--- library_name: diffusers pipeline_tag: image-to-image license: mit --- ## EQ-VAE: Equivariance Regularized Latent Space for Improved Generative Image Modeling **EQ-VAE** regularizes the latent space of pretrained autoencoders by enforcing equivariance under scaling and rotation transformations. Project page: https://eq-vae.github.io/. --- #### Model Description This model is a regularized version of [SD-VAE](https://github.com/CompVis/latent-diffusion). We finetune it with EQ-VAE regularization for 5 epochs on OpenImages. ## Model Usage 2. **Loading the Model** You can load the model from the Hugging Face Hub: ```python from transformers import AutoencoderKL model = AutoencoderKL.from_pretrained("zelaki/eq-vae") #### Metrics Reconstruction performance of eq-vae-ema on Imagenet Validation Set. | **Metric** | **Score** | |------------|-----------| | **FID** | 0.82 | | **PSNR** | 25.95 | | **LPIPS** | 0.141 | | **SSIM** | 0.72 | ---