# -*- coding: utf-8 -*- # Copyright (c) 2024, Songlin Yang, Yu Zhang from typing import Optional, Tuple import torch import triton import triton.language as tl from packaging import version from fla.ops.linear_attn.utils import normalize_output from fla.utils import autocast_custom_bwd, autocast_custom_fwd, contiguous @triton.jit def fused_chunk_linear_attn_fwd_kernel( q, # query [B, H, T, K] k, # key [B, H, T, V] v, # value [B, H, T, V] o, # output [B, H, T, V] h0, ht, s_k_h, # stride size: T * K s_k_t, # stride size: K s_k_d, # stride size: 1 s_v_h, # stride size: T * V s_v_t, # stride size: V s_v_d, # stride size: 1 scale, B, # batch size H, # H T, # T K: tl.constexpr, # K V: tl.constexpr, # V BT: tl.constexpr, # BLOCK SIZE along the sequence dimension, a.k.a. chunk size BK: tl.constexpr, # BLOCK SIZE along the K dimension BV: tl.constexpr, # BLOCK SIZE along the V dimension USE_INITIAL_STATE: tl.constexpr, STORE_FINAL_STATE: tl.constexpr, CHECK: tl.constexpr ): # indices i_v, i_k, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2) o_i = tl.arange(0, BT) # [BT, BT] m_s = o_i[:, None] >= o_i[None, :] # [BK, BV] b_h = tl.zeros([BK, BV], dtype=tl.float32) # make block pointers p_q = tl.make_block_ptr(q + i_bh * s_k_h, (T, K), (s_k_t, s_k_d), (0, i_k * BK), (BT, BK), (1, 0)) p_k = tl.make_block_ptr(k + i_bh * s_k_h, (K, T), (s_k_d, s_k_t), (i_k * BK, 0), (BK, BT), (0, 1)) p_v = tl.make_block_ptr(v + i_bh * s_v_h, (T, V), (s_v_t, s_v_d), (0, i_v * BV), (BT, BV), (1, 0)) p_o = tl.make_block_ptr(o + (i_bh+i_k*B*H) * s_v_h, (T, V), (s_v_t, s_v_d), (0, i_v * BV), (BT, BV), (1, 0)) if USE_INITIAL_STATE: p_h0 = tl.make_block_ptr(h0 + i_bh * K * V, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0)) b_h = tl.load(p_h0, boundary_check=(0, 1)).to(tl.float32) for i in range(0, tl.cdiv(T, BT)): # [BT, BK] b_q = tl.load(p_q, boundary_check=(0, 1)) b_q = (b_q * scale).to(b_q.dtype) # [BK, BT] b_k = tl.load(p_k, boundary_check=(0, 1)) # [BT, BV] b_v = tl.load(p_v, boundary_check=(0, 1)) # [BT, BT] b_s = tl.dot(b_q, b_k, allow_tf32=False) b_s = tl.where(m_s, b_s, 0) # [BT, BV] b_o = tl.dot(b_s.to(b_q.dtype), b_v, allow_tf32=False) if CHECK and i == 0: b_o += tl.dot(b_q, b_h.to(b_q.dtype), allow_tf32=False) b_h = b_h + tl.dot(b_k, b_v, allow_tf32=False) else: b_o += tl.dot(b_q, b_h.to(b_q.dtype), allow_tf32=False) b_h = b_h + tl.dot(b_k, b_v, allow_tf32=False) tl.store(p_o, b_o.to(p_o.dtype.element_ty), boundary_check=(0, 1)) p_q = tl.advance(p_q, (BT, 0)) p_k = tl.advance(p_k, (0, BT)) p_v = tl.advance(p_v, (BT, 0)) p_o = tl.advance(p_o, (BT, 0)) if STORE_FINAL_STATE: p_ht = tl.make_block_ptr(ht + i_bh * K * V, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0)) tl.store(p_ht, b_h.to(p_ht.dtype.element_ty), boundary_check=(0, 