|
|
|
|
|
|
|
|
|
import math |
|
import warnings |
|
from typing import Optional, Tuple |
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from einops import rearrange |
|
|
|
from fla.modules.activations import ACT2FN |
|
from fla.utils import checkpoint |
|
|
|
try: |
|
from causal_conv1d import causal_conv1d_fn, causal_conv1d_update |
|
except ImportError: |
|
causal_conv1d_fn = None |
|
causal_conv1d_update = None |
|
|
|
|
|
def fft_conv(u, k, dropout_mask, gelu=True, k_rev=None): |
|
seqlen = u.shape[-1] |
|
fft_size = 2 * seqlen |
|
k_f = torch.fft.rfft(k, n=fft_size) / fft_size |
|
if k_rev is not None: |
|
k_rev_f = torch.fft.rfft(k_rev, n=fft_size) / fft_size |
|
k_f = k_f + k_rev_f.conj() |
|
u_f = torch.fft.rfft(u.to(dtype=k.dtype), n=fft_size) |
|
|
|
if len(u.shape) > 3: |
|
k_f = k_f.unsqueeze(1) |
|
y = torch.fft.irfft(u_f * k_f, n=fft_size, norm="forward")[..., :seqlen] |
|
|
|
out = y + u |
|
if gelu: |
|
out = F.gelu(out) |
|
if dropout_mask is not None: |
|
return (out * rearrange(dropout_mask, "b H -> b H 1")).to(dtype=u.dtype) |
|
else: |
|
return out.to(dtype=u.dtype) |
|
|
|
|
|
@checkpoint |
|
def proj_then_conv1d( |
|
x: torch.Tensor, |
|
proj_weight: torch.Tensor, |
|
conv1d_weight: torch.Tensor, |
|
conv1d_bias: Optional[torch.Tensor] = None, |
|
cache: Optional[torch.Tensor] = None |
|
) -> torch.Tensor: |
|
|
|
x = rearrange(proj_weight @ rearrange(x, "b t d -> d (b t)"), "d (b t) -> b d t", t=x.shape[-2]) |
|
|
|
if causal_conv1d_fn is None: |
|
raise ImportError("`causal_conv1d_fn` is not available. Please install `causal-conv1d` first.") |
|
if cache is None: |
|
x = causal_conv1d_fn( |
|
x=x, |
|
weight=rearrange(conv1d_weight, "d 1 w -> d w"), |
|
bias=conv1d_bias, |
|
activation="silu", |
|
).transpose(1, 2) |
|
else: |
|
assert x.shape[-1] == 1, "Only support decoding with 1 token at a time for now" |
|
x = x.squeeze(-1) |
|
x = causal_conv1d_update( |
|
x=x, |
|
weight=rearrange(conv1d_weight, "d 1 w -> d w"), |
|
bias=conv1d_bias, |
|
cache=cache, |
|
activation="silu", |
|
) |
|
return x |
|
|
|
|
|
class ShortConvolution(nn.Conv1d): |
|
""" |
|
Simple wrapper around `nn.Conv1d` that accepts dimension last. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
hidden_size: int, |
|
kernel_size: int, |
|
bias: bool = False, |
|
activation: Optional[str] = 'silu', |
|
use_fast_conv1d: Optional[bool] = True |
|
): |
|
super().__init__( |
|
in_channels=hidden_size, |
|
out_channels=hidden_size, |
|
kernel_size=kernel_size, |
|
groups=hidden_size, |
|
bias=bias, |
|
padding=kernel_size - 1 |
|
) |
|
|
|
self.hidden_size = hidden_size |
|
self.activation = None |
|
if activation is not None: |
|
assert activation in ['silu', 'swish'], f"Activation `{activation}` not supported yet." |
|
self.activation = activation |
|
|
|
if causal_conv1d_fn is None: |
|
if use_fast_conv1d: |
|
raise RuntimeError( |
|
"Please either install `causal-conv1d>=1.4.0` to enable fast causal short convolution CUDA kernel " |
|
"or set `use_fast_conv1d` to False" |
|
) |
|
else: |
|
warnings.warn( |
|
"The naive Pytorch verison is very slow in practice, " |
|
"please run `pip install causal-conv1d>=1.4.0` to install fast causal short convolution CUDA kernel", |
|
category=ImportWarning |
|
) |
|
self.use_fast_conv1d = use_fast_conv1d |
|
|
|
def extra_repr(self): |
|
s = ('{in_channels}, {out_channels}, kernel_size={kernel_size}' |
|
', stride={stride}') |
|
if self.padding != (0,) * len(self.padding): |
