# -*- coding: utf-8 -*- # Copyright (c) 2024, Songlin Yang, Yu Zhang from __future__ import annotations import warnings from typing import TYPE_CHECKING, Optional, Tuple import torch import torch.nn as nn import torch.nn.functional as F from einops import rearrange from fla.modules import RMSNorm from fla.modules.activations import swish, sigmoid from fla.modules.layernorm import rms_norm_linear from fla.ops.scan import parallel_scan #, recurrent_scan, naive_scan if TYPE_CHECKING: from fla.models.utils import Cache def build_alibi_tensor_scan(head_num, seq_len, window_len, state_size): slopes = torch.tensor([2 ** (-8.0 * i / head_num) for i in range(head_num)]) alibi = torch.zeros((head_num, seq_len, window_len)) for i in range(seq_len): for j in range(window_len): if i < window_len: alibi[:, i, j] = slopes * (j - window_len + 1) if i > (window_len - j - 2) else 0 else: alibi[:, i, j] = alibi[:, window_len-1, j] # Now concat a zeros tensor of size (head_num, seq_len, state_size) to the left of the above square tensor alibi = torch.cat((torch.zeros(head_num, seq_len, state_size), alibi), dim=2) return alibi # shape: (head_num, seq_len, state_size + window_size) or (H, T, S + W) def scores_mask(T, W, S): # create lower right triangle mask (W, W) mask = torch.tril(torch.ones(W, W)).flip(1) # concat ones with size (T-W, W) in 0th dim mask = torch.cat((mask, torch.ones(T-W, W)), dim=0) # concat ones with size (T, S) in 1st dim mask = torch.cat((torch.ones(T, S), mask), dim=1) return mask # shape: (T, S + W) class SemiCompressedAttention(nn.Module): def __init__( self, mode: str = 'parallel', hidden_size: int = 1024, window_size: int = 512, state_size: int = 64, gate_act: str = 'softmax', max_position_embeddings: Optional[int] = 2048, expand_k: float = 1., expand_v: float = 1., num_heads: int = 4, num_kv_heads: Optional[int] = None, elementwise_affine: Optional[bool] = True, norm_first: bool = True, norm_eps: float = 1e-5, gate_logit_normalizer: int = 8, use_output_gate: bool = False, use_norm: bool = True, layer_idx: Optional[int] = None, scale: Optional[float] = 1., **kwargs ) -> SemiCompressedAttention: super().__init__() self.mode = mode self.hidden_size = hidden_size self.window_size = window_size self.state_size = state_size self.gate_act = gate_act self.max_position_embeddings = max_position_embeddings self.expand_k = expand_k self.expand_v = expand_v self.num_heads = num_heads self.num_kv_heads = num_heads if num_kv_heads is None else num_kv_heads self.num_kv_groups = self.num_heads // self.num_kv_heads self.key_dim = int(hidden_size * expand_k) self.value_dim = int(hidden_size * expand_v) self.key_dim_per_group = self.key_dim // self.num_kv_groups self.value_dim_per_group = self.value_dim // self.num_kv_groups self.head_k_dim = self.key_dim // self.num_heads self.head_v_dim = self.value_dim // self.num_heads self.gate_logit_normalizer = gate_logit_normalizer self.use_output_gate = use_output_gate self.use_norm = use_norm self.scale = scale self.norm_first = norm_first self.layer_idx = layer_idx if layer_idx is None: warnings.warn( f"Instantiating {self.__class__.