|
|
|
|
|
|
|
from typing import Optional, Tuple |
|
|
|
import torch |
|
import triton |
|
import triton.language as tl |
|
|
|
from fla.ops.linear_attn.utils import normalize_output |
|
from fla.utils import autocast_custom_bwd, autocast_custom_fwd, contiguous |
|
|
|
|
|
@triton.jit |
|
def chunk_linear_attn_fwd_kernel_h( |
|
k, |
|
v, |
|
h, |
|
h0, |
|
ht, |
|
s_k_h, |
|
s_k_t, |
|
s_k_d, |
|
s_v_h, |
|
s_v_t, |
|
s_v_d, |
|
s_h_h, |
|
s_h_t, |
|
T: tl.constexpr, |
|
K: tl.constexpr, |
|
V: tl.constexpr, |
|
BT: tl.constexpr, |
|
BK: tl.constexpr, |
|
BV: tl.constexpr, |
|
NT: tl.constexpr, |
|
USE_INITIAL_STATE: tl.constexpr, |
|
STORE_FINAL_STATE: tl.constexpr |
|
): |
|
i_k, i_v, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2) |
|
|
|
|
|
b_h = tl.zeros([BK, BV], dtype=tl.float32) |
|
|
|
if USE_INITIAL_STATE: |
|
p_h0 = tl.make_block_ptr(h0 + i_bh * K * V, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0)) |
|
b_h = tl.load(p_h0, boundary_check=(0, 1)).to(tl.float32) |
|
|
|
for i_t in range(NT): |
|
p_k = tl.make_block_ptr(k + i_bh * s_k_h, (K, T), (s_k_d, s_k_t), (i_k * BK, i_t * BT), (BK, BT), (0, 1)) |
|
p_v = tl.make_block_ptr(v + i_bh * s_v_h, (T, V), (s_v_t, s_v_d), (i_t * BT, i_v * BV), (BT, BV), (1, 0)) |
|
p_h = tl.make_block_ptr(h + i_bh * s_h_h + i_t * K * V, (K, V), (s_h_t, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0)) |
|
|
|
tl.store(p_h, b_h.to(p_h.dtype.element_ty), boundary_check=(0, 1)) |
|
|
|
b_k = tl.load(p_k, boundary_check=(0, 1)) |
|
|
|
b_v = tl.load(p_v, boundary_check=(0, 1)) |
|
|
|
b_h += tl.dot(b_k, b_v, allow_tf32=False) |
|
|
|
if STORE_FINAL_STATE: |
|
p_ht = tl.make_block_ptr(ht + i_bh * K * V, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0)) |
|
tl.store(p_ht, b_h.to(p_ht.dtype.element_ty), boundary_check=(0, 1)) |
|
|
|
|
|
@triton.jit |
|
def chunk_linear_attn_fwd_kernel_o( |
|
q, |
|
k, |
|
v, |
|
h, |
|
o, |
|
s_k_h, |
|
s_k_t, |
|
s_k_d, |
|
s_v_h, |
|
s_v_t, |
|
s_v_d, |
|
s_h_h, |
|
s_h_t, |
|
scale, |
|
T: tl.constexpr, |
|
K: tl.constexpr, |
|
V: tl.constexpr, |
|
BT: tl.constexpr, |
|
BK: tl.constexpr, |
|
BV: tl.constexpr |
|
): |
|
i_v, i_t, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2) |
|
|
|
o_i = tl.arange(0, BT) |
|
m_s = o_i[:, None] >= o_i[None, :] |
|
|
|
b_o = tl.zeros([BT, BV], dtype=tl.float32) |
|
b_s = tl.zeros([BT, BT], dtype=tl.float32) |
|
for i_k in range(tl.cdiv(K, BK)): |
|
p_q = tl.make_block_ptr(q + i_bh * s_k_h, (T, K), (s_k_t, s_k_d), (i_t * BT, i_k * BK), (BT, BK), (1, 0)) |
|
p_k = tl.make_block_ptr(k + i_bh * s_k_h, (K, T), (s_k_d, s_k_t), (i_k * BK, i_t * BT), (BK, BT), (0, 1)) |
|
p_h = tl.make_block_ptr(h + i_bh * s_h_h + i_t * K * V, (K, V), (s_h_t, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0)) |