1)) @triton.jit def fused_chunk_linear_attn_bwd_kernel( q, # query [B, H, T, K] k, # key [B, H, T, V] v, # value [B, H, T, V] do, # gradient of output [B, H, T, V] dq, # gradient of query [NV, B, H, T, K] dk, # gradient of key [NV, B, H, T, K] dv, # gradient of value [NK, B, H, T, V] h0, # initial state of the chunk [B, H, K, V] s_k_h, # stride size: T * K s_k_t, # stride size: K s_k_d, # stride size: 1 s_v_h, # stride size: T * V s_v_t, # stride size: V s_v_d, # stride size: 1 scale, # K ** -0.5 B, # B H, # H T, # T K: tl.constexpr, # K V: tl.constexpr, # V BT: tl.constexpr, # BLOCK SIZE along the sequence dimension, a.k.a. chunk size BK: tl.constexpr, # BLOCK SIZE along the K dimension BV: tl.constexpr, # BLOCK SIZE along the V dimension USE_INITIAL_STATE: tl.constexpr, CHECK: tl.constexpr ): i_v, i_k, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2) o_i = tl.arange(0, BT) m_s = o_i[:, None] >= o_i[None, :] # [BV, BK] b_h = tl.zeros([BV, BK], dtype=tl.float32) if USE_INITIAL_STATE: p_h = tl.make_block_ptr(h0 + i_bh * K * V, (V, K), (1, V), (i_v * BV, i_k * BK), (BV, BK), (0, 1)) b_h = tl.load(p_h, boundary_check=(0, 1)).to(tl.float32) for i in range(0, tl.cdiv(T, BT)): p_k = tl.make_block_ptr(k + i_bh * s_k_h, (T, K), (s_k_t, s_k_d), (i * BT, i_k * BK), (BT, BK), (1, 0)) p_v = tl.make_block_ptr(v + i_bh * s_v_h, (V, T), (s_v_d, s_v_t), (i_v * BV, i * BT), (BV, BT), (0, 1)) p_do = tl.make_block_ptr(do + i_bh * s_v_h, (T, V), (s_v_t, s_v_d), (i * BT, i_v * BV), (BT, BV), (1, 0)) p_dq = tl.make_block_ptr(dq + (i_bh + i_v*B*H) * s_k_h, (T, K), (s_k_t, s_k_d), (i*BT, i_k*BK), (BT, BK), (1, 0)) # [BT, BK] b_k = tl.load(p_k, boundary_check=(0, 1)) # [V, BT] b_v = tl.load(p_v, boundary_check=(0, 1)) # [BT, V] b_do = tl.load(p_do, boundary_check=(0, 1)) # [BT, BT] b_ds = tl.dot(b_do, b_v, allow_tf32=False) b_ds = tl.where(m_s, b_ds, 0) # [BT, BK] b_dq = tl.dot(b_ds.to(b_k.dtype), b_k, allow_tf32=False) # [BV, BK] if CHECK and i == 0: b_dq += tl.dot(b_do, b_h.to(b_do.dtype), allow_tf32=False) b_h = b_h + tl.dot(b_v, b_k, allow_tf32=False) else: b_dq += tl.dot(b_do, b_h.to(b_do.dtype), allow_tf32=False) b_h = b_h + tl.dot(b_v, b_k, allow_tf32=False) b_dq *= scale tl.store(p_dq, b_dq.to(p_dq.dtype.element_ty), boundary_check=(0, 1)) # sync threads b_h = None tl.debug_barrier() # [BK, BV] b_dh = tl.zeros([BK, BV], dtype=tl.float32) m_s = o_i[:, None] <= o_i[None, :] for i in range(1, tl.cdiv(T, BT) + 1): p_q = tl.make_block_ptr(q + i_bh * s_k_h, (K, T), (s_k_d, s_k_t), (i_k * BK, T - i * BT), (BK, BT), (0, 1)) p_k = tl.make_block_ptr(k + i_bh * s_k_h, (T, K), (s_k_t, s_k_d), (T - i * BT, i_k * BK), (BT, BK), (1, 0)) p_v = tl.make_block_ptr(v + i_bh * s_v_h, (T, V), (s_v_t, s_v_d), (T - i * BT, i_v * BV), (BT, BV), (1, 0)) p_do = tl.make_block_ptr(do + i_bh * s_v_h, (T, V), (s_v_t, s_v_d), (T - i * BT, i_v * BV), (BT, BV), (1, 0)) p_dk = tl.make_block_ptr(dk + (i_bh+i_v*B*H) * s_k_h, (T, K), (s_k_t, s_k_d), (T - i*BT, i_k*BK), (BT, BK), (1, 0)) p_dv = tl.make_block_ptr(dv + (i_bh+i_k*B*H) * s_v_h, (T, V), (s_v_t, s_v_d), (T - i*BT, i_v*BV), (BT, BV), (1, 0)) # [BK, BT] b_q = tl.load(p_q, boundary_check=(0, 1)) b_q = (b_q * scale).to(b_q.dtype) # [BT, BK] b_k = tl.load(p_k, boundary_check=(0, 1)) # [BT, BV] b_v = tl.load(p_v, boundary_check=(0, 1)) b_do = tl.load(p_do, boundary_check=(0, 1)) # [BT, BT] b_s = tl.dot(b_k, b_q, allow_tf32=False) b_s = tl.where(m_s, b_s, 0).to(b_q.dtype) # [BT, BT] b_ds = tl.dot(b_v, tl.trans(b_do), allow_tf32=False) b_ds = tl.where(m_s, b_ds, 0).to(b_q.dtype) # [BT, BK] b_dk = tl.dot(b_ds, tl.trans(b_q), allow_tf32=False) # [BT, BV] b_dv = tl.dot(b_s, b_do, allow_tf32=False) if CHECK and i == 1: b_dk += tl.dot(b_v, tl.trans(b_dh).to(b_v.dtype), allow_tf32=False) b_dv += tl.dot(b_k, b_dh.to(b_k.dtype), allow_tf32=False) b_dh += tl.dot(b_q, b_do, allow_tf32=False) else: b_dk += tl.dot(b_v, tl.trans(b_dh).to(b_v.dtype), allow_tf32=False) b_dv += tl.dot(b_k, b_dh.to(b_k.dtype), allow_tf32=False) b_dh += tl.dot(b_q, b_do, allow_tf32=False) tl.store(p_dk, b_dk.to(p_dk.dtype.element_ty), boundary_check=(0, 1)) tl.store(p_dv, b_dv.to(p_dv.dtype.element_ty), boundary_check=(0, 1)) class FusedChunkLinearAttentionFunction(torch.autograd.Function): @staticmethod @contiguous @autocast_custom_fwd def forward(ctx, q, k, v, scale, initial_state, output_final_state): B, H, T, K, V = *k.shape, v.shape[-1] BT = 64 BK, BV = min(triton.next_power_of_2(K), 64), min(triton.next_power_of_2(V), 64) NK, NV = triton.cdiv(K, BK), triton.cdiv(V, BV) num_warps = 4 num_stages = 1 o = q.new_empty(NK, B, H, T, V) final_state = q.new_empty(B, H, K, V, dtype=torch.float) if output_final_state else None # the bug still exists even for Triton 2.2 on H100 GPUs # so we always enable initial checks CHECK = True if version.parse(triton.__version__) < version.parse('2.2.0'): import warnings warnings.warn( "Triton<2.2.0 detected for running this kernel, " "which is known to have some weird compiler issues (refer to https://github.com/openai/triton/issues/2852) " "that lead to significant precision loss. " "We've add some initial condition checks to resolve this, sadly at the sacrifice of the speed. " "For optimal performance, it is recommended to install Triton>=2.2.0 (if possible)." ) CHECK = True grid = (NV, NK, B * H) fused_chunk_linear_attn_fwd_kernel[grid]( q, k, v, o, initial_state, final_state, q.stride(1), q.stride(2), q.stride(3), v.stride(1), v.stride(2), v.stride(3), scale, B=B, H=H, T=T, K=K, V=V, BT=BT, BK=BK, BV=BV, USE_INITIAL_STATE=initial_state