|
s += ', padding={padding}' |
|
if self.dilation != (1,) * len(self.dilation): |
|
s += ', dilation={dilation}' |
|
if self.output_padding != (0,) * len(self.output_padding): |
|
s += ', output_padding={output_padding}' |
|
if self.groups != 1: |
|
s += ', groups={groups}' |
|
if self.bias is None: |
|
s += ', bias=False' |
|
if self.padding_mode != 'zeros': |
|
s += ', padding_mode={padding_mode}' |
|
if self.activation is not None: |
|
s += ', activation={activation}' |
|
if not self.use_fast_conv1d: |
|
s += ', use_fast_conv1d={use_fast_conv1d}' |
|
return s.format(**self.__dict__) |
|
|
|
def forward( |
|
self, |
|
x: torch.Tensor, |
|
mask: Optional[torch.Tensor] = None, |
|
cache: Optional[torch.Tensor] = None, |
|
output_final_state: bool = False |
|
) -> Tuple[torch.Tensor, torch.Tensor]: |
|
""" |
|
Args: |
|
x (`torch.Tensor`): |
|
Tensor of shape `[batch_size, seq_len, hidden_size]` |
|
mask (`Optional[torch.Tensor]`): |
|
Attention mask dealing with padded positions. |
|
cache (`Optional[torch.Tensor]`): |
|
Previous cache tensor of shape `[batch_size, hidden_size, kernel_size]`. |
|
If provided, the cache is updated **inplace**. |
|
output_final_state (Optional[bool]): |
|
Whether to output the final state of shape `[batch_size, hidden_size, kernel_size]`. Default: `False`. |
|
Returns: |
|
Tensor of shape `[batch_size, seq_len, hidden_size]`. |
|
""" |
|
|
|
batch_size, _, hidden_size = x.shape |
|
if mask is not None: |
|
x = x.mul_(mask.unsqueeze(-1)) |
|
if output_final_state and cache is None: |
|
cache = x.new_zeros(batch_size, hidden_size, self.kernel_size[0]) |
|
if cache is not None and x.shape[1] == 1: |
|
return self.step(x, cache) |
|
x = rearrange(x, "b t d -> b d t") |
|
|
|
if cache is not None: |
|
cache.copy_(F.pad(x, (self.kernel_size[0] - x.shape[-1], 0))) |
|
if self.use_fast_conv1d: |
|
x = causal_conv1d_fn( |
|
x=x, |
|
weight=rearrange(self.weight, "d 1 w -> d w"), |
|
bias=self.bias, |
|
activation=self.activation, |
|
) |
|
else: |
|
x = self._conv_forward(x, self.weight, self.bias)[..., :x.shape[-1]] |
|
if self.activation is not None: |
|
x = ACT2FN[self.activation](x) |
|
return rearrange(x, "b d t -> b t d"), cache |
|
|
|
def step( |
|
self, |
|
x: torch.Tensor, |
|
cache: torch.Tensor |
|
): |
|
assert x.shape[1] == 1, "Only support decoding with 1 token at a time for now" |
|
|
|
x = x.squeeze(1) |
|
if self.use_fast_conv1d: |
|
x = causal_conv1d_update( |
|
x=x, |
|
conv_state=cache, |
|
weight=rearrange(self.weight, "d 1 w -> d w"), |
|
bias=self.bias, |
|
activation=self.activation, |
|
) |
|
else: |
|
dtype = x.dtype |
|
cache.copy_(torch.roll(cache, shifts=-1, dims=-1)) |
|
cache[:, :, -1] = x |
|
x = torch.sum(cache * rearrange(self.weight, "d 1 w -> d w"), dim=-1) |
|
if self.bias is not None: |
|
x = x + self.bias |
|
if self.activation is not None: |
|
x = ACT2FN[self.activation](x).to(dtype=dtype) |
|
return x.unsqueeze(1), cache |
|
|
|
@property |
|
def state_size(self) -> int: |
|
return self.hidden_size * self.kernel_size |
|
|
|
|
|
class LongConvolution(nn.Module): |
|
""" |
|
LongConvolution applies a convolution operation on the input tensor using a fixed |
|
filter of length max_len. |
|
The filter is learned during training and is applied using FFT convolution. |
|
Args: |
|
hidden_size (int): The number of expected features in the input and output. |
|
max_len (int): The maximum sequence length. |
|
Returns: |
|
