--- library_name: diffusers --- ## EQ-VAE: Equivariance Regularized Latent Space for Improved Generative Image Modeling Arxiv: https://arxiv.org/abs/2502.09509
**EQ-VAE** regularizes the latent space of pretrained autoencoders by enforcing equivariance under scaling and rotation transformations. --- #### Model Description This model is a regularized version of [SD-VAE](https://github.com/CompVis/latent-diffusion). We finetune it with EQ-VAE regularization for 44 epochs on Imagenet with EMA weights. ## Model Usage 2. **Loading the Model** You can load the model from the Hugging Face Hub: ```python from transformers import AutoencoderKL model = AutoencoderKL.from_pretrained("zelaki/eq-vae-ema") #### Metrics Reconstruction performance of eq-vae-ema on Imagenet Validation Set. | **Metric** | **Score** | |------------|-----------| | **FID** | 0.552 | | **PSNR** | 26.158 | | **LPIPS** | 0.133 | | **SSIM** | 0.725 | ---