# -*- coding: utf-8 -*- # Copyright (c) 2024, Songlin Yang, Yu Zhang # this function implements the chunkwise form of HGRN, inspired by # [Volodymyr Kyrylov in his blog post](https://proger.github.io/posts/scan/chunk.html) # also refer to the `accelerated-scan` lib: https://github.com/proger/accelerated-scan # from tests on H800, with B, D = 16, 128, we see that the chunk can be greatly faster than the recurrent: # # Performance: # seq_len chunk recurrent chunk_bwd recurrent_bwd # 0 128.0 0.039360 0.061056 0.312160 0.205008 # 1 256.0 0.045824 0.123712 0.308784 0.297696 # 2 512.0 0.058688 0.241952 0.310720 0.626528 # 3 1024.0 0.088288 0.476992 0.313184 1.333152 # 4 2048.0 0.169472 0.943264 0.452464 2.724864 # 5 4096.0 0.329920 1.886144 0.881600 5.551520 # 6 8192.0 0.647872 3.755040 1.740496 11.117184 # 7 16384.0 1.272064 7.520576 3.446608 22.362528 from typing import Tuple import torch import triton import triton.language as tl from fla.utils import contiguous @triton.autotune( configs=[ triton.Config({'BD': 32}, num_warps=1), triton.Config({'BD': 32}, num_warps=2), triton.Config({'BD': 32}, num_warps=4), triton.Config({'BD': 32}, num_warps=8), triton.Config({'BD': 64}, num_warps=1), triton.Config({'BD': 64}, num_warps=2), triton.Config({'BD': 64}, num_warps=4), triton.Config({'BD': 64}, num_warps=8), triton.Config({'BD': 128}, num_warps=1), triton.Config({'BD': 128}, num_warps=2), triton.Config({'BD': 128}, num_warps=4), triton.Config({'BD': 128}, num_warps=8), ], key=['D'] ) @triton.jit def chunk_hgrn_fwd_kernel_h( x, g, gc, o, h0, T: tl.constexpr, D: tl.constexpr, BT: tl.constexpr, BD: tl.constexpr, USE_INITIAL_STATE: tl.constexpr ): i_d, i_t, i_b = tl.program_id(0), tl.program_id(1), tl.program_id(2) o_d = i_d * BD + tl.arange(0, BD) mask = o_d < D p_x = x + i_b * T * D + i_t * BT * D + o_d p_g = g + i_b * T * D + i_t * BT * D + o_d p_gc = gc + i_b * T * D + i_t * BT * D + o_d p_o = o + i_b * T * D + i_t * BT * D + o_d b_h = tl.zeros([BD], dtype=tl.float32) b_gc = tl.zeros([BD], dtype=tl.float32) if USE_INITIAL_STATE: if i_t == 0: b_h += tl.load(h0 + i_b * D + o_d, mask=mask, other=0).to(tl.float32) for i in range(0, BT): mask_t = mask & ((i_t * BT + i) < T) b_x = tl.load(p_x, mask=mask_t, other=0).to(tl.float32) b_g = tl.load(p_g, mask=mask_t, other=0).to(tl.float32) b_h = tl.exp(b_g) * b_h + b_x b_gc = b_gc + b_g tl.store(p_gc, b_gc.to(p_o.dtype.element_ty), mask=mask_t) tl.store(p_o, b_h.to(p_o.dtype.element_ty), mask=mask_t) p_x += D p_g += D p_gc += D p_o += D @triton.jit def chunk_hgrn_fwd_kernel_o( gc, o, s_b, s_t, s_d, T: tl.constexpr, D: tl.constexpr, BT: tl.constexpr, BD: tl.constexpr ): i_d, i_b = tl.program_id(0), tl.program_id(1) o_d = i_d * BD + tl.arange(0, BD) mask = o_d < D for i_t in range(1, tl.cdiv(T, BT)): p_gc = tl.make_block_ptr(gc + i_b * s_b, (T, D), (s_t, s_d), (i_t * BT, i_d * BD), (BT, BD), (1, 0)) p_o = tl.make_block_ptr(o + i_b * s_b, (T, D), (s_t, s_d), (i_t * BT, i_d * BD), (BT, BD), (1, 0)) # [BD,] b_h0 = tl.load(o + i_b * T * D + i_t * BT * D - D + o_d, mask=mask, other=0).to(tl.float32) # [BT, BD] b_gc = tl.load(p_gc, boundary_check=(0, 1)).to(tl.float32) b_o = tl.load(p_o, boundary_check=(0, 1)).to(tl.float32) b_o = b_o + tl.exp(b_gc) * b_h0[None, :] tl.store(p_o, b_o.to(p_o.dtype.element_ty), boundary_check=(0, 1)) @triton.autotune( configs=[ triton.Config({'BD': 32}, num_warps=1), triton.Config({'BD': 32}, num_warps=2), triton.Config({'BD': 32}, num_warps=4), triton.Config({'BD': 32}, num_warps=8), triton.Config({'BD': 64}, num_warps=1), triton.Config({'BD': 64}, num_warps=2), triton.Config({'BD': 64}, num_warps=4), triton.Config({'BD': 64}, num_warps=8), triton.Config({'BD': 128}, num_warps=1), triton.Config({'BD': 128}, num_warps=2), triton.Config({'BD': 128}, num_warps=4), triton.Config({'BD': 128}, num_warps=8), ], key=['D'] ) @triton.jit def chunk_hgrn_bwd_kernel_h( g, gc, dx, do, T: tl.constexpr, D: tl.constexpr, BT: tl.constexpr, BD: tl.constexpr ): i_d, i_t, i_b = tl.program_id(0), tl.program_id(1), tl.program_id(2) o_d = i_d * BD + tl.arange(0, BD) mask = o_d < D BC = min(BT, T - i_t * BT) NT = tl.num_programs(1) p_g = g + (i_b * T + i_t * BT + BC - 1) * D + o_d p_gc = gc + (i_b * T + i_t * BT + BC - 1) * D + o_d p_dx = dx + (i_b * T + i_t * BT + BC - 1) * D + o_d p_do = do + (i_b * T + i_t * BT + BC - 1) * D + o_d if i_t == NT - 1: b_gc = tl.zeros([BD], dtype=tl.float32) else: b_gc = tl.load(g + (i_b * T + i_t * BT + BT) * D + o_d, mask=mask, other=0).to(tl.float32) b_dh = tl.zeros([BD], dtype=tl.float32) for _ in range(BC - 1, -1, -1): tl.store(p_gc, b_gc.to(p_gc.dtype.element_ty), mask=mask) b_g = tl.load(p_g, mask=mask, other=0).to(tl.float32) b_do = tl.load(p_do, mask=mask, other=0).to(tl.float32) b_gc = b_gc + b_g b_dh = b_dh + b_do b_dx = b_dh b_dh = b_dh * tl.exp(b_g) tl.store(p_dx, b_dx.to(p_dx.dtype.element_ty), mask=mask) p_g -= D p_gc -= D p_dx -= D p_do -= D @triton.jit def chunk_hgrn_bwd_kernel_o( g, gc, o, dx, dg, s_b, s_t, s_d, T: tl.constexpr, D: tl.constexpr, BT: tl.constexpr, BD: tl.constexpr ): i_d, i_b = tl.program_id(0), tl.program_id(1) o_d = i_d * BD + tl.arange(0, BD) mask = o_d < D for i_t in range(tl.cdiv(T, BT) - 1, -1, -1): p_g = tl.make_block_ptr(g + i_b * s_b, (T, D), (s_t, s_d), (i_t * BT, i_d * BD), (BT, BD), (1, 0)) p_gc = tl.make_block_ptr(gc + i_b * s_b, (T, D), (s_t, s_d), (i_t * BT, i_d * BD), (BT, BD), (1, 0)) p_o = tl.make_block_ptr(o + i_b * s_b, (T, D), (s_t, s_d), (i_t * BT - 1, i_d * BD), (BT, BD), (1, 0)) p_dx = tl.make_block_ptr(dx + i_b * s_b, (T, D), (s_t, s_d), (i_t * BT, i_d * BD), (BT, BD), (1, 0)) p_dg = tl.make_block_ptr(dg + i_b * s_b, (T, D), (s_t, s_d), (i_t * BT, i_d * BD), (BT, BD), (1, 0)) # [BD,] mask_t = mask & ((i_t + 1) * BT < T) b_ht = tl.load(dx + i_b * T * D + (i_t + 1) * BT * D + o_d, mask=mask_t, other=0).to(tl.float32) # [BT, BD] b_g = tl.load(p_g, boundary_check=(0, 1)).to(tl.float32) b_gc = tl.load(p_gc, boundary_check=(0, 1)).to(tl.float32) b_o = tl.load(p_o, boundary_check=(0, 1)).to(tl.float32) b_dx = tl.load(p_dx, boundary_check=(0, 1)).to(tl.float32) b_dx = b_dx + tl.exp(b_gc) * b_ht[None, :] b_dg = b_o * b_dx * tl.exp(b_g) tl.store(p_dx, b_dx.to(p_dx.dtype.element_ty), boundary_check=(0, 1)) tl.store(p_dg, b_dg.to(p_dg.dtype.element_ty), boundary_check=(0, 1)) class ChunkHGRNFunction(torch.autograd.Function): @staticmethod @contiguous def forward(ctx, x, g, initial_state=None, output_final_state=False): B, T, D = x.shape BT, BD = 128, min(64, triton.next_power_of_2(D)) num_warps = 8 if BD == 64 else 4 gc = torch.empty_like(g, dtype=torch.float) o = torch.empty_like(x, dtype=torch.float) def grid(meta): return (triton.cdiv(D, meta['BD']), triton.cdiv(T, meta['BT']), B) chunk_hgrn_fwd_kernel_h[grid]( x, g, gc, o, initial_state, T=T, D=D, BT=BT, USE_INITIAL_STATE=initial_state is not None ) def grid(meta): return (triton.cdiv(D, meta['BD']), B) chunk_hgrn_fwd_kernel_o[grid]( gc, o, o.stride(-3), o.stride(-2), o.stride(-1), T=T, D=D, BT=BT, BD=BD, num_warps=num_warps ) final_state = None if output_final_state: final_state = o[:, -1].clone() o = o.to(x.dtype) ctx.save_for_backward(g, o, initial_state) return o, final_state @staticmethod @contiguous def backward(ctx, do, dht=None): g, o, initial_state = ctx.saved_tensors B, T, D = do.shape BT, BD = 128, min(64, triton.next_power_of_2(D)) num_warps = 8 if BD == 64 else 4 gc = torch.empty_like(g, dtype=torch.float) dx = torch.empty_like(o, dtype=torch.float) def grid(meta): return (triton.cdiv(D, meta['BD']), triton.cdiv(T, meta['BT']), B) chunk_hgrn_bwd_kernel_h[grid]( g, gc, dx, do, T=T, D=D, BT=BT ) dg = torch.empty_like(g, dtype=torch.float) def grid(meta): return (triton.cdiv(D, meta['BD']), B) chunk_hgrn_bwd_kernel_o[grid]( g, gc, o, dx, dg, o.stride(-3), o.stride(-2), o.stride(-1), T=T, D=D, BT=BT, BD=BD, num_warps=num_warps ) if initial_state is not None: dg[:, 0] = (initial_state * dx[:, 0] * g[:, 0].float().exp()).to(dg.dtype) return dx.to(o.dtype), dg, None, None def chunk_hgrn( x: torch.Tensor, g: torch.Tensor, initial_state: torch.Tensor = None, output_final_state: bool = False ) -> Tuple[torch.Tensor, torch.Tensor]: return ChunkHGRNFunction.apply(x, g, initial_state, output_final_state)