|
|
|
|
|
|
|
from typing import Optional, Tuple |
|
|
|
import torch |
|
import triton |
|
import triton.language as tl |
|
|
|
from fla.ops.linear_attn.utils import normalize_output |
|
from fla.utils import contiguous |
|
|
|
|
|
@triton.jit |
|
def fused_recurrent_linear_attn_fwd_kernel( |
|
q, |
|
k, |
|
v, |
|
o, |
|
h0, |
|
ht, |
|
|
|
s_k_h, |
|
s_v_h, |
|
|
|
scale, |
|
B, |
|
H, |
|
T, |
|
K: tl.constexpr, |
|
V: tl.constexpr, |
|
BK: tl.constexpr, |
|
BV: tl.constexpr, |
|
USE_INITIAL_STATE: tl.constexpr, |
|
STORE_FINAL_STATE: tl.constexpr, |
|
): |
|
|
|
i_v, i_k, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2) |
|
|
|
p_q = q + i_bh * s_k_h + i_k * BK + tl.arange(0, BK) |
|
p_k = k + i_bh * s_k_h + i_k * BK + tl.arange(0, BK) |
|
p_v = v + i_bh * s_v_h + i_v * BV + tl.arange(0, BV) |
|
p_o = o + (i_bh + i_k * B * H) * s_v_h + i_v * BV + tl.arange(0, BV) |
|
|
|
mask_bk = (i_k * BK + tl.arange(0, BK)) < K |
|
mask_bv = (i_v * BV + tl.arange(0, BV)) < V |
|
mask_kv = mask_bk[None, :] & mask_bv[:, None] |
|
|
|
b_h = tl.zeros([BV, BK], dtype=tl.float32) |
|
|
|
if USE_INITIAL_STATE: |
|
p_h0 = h0 + i_bh * K * V + (i_k * BK + tl.arange(0, BK)[None, :]) * V + (i_v * BV + tl.arange(0, BV)[:, None]) |
|
b_h += tl.load(p_h0, mask=mask_kv, other=0).to(tl.float32) |
|
|
|
for _ in range(0, T): |
|
b_k = tl.load(p_k, mask=mask_bk, other=0).to(tl.float32) |
|
b_v = tl.load(p_v, mask=mask_bv, other=0).to(tl.float32) |
|
b_q = tl.load(p_q, mask=mask_bk, other=0).to(tl.float32) * scale |
|
|
|
b_h += b_k[None, :] * b_v[:, None] |
|
b_o = b_h * b_q[None, :] |
|
b_o = tl.sum(b_o, axis=1) |
|
tl.store(p_o, b_o.to(p_o.dtype.element_ty), mask=mask_bv) |
|
|
|
p_q += K |
|
p_k += K |
|
p_o += V |
|
p_v += V |
|
|
|
if STORE_FINAL_STATE: |
|
p_ht = ht + i_bh * K * V + (i_k * BK + tl.arange(0, BK)[None, :]) * V + (i_v * BV + tl.arange(0, BV)[:, None]) |
|
tl.store(p_ht, b_h.to(p_ht.dtype.element_ty), mask=mask_kv) |
|
|
|
|
|
|
|
@triton.jit |
|
def fused_recurrent_linear_attn_bwd_kernel( |
|
q, |
|
k, |
|
v, |
|
|
|
do, |
|
dq, |
|
dk, |
|
dv, |
|
h0, |
|
|
|
s_k_h, |
|
s_v_h, |
|
scale, |
|
|
|
B, |
|
H, |
|
T, |
|
K: tl.constexpr, |
|
V: tl.constexpr, |
|
BK: tl.constexpr, |
|
BV: tl.constexpr, |
|
USE_INITIAL_STATE: tl.constexpr, |
|
): |
|
i_v, i_k, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2) |
|
|
|
p_q = q + i_bh * s_k_h + i_k * BK + tl.arange(0, BK) |
|
p_k = k + i_bh * s_k_h + i_k * BK + tl.arange(0, BK) |
|
p_v = v + i_bh * s_v_h + i_v * BV + tl.arange(0, BV) |
|
p_do = do + i_bh * s_v_h + i_v * BV + tl.arange(0, BV) |
|
|
|
p_dq = dq + (i_bh + i_v * B * H) * s_k_h + i_k * BK + tl.arange(0, BK) |
|
mask_bk = i_k * BK + tl.arange(0, BK) < K |
|
mask_bv = i_v * BV + tl.arange(0, BV) < V |
|
|
|
b_h = tl.zeros([BK, BV], dtype=tl.float32) |
|
|
|
if USE_INITIAL_STATE: |
|
mask_kv = mask_bk[:, None] & mask_bv[None, :] |
|
p_h0 = h0 + i_bh * K * V + (i_k * BK + tl.arange(0, BK)[:, None]) * V + (i_v * BV + tl.arange(0, BV)[None, :]) |
|
b_h += tl.load(p_h0, mask=mask_kv, other=0).to(tl.float32) |
|
|
|
for _ in range(0, T): |
|
b_k = tl.load(p_k, mask=mask_bk, other=0).to(tl.float32) |
|
b_v = tl.load(p_v, mask=mask_bv, other=0).to(tl.float32) |
|
b_do = tl.load(p_do, mask=mask_bv, other=0).to(tl.float32) |
|
|
|
b_h += b_k[:, None] * b_v[None, :] |
|
_d_q = b_h * b_do[None, :] |
|
d_q = tl.sum(_d_q, axis=1) * scale |
|
tl.store(p_dq, d_q.to(p_dq.dtype.element_ty), mask=mask_bk) |
|
|
|
p_k += K |
|
p_do += V |
|
p_v += V |
|
p_dq += K |
|
|
|
|
|
tl.debug_barrier() |
|
|
|
p_q = q + i_bh * s_k_h + i_k * BK + tl.arange(0, BK) + (T - 1) * K |
