if num_gpus > 1: |
|
misc.check_ddp_consistency(module, ignore_regex=r'.*\.w_avg') |
|
module = copy.deepcopy(module).eval().requires_grad_(False).cpu() |
|
snapshot_data[name] = module |
|
del module |
|
|
|
|
|
if (rank == 0) and (network_snapshot_ticks is not None) and ( |
|
done or cur_tick % network_snapshot_ticks == 0): |
|
snapshot_pkl = misc.get_ckpt_path(run_dir) |
|
|
|
snapshot_data['progress'] = { |
|
'cur_nimg': torch.LongTensor([cur_nimg]), |
|
'cur_tick': torch.LongTensor([cur_tick]), |
|
'cur_p': torch.FloatTensor([augment_pipe.p]), |
|
'batch_idx': torch.LongTensor([batch_idx]), |
|
'best_fid': best_fid, |
|
} |
|
if hasattr(loss, 'pl_mean'): |
|
snapshot_data['progress']['pl_mean'] = loss.pl_mean.cpu() |
|
|
|
with open(snapshot_pkl, 'wb') as f: |
|
pickle.dump(snapshot_data, f) |
|
|
|
|
|
if (snapshot_data is not None) and (len(metrics) > 0): |
|
if rank == 0: |
|
print('Evaluating metrics...') |
|
for metric in metrics: |
|
result_dict = metric_main.calc_metric(metric=metric, G=snapshot_data['G_ema'], |
|
dataset_kwargs=training_set_kwargs, num_gpus=num_gpus, |
|
rank=rank, device=device) |
|
if rank == 0: |
|
metric_main.report_metric(result_dict, run_dir=run_dir, snapshot_pkl=snapshot_pkl) |
|
stats_metrics.update(result_dict.results) |
|
|
|
|
|
snapshot_pkl = os.path.join(run_dir, f'best_model.pkl') |
|
cur_nimg_txt = os.path.join(run_dir, f'best_nimg.txt') |
|
if rank == 0: |
|
if 'fid50k_full' in stats_metrics and stats_metrics['fid50k_full'] < best_fid: |
|
best_fid = stats_metrics['fid50k_full'] |
|
|
|
with open(snapshot_pkl, 'wb') as f: |
|
pickle.dump(snapshot_data, f) |
|
|
|
with open(cur_nimg_txt, 'w') as f: |
|
f.write(f"nimg: {cur_nimg} best_fid: {best_fid}") |
|
del snapshot_data |
|
|
|
|
|
for phase in phases: |
|
value = [] |
|
if (phase.start_event is not None) and (phase.end_event is not None): |
|
phase.end_event.synchronize() |
|
value = phase.start_event.elapsed_time(phase.end_event) |
|
training_stats.report0('Timing/' + phase.name, value) |
|
stats_collector.update() |
|
stats_dict = stats_collector.as_dict() |
|
|
|
|
|
timestamp = time.time() |
|
if stats_jsonl is not None: |
|
fields = dict(stats_dict, timestamp=timestamp) |
|
stats_jsonl.write(json.dumps(fields) + '\n') |
|
stats_jsonl.flush() |
|
if stats_tfevents is not None: |
|
global_step = int(cur_nimg / 1e3) |
|
walltime = timestamp - start_time |
|
for name, value in stats_dict.items(): |
|
stats_tfevents.add_scalar(name, value.mean, global_step=global_step, walltime=walltime) |
|
for name, value in stats_metrics.items(): |
|
stats_tfevents.add_scalar(f'Metrics/{name}', value, global_step=global_step, walltime=walltime) |
|
stats_tfevents.flush() |
|
if progress_fn is not None: |
|
progress_fn(cur_nimg // 1000, total_kimg) |
|
|
|
|
|
cur_tick += 1 |
|
tick_start_nimg = cur_nimg |
|
tick_start_time = time.time() |
|
maintenance_time = tick_start_time - tick_end_time |
|
if done: |
|
break |
|
|
|
|
|
if rank == 0: |
|
print() |
|
print('Exiting...') |
|
|
|
|
|
|