|
|
|
b_q = tl.load(p_q, boundary_check=(0, 1)) |
|
|
|
b_k = tl.load(p_k, boundary_check=(0, 1)) |
|
|
|
b_h = tl.load(p_h, boundary_check=(0, 1)) |
|
b_o += tl.dot(b_q, b_h, allow_tf32=False) |
|
b_s += tl.dot(b_q, b_k, allow_tf32=False) |
|
b_s = tl.where(m_s, b_s, 0) |
|
|
|
p_v = tl.make_block_ptr(v + i_bh * s_v_h, (T, V), (s_v_t, s_v_d), (i_t * BT, i_v * BV), (BT, BV), (1, 0)) |
|
p_o = tl.make_block_ptr(o + i_bh * s_v_h, (T, V), (s_v_t, s_v_d), (i_t * BT, i_v * BV), (BT, BV), (1, 0)) |
|
|
|
b_v = tl.load(p_v, boundary_check=(0, 1)) |
|
b_o = (b_o + tl.dot(b_s.to(b_v.dtype), b_v, allow_tf32=False)) * scale |
|
|
|
tl.store(p_o, b_o.to(p_o.dtype.element_ty), boundary_check=(0, 1)) |
|
|
|
|
|
@triton.jit |
|
def chunk_linear_attn_bwd_kernel_dh( |
|
q, |
|
do, |
|
dh, |
|
s_k_h, |
|
s_k_t, |
|
s_k_d, |
|
s_v_h, |
|
s_v_t, |
|
s_v_d, |
|
s_h_h, |
|
s_h_t, |
|
scale, |
|
T: tl.constexpr, |
|
K: tl.constexpr, |
|
V: tl.constexpr, |
|
BT: tl.constexpr, |
|
BK: tl.constexpr, |
|
BV: tl.constexpr, |
|
NT: tl.constexpr |
|
): |
|
i_k, i_v, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2) |
|
|
|
|
|
b_dh = tl.zeros([BK, BV], dtype=tl.float32) |
|
for i_t in range(NT - 1, -1, -1): |
|
p_q = tl.make_block_ptr(q + i_bh * s_k_h, (K, T), (s_k_d, s_k_t), (i_k * BK, i_t * BT), (BK, BT), (0, 1)) |
|
p_do = tl.make_block_ptr(do + i_bh * s_v_h, (T, V), (s_v_t, s_v_d), (i_t * BT, i_v * BV), (BT, BV), (1, 0)) |
|
p_dh = tl.make_block_ptr(dh + i_bh * s_h_h + i_t * K * V, (K, V), (s_h_t, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0)) |
|
|
|
tl.store(p_dh, b_dh.to(p_dh.dtype.element_ty), boundary_check=(0, 1)) |
|
|
|
b_q = tl.load(p_q, boundary_check=(0, 1)) |
|
b_q = (b_q * scale).to(b_q.dtype) |
|
|
|
b_do = tl.load(p_do, boundary_check=(0, 1)) |
|
|
|
b_dh += tl.dot(b_q, b_do.to(b_q.dtype), allow_tf32=False) |
|
|
|
|
|
@triton.jit |
|
def chunk_linear_attn_bwd_kernel_dqkv( |
|
q, |
|
k, |
|
v, |
|
h, |
|
do, |
|
dh, |
|
dq, |
|
dk, |
|
dv, |
|
s_k_h, |
|
s_k_t, |
|
s_k_d, |
|
s_v_h, |
|
s_v_t, |
|
s_v_d, |
|
s_h_h, |
|
s_h_t, |
|
scale, |
|
T: tl.constexpr, |
|
K: tl.constexpr, |
|
V: tl.constexpr, |
|
BT: tl.constexpr, |
|
BK: tl.constexpr, |
|
BV: tl.constexpr, |
|
NT: tl.constexpr |
|
): |
|
i_k, i_t, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2) |
|
n_bh = tl.num_programs(2) |
|
o_i = tl.arange(0, BT) |
|
|
|
p_q = tl.make_block_ptr(q + i_bh * s_k_h, (K, T), (s_k_d, s_k_t), (i_k * BK, i_t * BT), (BK, BT), (0, 1)) |
|
p_k = tl.make_block_ptr(k + i_bh * s_k_h, (T, K), (s_k_t, s_k_d), (i_t * BT, i_k * BK), (BT, BK), (1, 0)) |
|
|
|
b_q = tl.load(p_q, boundary_check=(0, 1)) |
|
b_k = tl.load(p_k, boundary_check=(0, 1)) |
