faen_resnet_model / modeling_resnet.py
zhangfaen's picture
Upload folder using huggingface_hub
4e86085 verified
from transformers import PreTrainedModel
from timm.models.resnet import BasicBlock, Bottleneck, ResNet
# NOTE: below line must use relative import, as this file and configuration_resnet.py will be downloaded into a directory.
# NOTE: export_files_for_hf.py etc must put outside of dir of this file. otherwise, when run 'python export_files_for_hf.py', will get error: ImportError: attempted relative import with no known parent package.
# Note: for why, see https://github.com/zhangfaen/python-pytorch-tips/blob/main/relative_import_key_tips.md
from .configuration_resnet import ResnetConfig
import torch
BLOCK_MAPPING = {"basic": BasicBlock, "bottleneck": Bottleneck}
class ResnetModel(PreTrainedModel):
config_class = ResnetConfig
def __init__(self, config):
super().__init__(config)
block_layer = BLOCK_MAPPING[config.block_type]
self.model = ResNet(
block_layer,
config.layers,
num_classes=config.num_classes,
in_chans=config.input_channels,
cardinality=config.cardinality,
base_width=config.base_width,
stem_width=config.stem_width,
stem_type=config.stem_type,
avg_down=config.avg_down,
)
def forward(self, tensor):
return self.model.forward_features(tensor)
class ResnetModelForImageClassification(PreTrainedModel):
config_class = ResnetConfig
def __init__(self, config):
super().__init__(config)
block_layer = BLOCK_MAPPING[config.block_type]
self.model = ResNet(
block_layer,
config.layers,
num_classes=config.num_classes,
in_chans=config.input_channels,
cardinality=config.cardinality,
base_width=config.base_width,
stem_width=config.stem_width,
stem_type=config.stem_type,
avg_down=config.avg_down,
)
def forward(self, tensor, labels=None):
logits = self.model(tensor)
if labels is not None:
loss = torch.nn.cross_entropy(logits, labels)
return {"loss": loss, "logits": logits}
return {"logits": logits}