|
p_k = k + i_bh * s_k_h + i_k * BK + tl.arange(0, BK) + (T - 1) * K |
|
p_do = do + i_bh * s_v_h + i_v * BV + tl.arange(0, BV) + (T - 1) * V |
|
p_v = v + i_bh * s_v_h + i_v * BV + tl.arange(0, BV) + (T - 1) * V |
|
p_dk = dk + (i_bh + i_v * B * H) * s_k_h + i_k * BK + tl.arange(0, BK) + (T - 1) * K |
|
p_dv = dv + (i_bh + i_k * B * H) * s_v_h + i_v * BV + tl.arange(0, BV) + (T - 1) * V |
|
d_h = tl.zeros([BK, BV], dtype=tl.float32) |
|
|
|
for _ in range(T): |
|
b_do = tl.load(p_do, mask=mask_bv, other=0).to(tl.float32) |
|
b_q = tl.load(p_q, mask=mask_bk, other=0).to(tl.float32) * scale |
|
b_k = tl.load(p_k, mask=mask_bk, other=0).to(tl.float32) |
|
b_v = tl.load(p_v, mask=mask_bv, other=0).to(tl.float32) |
|
d_h += b_q[:, None] * b_do[None, :] |
|
d_k = tl.sum(d_h * b_v[None, :], axis=1) |
|
d_v = tl.sum(d_h * b_k[:, None], axis=0) |
|
|
|
tl.store(p_dk, d_k.to(p_dk.dtype.element_ty), mask=mask_bk) |
|
tl.store(p_dv, d_v.to(p_dv.dtype.element_ty), mask=mask_bv) |
|
|
|
p_do -= V |
|
p_q -= K |
|
p_k -= K |
|
p_v -= V |
|
p_dk -= K |
|
p_dv -= V |
|
|
|
|
|
class FusedRecurrentLinearAttentionFunction(torch.autograd.Function): |
|
|
|
@staticmethod |
|
@contiguous |
|
def forward(ctx, q, k, v, scale, initial_state=None, output_final_state=False): |
|
B, H, T, K = q.shape |
|
V = v.shape[-1] |
|
|
|
BK, BV = min(K, 32), min(V, 32) |
|
NK, NV = triton.cdiv(K, BK), triton.cdiv(V, BV) |
|
num_warps = 1 |
|
num_stages = 1 |
|
|
|
o = q.new_empty(NK, B, H, T, V) |
|
final_state = q.new_empty(B, H, K, V) if output_final_state else None |
|
|
|
grid = (NV, NK, B * H) |
|
fused_recurrent_linear_attn_fwd_kernel[grid]( |
|
q, k, v, o, initial_state, final_state, |
|
q.stride(1), |
|
v.stride(1), scale, |
|
B=B, H=H, T=T, K=K, V=V, BK=BK, BV=BV, |
|
USE_INITIAL_STATE=initial_state is not None, |
|
STORE_FINAL_STATE=final_state is not None, |
|
num_warps=num_warps, |
|
num_stages=num_stages |
|
) |
|
|
|
o = o.sum(0) |
|
ctx.save_for_backward(q, k, v, initial_state) |
|
ctx.scale = scale |
|
return o, final_state |
|
|
|
@staticmethod |
|
@contiguous |
|
def backward(ctx, do, dht=None): |
|
q, k, v, initial_state = ctx.saved_tensors |
|
B, H, T, K = q.shape |
|
V = v.shape[-1] |
|
scale = ctx.scale |
|
|
|
BK, BV = min(K, 32), min(V, 32) |
|
NK, NV = triton.cdiv(K, BK), triton.cdiv(V, BV) |
|
num_warps = 1 |
|
num_stages = 1 |
|
|
|
dq = q.new_empty(NV, B, H, T, K) |
|
dk = q.new_empty(NV, B, H, T, K) |
|
dv = q.new_empty(NK, B, H, T, V) |
|
grid = (NV, NK, B * H) |
|
|
|
fused_recurrent_linear_attn_bwd_kernel[grid]( |
|
q, k, v, do, dq, dk, dv, initial_state, |
|
q.stride(1), |
|
v.stride(1), |
|
scale, |
|
B=B, H=H, T=T, K=K, V=V, BK=BK, BV=BV, |
|
USE_INITIAL_STATE=initial_state is not None, |
|
num_warps=num_warps, |
|
num_stages=num_stages |
|
) |
|
dq = dq.sum(0) |
|
dk = dk.sum(0) |
|
dv = dv.sum(0) |
|
return dq, dk, dv, None, None, None |
|
|
|
|
|
def fused_recurrent_linear_attn( |
|
q: torch.Tensor, |
|
k: torch.Tensor, |
|
v: torch.Tensor, |
|
scale: Optional[float] = None, |
|
initial_state: torch.Tensor = None, |
|
output_final_state: bool = False, |
|
normalize: bool = False, |
|
head_first: bool = True |
|
) -> Tuple[torch.Tensor, torch.Tensor]: |
|
if scale is None: |
|
scale = q.shape[-1] ** -0.5 |
|
if not head_first: |
|
q, k, v = map(lambda x: x.transpose(1, 2), (q, k, v)) |
|
o, final_state = FusedRecurrentLinearAttentionFunction.apply(q, k, v, scale, initial_state, output_final_state) |
|
if normalize: |
|
o = normalize_output(q * scale, k, o) |
|
if not head_first: |
|
o = o.transpose(1, 2) |
|
return o, final_state |
|
|