|
b_s = tl.dot(b_k, b_q, allow_tf32=False) * scale |
|
b_s = tl.where(o_i[:, None] <= o_i[None, :], b_s, 0) |
|
|
|
b_dq = tl.zeros([BT, BK], dtype=tl.float32) |
|
b_dk = tl.zeros([BT, BK], dtype=tl.float32) |
|
b_ds = tl.zeros([BT, BT], dtype=tl.float32) |
|
for i_v in range(tl.cdiv(V, BV)): |
|
p_v = tl.make_block_ptr(v + i_bh * s_v_h, (T, V), (s_v_t, s_v_d), (i_t * BT, i_v * BV), (BT, BV), (1, 0)) |
|
p_h = tl.make_block_ptr(h + i_bh * s_h_h, (V, NT * K), (1, s_h_t), (i_v * BV, i_t * K + i_k * BK), (BV, BK), (0, 1)) |
|
p_do = tl.make_block_ptr(do + i_bh * s_v_h, (T, V), (s_v_t, s_v_d), (i_t * BT, i_v * BV), (BT, BV), (1, 0)) |
|
p_dh = tl.make_block_ptr(dh + i_bh * s_h_h, (NT * K, V), (s_h_t, 1), (i_t * K + i_k * BK, i_v * BV), (BK, BV), (1, 0)) |
|
p_dv = tl.make_block_ptr(dv + (i_k*n_bh+i_bh)*s_v_h, (T, V), (s_v_t, s_v_d), (i_t * BT, i_v * BV), (BT, BV), (1, 0)) |
|
|
|
b_v = tl.load(p_v, boundary_check=(0, 1)) |
|
b_do = tl.load(p_do, boundary_check=(0, 1)) |
|
|
|
b_h = tl.load(p_h, boundary_check=(0, 1)) |
|
|
|
b_dh = tl.load(p_dh, boundary_check=(0, 1)) |
|
|
|
b_ds += tl.dot(b_do, tl.trans(b_v), allow_tf32=False) |
|
|
|
b_dq += tl.dot(b_do, b_h, allow_tf32=False) * scale |
|
b_dk += tl.dot(b_v, tl.trans(b_dh), allow_tf32=False) |
|
|
|
b_dv = tl.dot(b_k, b_dh, allow_tf32=False) + tl.dot(b_s.to(b_q.dtype), b_do, allow_tf32=False) |
|
tl.store(p_dv, b_dv.to(p_dv.dtype.element_ty), boundary_check=(0, 1)) |
|
|
|
b_ds = tl.where(o_i[:, None] >= o_i[None, :], b_ds * scale, 0).to(b_q.dtype) |
|
|
|
b_dq += tl.dot(b_ds, b_k, allow_tf32=False) |
|
b_dk += tl.trans(tl.dot(b_q, b_ds, allow_tf32=False)) |
|
|
|
p_dq = tl.make_block_ptr(dq + i_bh * s_k_h, (T, K), (s_k_t, s_k_d), (i_t * BT, i_k * BK), (BT, BK), (1, 0)) |
|
p_dk = tl.make_block_ptr(dk + i_bh * s_k_h, (T, K), (s_k_t, s_k_d), (i_t * BT, i_k * BK), (BT, BK), (1, 0)) |
|
tl.store(p_dq, b_dq.to(p_dq.dtype.element_ty), boundary_check=(0, 1)) |
|
tl.store(p_dk, b_dk.to(p_dk.dtype.element_ty), boundary_check=(0, 1)) |
|
|
|
|
|
class ChunkLinearAttentionFunction(torch.autograd.Function): |
|
|
|
@staticmethod |
|
@contiguous |
|
@autocast_custom_fwd |
|
def forward(ctx, q, k, v, scale, initial_state, output_final_state): |
|
B, H, T, K, V = *q.shape, v.shape[-1] |
|
BT = 64 |
|
BK, BV = min(64, triton.next_power_of_2(K)), min(64, triton.next_power_of_2(V)) |
|
NT, NK, NV = triton.cdiv(T, BT), triton.cdiv(K, BK), triton.cdiv(V, BV) |
|
num_stages = 1 |
|
num_warps = 4 if BK == 64 else 2 |
|
ctx.scale = scale |
|
|
|
final_state = None |
|
if output_final_state: |
|
final_state = q.new_empty(B, H, K, V, dtype=torch.float32, requires_grad=False) |
|
|
|
h = q.new_empty(B, H, NT * K, V) |
|
grid = (NK, NV, B * H) |
