# -*- coding: utf-8 -*- # Copyright (c) 2024, Songlin Yang, Yu Zhang # Gated Linear Attention Transformers with Hardware-Efficient Training: https://arxiv.org/abs/2312.06635 from typing import Tuple import torch import torch.nn.functional as F import triton import triton.language as tl from einops import rearrange from packaging import version from fla.ops.utils import chunk_local_cumsum from fla.utils import autocast_custom_bwd, autocast_custom_fwd, contiguous @triton.jit def prepare_qg_kg( q, k, g, qg, kg, s_k_h, scale, K: tl.constexpr, BT: tl.constexpr, BK: tl.constexpr ): i_k, i_c, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2) p_q = q + i_bh * s_k_h + i_c * BT * K + i_k * BK + tl.arange(0, BK) p_g = g + i_bh * s_k_h + i_c * BT * K + i_k * BK + tl.arange(0, BK) p_k = k + i_bh * s_k_h + i_c * BT * K + i_k * BK + tl.arange(0, BK) p_qg = qg + i_bh * s_k_h + i_c * BT * K + i_k * BK + tl.arange(0, BK) p_kg = kg + i_bh * s_k_h + i_c * BT * K + i_k * BK + tl.arange(0, BK) mask = (i_k * BK + tl.arange(0, BK)) < K last_decay = tl.load(g + i_bh * s_k_h + (i_c * BT + BT - 1) * K + i_k * BK + tl.arange(0, BK)) for i in range(BT): b_q = tl.load(p_q, mask=mask, other=0) b_k = tl.load(p_k, mask=mask, other=0) _g = tl.load(p_g, mask=mask, other=0).to(tl.float32) b_q *= tl.exp(_g) * scale b_k *= tl.exp(last_decay - _g) tl.store(p_kg, b_k.to(p_kg.dtype.element_ty), mask=mask) tl.store(p_qg, b_q.to(p_qg.dtype.element_ty), mask=mask) p_q += K p_g += K p_k += K p_kg += K p_qg += K @triton.jit def bwd_decay_global_cumsum( dq_inner, dq_inter, dk_inner, dk_inter, q, k, g, dg, s_k_h, BT: tl.constexpr, BK: tl.constexpr, K: tl.constexpr ): i_k, i_c, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2) p_q = q + i_bh * s_k_h + i_k * BK + tl.arange(0, BK) + (i_c * BT + BT - 1) * K p_k = k + i_bh * s_k_h + i_k * BK + tl.arange(0, BK) + (i_c * BT + BT - 1) * K p_g = g + i_bh * s_k_h + i_k * BK + tl.arange(0, BK) + (i_c * BT + BT - 1) * K p_dg = dg + i_bh * s_k_h + i_k * BK + tl.arange(0, BK) + (i_c * BT + BT - 1) * K p_dq_inner = dq_inner + i_bh * s_k_h + i_k * BK + tl.arange(0, BK) + (i_c * BT + BT - 1) * K p_dk_inner = dk_inner + i_bh * s_k_h + i_k * BK + tl.arange(0, BK) + (i_c * BT + BT - 1) * K p_dq_inter = dq_inter + i_bh * s_k_h + i_k * BK + tl.arange(0, BK) + (i_c * BT + BT - 1) * K p_dk_inter = dk_inter + i_bh * s_k_h + i_k * BK + tl.arange(0, BK) + (i_c * BT + BT - 1) * K cum_grad_dg = tl.zeros([BK], dtype=tl.float32) mask = (i_k * BK + tl.arange(0, BK)) < K last_g = tl.zeros([BK], dtype=tl.float32) for j in range(BT-1, -1, -1): _g = tl.load(p_g, mask=mask, other=0).to(tl.float32) if j == (BT-1): last_g = _g b_dq1 = tl.load(p_dq_inner, mask=mask, other=0) b_dq2 = tl.load(p_dq_inter, mask=mask, other=0) b_dq2 *= tl.exp(_g) b_dq = b_dq1 + b_dq2 tl.store(p_dq_inter, b_dq, mask=mask) b_dk1 = tl.load(p_dk_inner, mask=mask, other=0) b_dk2 = tl.load(p_dk_inter, mask=mask, other=0) b_dk2 *= tl.exp(last_g - _g) b_dk = b_dk1 + b_dk2 tl.store(p_dk_inter, b_dk, mask=mask) b_q = tl.load(p_q, mask=mask, other=0) b_k = tl.load(p_k, mask=mask, other=0) b_dg = b_dq * b_q - b_dk * b_k cum_grad_dg += b_dg tl.store(p_dg, cum_grad_dg.to(p_dg.dtype.element_ty), mask=mask) p_g -= K p_k -= K p_q -= K p_dq_inner -= K p_dk_inner -= K p_dq_inter -= K p_dk_inter -= K p_dg -= K @triton.jit def fused_chunk_gla_fwd_kernel( q, # query [B, H, L, K] k, # key [B, H, L, K] v, # value [B, H, L, V] g, # cumulative sum of log decay [B, H, L, K] o, # output [B, H, L, V] h0, # initial state of the chunk [B, H, K, V] ht, # final state of the chunk [B, H, K, V] s_k_h, # stride size: L * K s_k_t, # stride size: K s_k_d, # stride size: 1 s_v_h, # stride size: L * V s_v_t, # stride size: V s_v_d, # stride size: 1 B: tl.constexpr, # batch size H: tl.constexpr, # H T: tl.constexpr, # T K: tl.constexpr, # K V: tl.constexpr, # V BT: tl.constexpr, # BLOCK SIZE along the sequence dimension, a.k.a. chunk size BK: tl.constexpr, # BLOCK SIZE along the K dimension BV: tl.constexpr, # BLOCK SIZE along the V dimension USE_INITIAL_STATE: tl.constexpr, STORE_FINAL_STATE: tl.constexpr, CHECK: tl.constexpr ): # indices i_v, i_k, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2) b_h = tl.zeros([BK, BV], dtype=tl.float32) # make block pointers p_q = tl.make_block_ptr(q + i_bh * s_k_h, (T, K), (s_k_t, s_k_d), (0, i_k * BK), (BT, BK), (1, 0)) p_db = g + i_bh * s_k_h + (BT - 1) * s_k_t + i_k * BK + tl.arange(0, BK) p_k = tl.make_block_ptr(k + i_bh * s_k_h, (K, T), (s_k_d, s_k_t), (i_k * BK, 0), (BK, BT), (0, 1)) p_v = tl.make_block_ptr(v + i_bh * s_v_h, (T, V), (s_v_t, s_v_d), (0, i_v * BV), (BT, BV), (1, 0)) p_o = tl.make_block_ptr(o + (i_bh + i_k * B * H) * s_v_h, (T, V), (s_v_t, s_v_d), (0, i_v * BV), (BT, BV), (1, 0)) if USE_INITIAL_STATE: p_h = tl.make_block_ptr(h0 + i_bh * K * V, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0)) b_h += tl.load(p_h, boundary_check=(0, 1)).to(tl.float32) mask = (i_k * BK + tl.arange(0, BK)) < K for i in range(0, tl.cdiv(T, BT)): # [BK, BT] b_k = tl.load(p_k, boundary_check=(0, 1)) # [BT, BV] b_v = tl.load(p_v, boundary_check=(0, 1)) # [BT, BK] b_q = tl.load(p_q, boundary_check=(0, 1)) d_b = tl.load(p_db, mask=mask, other=0).to(tl.float32) if CHECK and i == 0: b_o = tl.dot(b_q.to(b_v.dtype), b_h.to(b_v.dtype), allow_tf32=False) b_h = b_h * tl.exp(d_b)[:, None] + tl.dot(b_k.to(b_v.dtype), b_v, allow_tf32=False) else: b_o = tl.dot(b_q.to(b_v.dtype), b_h.to(b_v.dtype), allow_tf32=False) b_h = b_h * tl.exp(d_b)[:, None] + tl.dot(b_k.to(b_v.dtype), b_v, allow_tf32=False) tl.store(p_o, b_o.to(p_o.dtype.element_ty), boundary_check=(0, 1)) p_q = tl.advance(p_q, (BT, 0)) p_k = tl.advance(p_k, (0, BT)) p_v = tl.advance(p_v, (BT, 0)) p_o = tl.advance(p_o, (BT, 0)) p_db += BT * K if STORE_FINAL_STATE: p_final = tl.make_block_ptr(ht + i_bh * K * V, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0)) tl.store(p_final, b_h.to(p_final.dtype.element_ty), boundary_check=(0, 1)) # Similar to Algorithm1 of https://arxiv.org/abs/2006.16236 @triton.jit def fused_chunk_gla_bwd_kernel( q, k, v, g, do, # gradient of output [B, H, L, V] dq, # gradient of query [NV, B, H, L, K] dk, # gradient of key [NV, B, H, L, K] dv, # gradient of value [NK, B, H, L, V] h0, # initial state of the chunk [B, H, K, V] s_k_h, # stride size: L * K s_k_t, # stride size: K s_k_d, # stride size: 1 s_v_h, # stride size: L * V s_v_t, # stride size: V s_v_d, # stride size: 1 scale, # K ** -0.5 B: tl.constexpr, # B H: tl.constexpr, # H T: tl.constexpr, # T K: tl.constexpr, # K V: tl.constexpr, # V # clamp_min, # minimum log value of the gate for numerical stability. default: -5 BT: tl.constexpr, # BLOCK SIZE along the sequence dimension, a.k.a. chunk size BK: tl.constexpr, # BLOCK SIZE along the K dimension BV: tl.constexpr, # BLOCK SIZE along the V dimension USE_INITIAL_STATE: tl.constexpr, CHECK: tl.constexpr ): i_v, i_k, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2) # [BV, BK] b_h = tl.zeros([BV, BK], dtype=tl.float32) if USE_INITIAL_STATE: p_h = tl.make_block_ptr(h0 + i_bh * K * V, (V, K), (1, V), (i_v * BV, i_k * BK), (BV, BK), (0, 1)) b_h += tl.load(p_h, boundary_check=(0, 1)).to(tl.float32) mask = (i_k * BK + tl.arange(0, BK)) < K for i in range(0, tl.cdiv(T, BT)): p_k = tl.make_block_ptr(k + i_bh * s_k_h, (T, K), (s_k_t, s_k_d), (i * BT, i_k * BK), (BT, BK), (1, 0)) p_db = g + i_bh * s_k_h + ((i+1) * BT - 1) * s_k_t + i_k * BK + tl.arange(0, BK) p_v = tl.make_block_ptr(v + i_bh * s_v_h, (V, T), (s_v_d, s_v_t), (i_v * BV, i * BT), (BV, BT), (0, 1)) p_do = tl.make_block_ptr(do + i_bh * s_v_h, (T, V), (s_v_t, s_v_d), (i * BT, i_v * BV), (BT, BV), (1, 0)) p_dq = tl.make_block_ptr(dq + (i_bh+i_v*B*H)*s_k_h, (T, K), (s_k_t, s_k_d), (i * BT, i_k * BK), (BT, BK), (1, 0)) b_dq = tl.zeros([BT, BK], dtype=tl.float32) # [BT, K] b_k = tl.load(p_k, boundary_check=(0, 1)) d_b = tl.load(p_db, mask=mask, other=0).to(tl.float32) # [V, BT] b_v = tl.load(p_v, boundary_check=(0, 1)) # [BT, V] b_do = tl.load(p_do, boundary_check=(0, 1)) # [V, K] if CHECK and i == 0: b_dq += tl.dot(b_do, b_h.to(b_do.dtype), allow_tf32=False) b_h = b_h * tl.exp(d_b)[None, :] + tl.dot(b_v, b_k.to(b_v.dtype), allow_tf32=False) else: b_dq += tl.dot(b_do, b_h.to(b_do.dtype), allow_tf32=False) b_h = b_h * tl.exp(d_b)[None, :] + tl.dot(b_v, b_k.to(b_v.dtype), allow_tf32=False) b_dq *= scale tl.store(p_dq, b_dq.to(p_dq.dtype.element_ty), boundary_check=(0, 1)) # sync threads b_h = None tl.debug_barrier() # [BK, BV] b_dh = tl.zeros([BK, BV], dtype=tl.float32) # cum = tl.zeros([BK], dtype=tl.float32) for i in range(1, tl.cdiv(T, BT) + 1): p_q = tl.make_block_ptr(q + i_bh * s_k_h, (K, T), (s_k_d, s_k_t), (i_k * BK, T - i * BT), (BK, BT), (0, 1)) p_k = tl.make_block_ptr(k + i_bh * s_k_h, (T, K), (s_k_t, s_k_d), (T - i * BT, i_k * BK), (BT, BK), (1, 0)) p_db = g + i_bh * s_k_h + (T - (i-1) * BT - 1) * s_k_t + i_k * BK + tl.arange(0, BK) p_v = tl.make_block_ptr(v + i_bh * s_v_h, (T, V), (s_v_t, s_v_d), (T - i * BT, i_v * BV), (BT, BV), (1, 0)) p_do = tl.make_block_ptr(do + i_bh * s_v_h, (T, V), (s_v_t, s_v_d), (T - i * BT, i_v * BV), (BT, BV), (1, 0)) p_dk = tl.make_block_ptr(dk + (i_bh + i_v * B * H) * s_k_h, (T, K), (s_k_t, s_k_d), (T - i * BT, i_k * BK), (BT, BK), (1, 0)) p_dv = tl.make_block_ptr(dv + (i_bh + i_k * B * H) * s_v_h, (T, V), (s_v_t, s_v_d), (T - i * BT, i_v * BV), (BT, BV), (1, 0)) # [K, BT] b_q = tl.load(p_q, boundary_check=(0, 1)) # [BT, K] b_k = tl.load(p_k, boundary_check=(0, 1)) # [BT, V] b_v = tl.load(p_v, boundary_check=(0, 1)) b_do = tl.load(p_do, boundary_check=(0, 1)) b_db = tl.load(p_db, mask=mask, other=0).to(tl.float32) # inter-chunk # [K, V] if CHECK and i == 1: b_dk = tl.trans(tl.dot(b_dh.to(b_v.dtype), tl.trans(b_v), allow_tf32=False)) b_dv = tl.dot((b_k).to(b_v.dtype), b_dh.to(b_v.dtype), allow_tf32=False) b_dh = b_dh * tl.exp(b_db)[:, None] + tl.dot(b_q.to(b_do.dtype), b_do, allow_tf32=False) else: b_dk = tl.trans(tl.dot(b_dh.to(b_v.dtype), tl.trans(b_v), allow_tf32=False)) b_dv = tl.dot((b_k).to(b_v.dtype), b_dh.to(b_v.dtype), allow_tf32=False) b_dh = b_dh * tl.exp(b_db)[:, None] + tl.dot(b_q.to(b_do.dtype), b_do, allow_tf32=False) tl.store(p_dk, b_dk.to(p_dk.dtype.element_ty), boundary_check=(0, 1)) tl.store(p_dv, b_dv.to(p_dv.dtype.element_ty), boundary_check=(0, 1)) @triton.jit def fwd_inner_chunk( q, k, g, A, s_k_h, # stride size: L * K s_k_t, # stride size: K s_k_d, # stride size: 1 scale, # K ** -0.5 B: tl.constexpr, # B H: tl.constexpr, # H T: tl.constexpr, # T K: tl.constexpr, # K BT: tl.constexpr, # BLOCK SIZE along the sequence dimension, a.k.a. chunk size BK: tl.constexpr # BLOCK SIZE along the K dimension ): i_k, i_t, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2) p_k = tl.make_block_ptr(k + i_bh * s_k_h, (T, K), (s_k_t, s_k_d), (i_t * BT, i_k * BK), (BT, BK), (1, 0)) b_k = tl.load(p_k, boundary_check=(0, 1)) p_g = tl.make_block_ptr(g + i_bh * s_k_h, (T, K), (s_k_t, s_k_d), (i_t * BT, i_k * BK), (BT, BK), (1, 0)) b_g = tl.load(p_g, boundary_check=(0, 1)).to(tl.float32) mask = (i_k * BK + tl.arange(0, BK)) < K o_i = tl.arange(0, BT) p_q = q + i_bh * s_k_h + i_k * BK + i_t * BT * K + tl.arange(0, BK) p_gq = g + i_bh * s_k_h + i_k * BK + i_t * BT * K + tl.arange(0, BK) p_A = A + (i_bh + (i_k * B * H)) * (tl.cdiv(T, BT) * BT * BT) + i_t * BT * BT + tl.arange(0, BT) for i in range(BT): _q = tl.load(p_q, mask=mask, other=0) * scale gq = tl.load(p_gq, mask=mask, other=0).to(tl.float32) s = _q[None, :] * b_k * tl.exp(gq[None, :] - b_g) score = tl.sum(s, axis=1) score = tl.where(o_i <= i, score, 0) tl.store(p_A, score.to(p_A.dtype.element_ty)) p_q += K p_gq += K p_A += BT @triton.jit def bwd_inner_chunk( q, k, g, dA, dq, dk, s_k_h, # stride size: L * K s_k_t, # stride size: K s_k_d, # stride size: 1 T: tl.constexpr, # T K: tl.constexpr, # K # clamp_min, # minimum log value of the gate for numerical stability. default: -5 BT: tl.constexpr, # BLOCK SIZE along the sequence dimension, a.k.a. chunk size BK: tl.constexpr, # BLOCK SIZE along the K dimension ): i_k, i_t, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2) p_k = tl.make_block_ptr(k + i_bh * s_k_h, (T, K), (s_k_t, s_k_d), (i_t * BT, i_k * BK), (BT, BK), (1, 0)) b_k = tl.load(p_k, boundary_check=(0, 1)) p_g = tl.make_block_ptr(g + i_bh * s_k_h, (T, K), (s_k_t, s_k_d), (i_t * BT, i_k * BK), (BT, BK), (1, 0)) b_g = tl.load(p_g, boundary_check=(0, 1)).to(tl.float32) mask = (i_k * BK + tl.arange(0, BK)) < K o_i = tl.arange(0, BT) p_q = q + i_bh * s_k_h + i_k * BK + i_t * BT * K + tl.arange(0, BK) p_dq = dq + (i_bh) * s_k_h + i_k * BK + i_t * BT * K + tl.arange(0, BK) p_gq = g + i_bh * s_k_h + i_k * BK + i_t * BT * K + tl.arange(0, BK) p_dA = dA + i_bh * (tl.cdiv(T, BT) * BT * BT) + i_t * BT * BT + tl.arange(0, BT) b_dk = tl.zeros([BT, BK], dtype=tl.float32) for i in range(BT): _q = tl.load(p_q, mask=mask, other=0) gq = tl.load(p_gq, mask=mask, other=0).to(tl.float32) score = tl.exp(gq[None, :] - b_g) score = tl.where(o_i[:, None] <= i, score, 0) _dA = tl.load(p_dA) _dA = tl.where(o_i <= i, _dA, 0) b_dk += (_dA[:, None] * score * _q[None, :]) b_dq = tl.sum(_dA[:, None] * score * b_k, axis=0) tl.store(p_dq, b_dq, mask=mask) p_q += K p_dq += K p_gq += K p_dA += BT p_dk = tl.make_block_ptr(dk + i_bh * s_k_h, (T, K), (s_k_t, s_k_d), (i_t * BT, i_k * BK), (BT, BK), (1, 0)) tl.store(p_dk, b_dk.to(dk.dtype.element_ty), boundary_check=(0, 1)) class FusedChunkGLAFunction(torch.autograd.Function): @staticmethod @contiguous @autocast_custom_fwd def forward(ctx, q, k, v, g, scale, initial_state, output_final_state): ctx.g_dtype = g.dtype ctx.scale = scale B, H, T, K, V = *k.shape, v.shape[-1] BT = 16 # chunk_size BK, BV = min(K, 64), min(V, 64) NK, NV = triton.cdiv(K, BK), triton.cdiv(V, BV) num_stages = 1 num_warps = 2 g_org = g # cumulative decay should be in float32, otherwise the err will be accumulated and amplified. g = chunk_local_cumsum(g_org, chunk_size=BT) o = q.new_empty(NK, B, H, T, V) q_g = torch.empty_like(q) k_g = torch.empty_like(k) grid = (NK, triton.cdiv(T, BT), B * H) prepare_qg_kg[grid]( q, k, g, q_g, k_g, q.stride(1), scale, K=K, BT=BT, BK=BK, num_warps=1 ) if output_final_state: final_state = q.new_empty(B, H, K, V, dtype=torch.float, requires_grad=False) else: final_state = None # the bug still exists even for Triton 2.2 on H100 GPUs # so we always enable initial checks CHECK = True if version.parse(triton.__version__) < version.parse('2.2.0'): import warnings warnings.warn( "Triton<2.2.0 detected for running this kernel, " "which is known to have some weird compiler issues (refer to https://github.com/openai/triton/issues/2852) " "that lead to significant precision loss. " "We've add some initial condition checks to resolve this, sadly at the sacrifice of the speed. " "For optimal performance, it is recommended to install Triton>=2.2.0 (if possible)." ) CHECK = True grid = (NV, NK, B * H) fused_chunk_gla_fwd_kernel[grid]( q_g, k_g, v, g, o, initial_state, final_state, q.stride(1), q.stride(2), q.stride(3), v.stride(1), v.stride(2), v.stride(3), B=B, H=H, T=T, K=K, V=V, BT=BT, BK=BK, BV=BV, USE_INITIAL_STATE=initial_state is not None, STORE_FINAL_STATE=output_final_state, CHECK=CHECK, num_warps=num_warps, num_stages=num_stages ) o = o.sum(0) # intra-chunk chunk_size = 16 num_chunk = T // chunk_size v2 = rearrange(v, 'b h (n c) d -> b h n c d', n=num_chunk) BK = min(K, 64) NK = triton.cdiv(K, BK) A = q.new_empty(NK, B, H, triton.cdiv(T, BT), BT, BT) grid = (NK, triton.cdiv(T, BT), B * H) fwd_inner_chunk[grid]( q, k, g, A, q.stride(1), q.stride(2), q.stride(3), scale, B=B, H=H, T=T, K=K, BT=BT, BK=BK, num_stages=3, num_warps=4 ) A = A.sum(0) o2 = A @ v2 o2 = rearrange(o2, 'b h n c d -> b h (n c) d') # combine inner and inter o.add_(o2) ctx.save_for_backward(q, k, v, g_org, A, initial_state) ctx.CHECK = CHECK return o.to(v), final_state @staticmethod @contiguous @autocast_custom_bwd def backward(ctx, do, dht=None): q, k, v, g_org, A, initial_state = ctx.saved_tensors B, H, T, K, V = *k.shape, v.shape[-1] scale = ctx.scale # recomputation # inter-chunk BT = 16 # chunk_size g = chunk_local_cumsum(g_org, chunk_size=BT) BK, BV = min(K, 64), min(V, 64) NK, NV = triton.cdiv(K, BK), triton.cdiv(V, BV) q_g = torch.empty_like(q) k_g = torch.empty_like(k) grid = (NK, triton.cdiv(T, BT), B * H) prepare_qg_kg[grid]( q, k, g, q_g, k_g, q.stride(1), scale, K=K, BT=BT, BK=BK, num_warps=1 ) # inter-chunk BT = 16 BK, BV = min(triton.next_power_of_2(K), 64), min(triton.next_power_of_2(V), 