is not None, STORE_FINAL_STATE=output_final_state, CHECK=CHECK, num_warps=num_warps, num_stages=num_stages ) o = o.sum(0) if NK > 1 else o[0] ctx.save_for_backward(q, k, v, initial_state) ctx.scale = scale ctx.CHECK = CHECK return o.to(q.dtype), final_state @staticmethod @contiguous @autocast_custom_bwd def backward(ctx, do, dht=None): q, k, v, initial_state = ctx.saved_tensors B, H, T, K, V = *k.shape, v.shape[-1] scale = ctx.scale BT = 64 BK, BV = min(triton.next_power_of_2(K), 64), min(triton.next_power_of_2(V), 64) NK, NV = triton.cdiv(K, BK), triton.cdiv(V, BV) num_warps = 4 num_stages = 1 dq = q.new_empty(NV, B, H, T, K) dk = q.new_empty(NV, B, H, T, K) dv = q.new_empty(NK, B, H, T, V) grid = (NV, NK, B * H) fused_chunk_linear_attn_bwd_kernel[grid]( q, k, v, do, dq, dk, dv, initial_state, q.stride(1), q.stride(2), q.stride(3), v.stride(1), v.stride(2), v.stride(3), scale, B=B, H=H, T=T, K=K, V=V, BT=BT, BK=BK, BV=BV, USE_INITIAL_STATE=initial_state is not None, CHECK=ctx.CHECK, num_warps=num_warps, num_stages=num_stages ) dq = dq.sum(0) dk = dk.sum(0) dv = dv.sum(0) return dq.to(q.dtype), dk.to(k.dtype), dv.to(v.dtype), None, None, None def fused_chunk_linear_attn( q: torch.Tensor, k: torch.Tensor, v: torch.Tensor, scale: Optional[float] = None, initial_state: torch.Tensor = None, output_final_state: bool = False, normalize: bool = True, head_first: bool = True ) -> Tuple[torch.Tensor, torch.Tensor]: r""" Args: q (torch.Tensor): queries of shape `[B, H, T, K]` if `head_first=True` else `[B, T, H, K]` k (torch.Tensor): keys of shape `[B, H, T, K]` if `head_first=True` else `[B, T, H, K]` v (torch.Tensor): values of shape `[B, H, T, V]` if `head_first=True` else `[B, T, H, V]` scale (Optional[int]): Scale factor for linear attention scores. If not provided, it will default to `1 / sqrt(K)`. Default: `None`. initial_state (Optional[torch.Tensor]): Initial state of shape `[B, H, K, V]`. Default: `None`. output_final_state (Optional[bool]): Whether to output the final state of shape `[B, H, K, V]`. Default: `False`. normalize (bool): Whether to normalize the output. Default: `True`. head_first (Optional[bool]): Whether the inputs are in the head-first format. Default: `True`. Returns: o (torch.Tensor): Outputs of shape `[B, H, T, V]` if `head_first=True` else `[B, T, H, V]` final_state (torch.Tensor): Final state of shape `[B, H, K, V]` if `output_final_state=True` else `None` """ if scale is None: scale = q.shape[-1] ** -0.5 if not head_first: q, k, v = map(lambda x: x.transpose(1, 2), (q, k, v)) o, final_state = FusedChunkLinearAttentionFunction.apply(q, k, v, scale, initial_state, output_final_state) if normalize: o = normalize_output(q * scale, k, o) if not head_first: o = o.transpose(1, 2) return o, final_state