__name__} without passing `layer_idx` is not recommended and will " "to errors during the forward call, if caching is used. Please make sure to provide a `layer_idx` " "when creating this class." ) if norm_first: self.norm = RMSNorm(self.hidden_size, eps=norm_eps) self.q_proj = nn.Linear(self.hidden_size, self.key_dim, bias=False) self.k_proj = nn.Linear(self.hidden_size, self.key_dim_per_group, bias=False) self.v_proj = nn.Linear(self.hidden_size, self.value_dim_per_group, bias=False) self.s_proj = nn.Linear(self.hidden_size, self.key_dim_per_group, bias=False) self.g_proj = nn.Linear(self.hidden_size, self.num_heads * self.state_size, bias=False) self.norm = RMSNorm(self.hidden_size, elementwise_affine, eps=norm_eps) self.o_proj = nn.Linear(self.value_dim, self.hidden_size, bias=False) self.apply(self._initialize_weights) self.register_buffer('alibi', build_alibi_tensor_scan(self.num_heads, self.max_position_embeddings, self.window_size, self.state_size)) self.register_buffer('mask', scores_mask(self.max_position_embeddings, self.window_size, self.state_size)) def _initialize_weights(self, module: nn.Module): if getattr(module, "_is_hf_initialized", False): return if isinstance(module, nn.Linear): nn.init.xavier_uniform_(module.weight, gain=2 ** -2.5) if module.bias is not None: nn.init.zeros_(module.bias) module._is_hf_initialized = True def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, past_key_values: Optional[Cache] = None, use_cache: Optional[bool] = False, output_attentions: Optional[bool] = False, **kwargs ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Cache]]: if attention_mask is not None: assert len(attention_mask.shape) == 2, ( "Expected attention_mask as a 0-1 matrix with shape [batch_size, seq_len] " "for padding purposes (0 indicating padding). " "Arbitrary attention masks of shape [batch_size, seq_len, seq_len] are not allowed." ) # launching the triton kernel for just one token will actually be slower mode = 'fused_recurrent' if hidden_states.shape[1] == 1 else self.mode if self.norm_first: hidden_states = self.norm(hidden_states) last_state = None if past_key_values is not None and len(past_key_values) > self.layer_idx: last_state = past_key_values[self.layer_idx] q = self.q_proj(hidden_states) k = self.k_proj(hidden_states) v = self.v_proj(hidden_states) s = self.s_proj(hidden_states) g = self.g_proj(hidden_states) if self.gate_act == 'softmax': g = F.softmax(g, dim=-1) elif self.gate_act == 'sigmoid': g = sigmoid(g) else: raise NotImplementedError(f"Gate activation `{self.gate_act}` is not supported.") # Split heads (but merge with batch dimension because kernels receive (B T C) shape) q = rearrange(q, 'b t (h c) -> (b h) t c', h=self.num_heads) k = rearrange(k, 'b t (h c) -> (b h) t c', h=self.num_kv_heads) v = rearrange(v, 'b t (h c) -> (b h) t c', h=self.num_kv_heads) s = rearrange(s, 'b t (h c) -> (b h) t c', h=self.num_kv_heads) g = rearrange(g, 'b t (h s) -> (b h) t s', h=self.num_kv_heads) # dealing with left-padding # if attention_mask is not None: # s = s.mul_(attention_mask[:, -s.shape[1]:, None, None]) # v = v.mul_(attention_mask[:, -v.shape[1]:, None, None]) recurrent_state = last_state['recurrent_state'] if last_state is not None else None if mode == 'parallel': o, recurrent_state = parallel_scan( q=q, k=k, v=v, s=s, g=g, window_size=self.window_size, num_heads=self.num_heads, alibi=self.alibi.to(q.device), mask=self.mask.to(q.device), initial_state=recurrent_state, output_final_state=use_cache, scale=self.scale, head_first=False ) elif mode == 'recurrent': # TODO: Implement recurrent scan for inference o, recurrent_state = recurrent_scan( q=q, k=k, v=v, s=s, g=g, initial_state=recurrent_state, output_final_state=use_cache, scale=self.scale, head_first=False ) else: raise NotImplementedError(f"Not supported mode `{mode}`.") if past_key_values is not None: past_key_values.update( recurrent_state=recurrent_state, layer_idx=self.layer_idx, offset=q.shape[2] ) o = rearrange(o, '(b h) t c -> b t (h c)', h=self.num_heads) o = rms_norm_linear(swish(o), self.norm.weight, self.norm.bias, self.o_proj.weight, self.o_proj.bias) return o, None, past_key_values