y: [batch_size, seq_len, hidden_size] tensor |
|
""" |
|
|
|
def __init__( |
|
self, |
|
hidden_size: int, |
|
max_len: int, |
|
**kwargs, |
|
): |
|
""" |
|
Initializes the LongConvolution module. |
|
Args: |
|
hidden_size (int): The number of expected features in the input and output. |
|
max_len (int): The maximum sequence length. |
|
""" |
|
super().__init__() |
|
self.hidden_size = hidden_size |
|
self.filter = nn.Parameter(torch.randn(self.hidden_size, max_len), requires_grad=True) |
|
|
|
def forward(self, x: torch.Tensor, *args, **kwargs): |
|
""" |
|
Applies the LongConvolution operation on the input tensor. |
|
Args: |
|
x: [batch_size, seq_len, hidden_size] tensor |
|
Returns: |
|
y: [batch_size, seq_len, hidden_size] tensor |
|
""" |
|
x = x.transpose(1, 2) |
|
y = fft_conv(x, self.filter, dropout_mask=None, gelu=False) |
|
y = y.transpose(1, 2) |
|
return y.to(dtype=x.dtype) |
|
|
|
|
|
class PositionalEmbedding(nn.Module): |
|
def __init__(self, emb_dim: int, seq_len: int, **kwargs): |
|
"""Complex exponential positional embeddings for implicit long convolution filters.""" |
|
super().__init__() |
|
|
|
self.seq_len = seq_len |
|
|
|
t = torch.linspace(0, 1, self.seq_len)[None, :, None] |
|
|
|
if emb_dim > 1: |
|
bands = (emb_dim - 1) // 2 |
|
|
|
t_rescaled = torch.linspace(0, seq_len - 1, seq_len)[None, :, None] |
|
w = 2 * math.pi * t_rescaled / seq_len |
|
|
|
f = torch.linspace(1e-4, bands - 1, bands)[None, None] |
|
z = torch.exp(-1j * f * w) |
|
z = torch.cat([t, z.real, z.imag], dim=-1) |
|
self.z = nn.Parameter(z, requires_grad=False) |
|
|
|
def forward(self, L): |
|
return self.z[:, :L] |
|
|
|
|
|
class ImplicitLongConvolution(nn.Module): |
|
""" |
|
Long convolution with implicit filter parameterized by an MLP. |
|
|
|
Args: |
|
hidden_size (int): |
|
The number of expected features in the input and output. |
|
max_len (int): |
|
The maximum sequence length. |
|
d_emb (Optional[int]): |
|
The dimension of the positional embeddings. Must be odd and greater or equal to 3 (time, sine and cosine). |
|
Defaults to 3. |
|
d_hidden (Optional[int]): |
|
The number of features in the hidden layer of the MLP. Defaults to 16. |
|
|
|
Attributes: |
|
pos_emb (`PositionalEmbedding`): The positional embedding layer. |
|
mlp (`nn.Sequential`): The MLP that parameterizes the implicit filter. |
|
|
|
""" |
|
|
|
def __init__( |
|
self, |
|
hidden_size: int, |
|
max_len: int, |
|
d_emb: int = 3, |
|
d_hidden: int = 16, |
|
**kwargs, |
|
): |
|
""" |
|
Long convolution with implicit filter parameterized by an MLP. |
|
|
|
|
|
""" |
|
super().__init__() |
|
self.hidden_size = hidden_size |
|
self.d_emb = d_emb |
|
|
|
assert ( |
|
d_emb % 2 != 0 and d_emb >= 3 |
|
), "d_emb must be odd and greater or equal to 3 (time, sine and cosine)" |
|
self.pos_emb = PositionalEmbedding(d_emb, max_len) |
|
|
|
|
|
self.mlp = nn.Sequential( |
|
nn.Linear(d_emb, d_hidden), |
|
torch.nn.ReLU(), |
|
nn.Linear(d_hidden, hidden_size), |
|
) |
|
|
|
def filter(self, seq_len: int, *args, **kwargs): |
|
k = self.mlp(self.pos_emb(seq_len)) |
|
|
|
return k.transpose(1, 2) |
|
|
|
def forward(self, x: torch.Tensor, *args, **kwargs): |
|
""" |
|
Args: |
|
x: [batch_size, seq_len, hidden_size] tensor |
|
Returns: |
|
y: [batch_size, seq_len, hidden_size] tensor |
|
""" |
|
x = x.transpose(1, 2) |
|
k = self.filter(x.shape[-1]) |
|
y = fft_conv(x, k, dropout_mask=None, gelu=False) |
|
|
|
y = y.transpose(1, 2) |
|
return y.to(dtype=x.dtype) |
|
|