64) NK, NV = triton.cdiv(K, BK), triton.cdiv(V, BV) num_stages = 1 num_warps = 2 dq = q.new_empty(NV, B, H, T, K) dk = q.new_empty(NV, B, H, T, K) dv = q.new_empty(NK, B, H, T, V) grid = (NV, NK, B * H) fused_chunk_gla_bwd_kernel[grid]( q_g, k_g, v, g, do, dq, dk, dv, initial_state, q.stride(1), q.stride(2), q.stride(3), v.stride(1), v.stride(2), v.stride(3), scale, B=B, H=H, T=T, K=K, V=V, BT=BT, BK=BK, BV=BV, USE_INITIAL_STATE=initial_state is not None, CHECK=ctx.CHECK, num_warps=num_warps, num_stages=num_stages, ) dq = dq.sum(0) dk = dk.sum(0) dv = dv.sum(0) # intra chunk num_chunk = T // BT v2 = rearrange(v, 'b h (n c) d -> b h n c d', n=num_chunk) do2 = rearrange(do, 'b h (n c) d -> b h n c d', n=num_chunk) dA2 = (do2 @ v2.transpose(-2, -1)) * scale dv2 = A.transpose(-1, -2) @ do2 dv2 = rearrange(dv2, 'b h n c d -> b h (n c) d', n=num_chunk) BK = min(triton.next_power_of_2(K), 16) NK = triton.cdiv(K, BK) dk2 = torch.empty_like(k) dq2 = torch.empty_like(q) grid = (NK, triton.cdiv(T, BT), B * H) bwd_inner_chunk[grid]( q, k, g, dA2, dq2, dk2, q.stride(1), q.stride(2), q.stride(3), T=T, K=K, BT=BT, BK=BK, num_warps=1, num_stages=3 ) BK = min(triton.next_power_of_2(K), 32) NK = triton.cdiv(K, BK) dg = torch.empty_like(g, dtype=torch.float32) grid = (NK, triton.cdiv(T, BT), B * H) bwd_decay_global_cumsum[grid]( dq2, dq, dk2, dk, q, k, g, dg, q.stride(1), K=K, BT=BT, BK=BK, num_warps=1, num_stages=1 ) dg = rearrange(dg, 'b h (n c) d -> b h n c d', c=BT) def rev_cumsum_exclusive(x): cumsum_x = x.cumsum(-2) rev_cumsum_x = cumsum_x[..., -1, None, :] - cumsum_x return rev_cumsum_x rev_cumsum_dg = rev_cumsum_exclusive(dg[..., 0, :]) dg.add_(rev_cumsum_dg.unsqueeze(-2)) dv.add_(dv2) dg = rearrange(dg, 'b h n c d -> b h (n c) d') return dq.to(q), dk.to(k), dv.to(v), dg.to(ctx.g_dtype), None, None, None def pad(x, chunk_size=16): T = x.shape[-2] padded_seq_len = ceildiv(T, chunk_size) * chunk_size if x.shape[-2] % chunk_size != 0: x = F.pad(x, (0, 0, 0, padded_seq_len - T)) return x def ceildiv(a, b): return -(a // -b) def fused_chunk_gla( q: torch.Tensor, k: torch.Tensor, v: torch.Tensor, g: torch.Tensor, scale: int = -1, initial_state: torch.Tensor = None, output_final_state: bool = False, head_first: bool = True ) -> Tuple[torch.Tensor, torch.Tensor]: if scale == -1: scale = q.shape[-1] ** -0.5 if initial_state is not None: initial_state = initial_state.detach() seq_len = q.shape[-2] q, k, v, g = map(lambda x: pad(x), [q, k, v, g]) if not head_first: q, k, v, g = map(lambda x: x.transpose(1, 2), (q, k, v, g)) o, final_state = FusedChunkGLAFunction.apply(q, k, v, g, scale, initial_state, output_final_state) o = o[..., :seq_len, :] if not head_first: o = o.transpose(1, 2) return o, final_state