# -*- coding: utf-8 -*- import torch from einops import rearrange def torch_simple_gla(q, k, v, g, chunk_size=64, scale=None): if scale is None: scale = (q.shape[-1] ** -0.5) q = rearrange(q, 'b h (n c) d -> b h n c d', c=chunk_size) * scale k = rearrange(k, 'b h (n c) d -> b h n c d', c=chunk_size) v = rearrange(v, 'b h (n c) d -> b h n c d', c=chunk_size) g = rearrange(g, 'b h (n c) -> b h n c', c=chunk_size) g = g.cumsum(-1) kv = k.transpose(-1, -2) @ (v * (-g + g[:, :, :, -1, None]).exp()[..., None]) S = torch.zeros_like(kv) for i in range(1, g.shape[-2]): S[:, :, i] = S[:, :, i-1].clone() * g[:, :, i-1, -1, None, None].exp() + kv[:, :, i-1] inter = (q * g[..., None].exp()) @ S attn = q @ k.transpose(-1, -2) attn = attn * (g[..., None] - g[..., None, :]).exp() attn = attn.masked_fill(torch.triu(torch.ones(chunk_size, chunk_size, dtype=bool, device=q.device), diagonal=1), 0) intra = attn @ v o = inter + intra return rearrange(o, 'b h n c d -> b h (n c) d') def torch_simple_gla_recurrent(q, k, v, g, scale=None, initial_state=None, output_final_state=True): B, H, T, DK = q.shape original_dtype = q.dtype q, k, v, g = q.float(), k.float(), v.float(), g.float() if scale is None: scale = DK ** -0.5 q = q * scale _, _, _, DV = v.shape if initial_state is None: S = torch.zeros(B, H, DK, DV) else: S = initial_state o = torch.zeros(B, H, T, DV).to(q) for i in range(T): gate = g[:, :, i].exp() key = k[:, :, i] value = v[:, :, i] kv = key.unsqueeze(-1) * value.unsqueeze(-2) S = S.clone() * gate.unsqueeze(-1).unsqueeze(-1) + kv q_i = q[:, :, i, :] o_i = (q_i.unsqueeze(-1) * S).sum(-2) o[:, :, i] = o_i if not output_final_state: S = None return o.to(original_dtype), S