|
chunk_linear_attn_fwd_kernel_h[grid]( |
|
k, v, h, initial_state, final_state, |
|
q.stride(1), q.stride(2), q.stride(3), |
|
v.stride(1), v.stride(2), v.stride(3), |
|
h.stride(1), h.stride(2), |
|
T=T, K=K, V=V, BT=BT, BK=BK, BV=BV, NT=NT, |
|
USE_INITIAL_STATE=initial_state is not None, |
|
STORE_FINAL_STATE=output_final_state, |
|
num_warps=num_warps, |
|
num_stages=num_stages |
|
) |
|
grid = (NV, NT, B * H) |
|
o = torch.empty_like(v) |
|
chunk_linear_attn_fwd_kernel_o[grid]( |
|
q, k, v, h, o, |
|
q.stride(1), q.stride(2), q.stride(3), |
|
v.stride(1), v.stride(2), v.stride(3), |
|
h.stride(1), h.stride(2), |
|
scale, |
|
T=T, K=K, V=V, BT=BT, BK=BK, BV=BV, |
|
num_warps=num_warps, |
|
num_stages=num_stages |
|
) |
|
ctx.save_for_backward(q, k, v, h) |
|
return o.to(q.dtype), final_state |
|
|
|
@staticmethod |
|
@contiguous |
|
@autocast_custom_bwd |
|
def backward(ctx, do, dht=None): |
|
q, k, v, h = ctx.saved_tensors |
|
|
|
B, H, T, K, V = *q.shape, v.shape[-1] |
|
BT = 64 |
|
BK, BV = min(64, triton.next_power_of_2(K)), min(32 if q.dtype == torch.float32 else 64, triton.next_power_of_2(V)) |
|
NT, NK, NV = triton.cdiv(T, BT), triton.cdiv(K, BK), triton.cdiv(V, BV) |
|
num_stages = 1 |
|
num_warps = 4 if BK == 64 else 2 |
|
scale = ctx.scale |
|
|
|
dh = q.new_empty(B, H, NT * K, V) |
|
grid = (NK, NV, B * H) |
|
chunk_linear_attn_bwd_kernel_dh[grid]( |
|
q, do, dh, |
|
q.stride(1), q.stride(2), q.stride(3), |
|
v.stride(1), v.stride(2), v.stride(3), |
|
dh.stride(1), dh.stride(2), |
|
scale, |
|
T=T, K=K, V=V, BT=BT, BK=BK, BV=BV, NT=NT, |
|
num_warps=num_warps, |
|
num_stages=num_stages |
|
) |
|
|
|
grid = (NK, NT, B * H) |
|
dq = torch.empty_like(q) |
|
dk = torch.empty_like(k) |
|
dv = v.new_empty(NK, *v.shape) |
|
num_stages = 1 |
|
num_warps = 4 if BK == 64 else 2 |
|
chunk_linear_attn_bwd_kernel_dqkv[grid]( |
|
q, k, v, h, do, dh, dq, dk, dv, |
|
q.stride(1), q.stride(2), q.stride(3), |
|
v.stride(1), v.stride(2), v.stride(3), |
|
dh.stride(1), dh.stride(2), |
|
scale, |
|
T=T, K=K, V=V, BT=BT, BK=BK, BV=BV, NT=NT, |
|
num_warps=num_warps, |
|
num_stages=num_stages |
|
) |
|
dv = dv.sum(0) |
|
return dq.to(q.dtype), dk.to(k.dtype), dv.to(v.dtype), None, None, None |
|
|
|
|
|
def chunk_linear_attn( |
|
q: torch.Tensor, |
|
k: torch.Tensor, |
|
v: torch.Tensor, |
|
scale: Optional[float] = None, |
|
initial_state: torch.Tensor = None, |
|
output_final_state: bool = False, |
|
normalize: bool = True, |
|
head_first: bool = True |
|
) -> Tuple[torch.Tensor, torch.Tensor]: |
|
r""" |
|
Args: |
|
q (torch.Tensor): |
|
queries of shape `[B, H, T, K]` if `head_first=True` else `[B, T, H, K]` |
|
k (torch.Tensor): |
|
keys of shape `[B, H, T, K]` if `head_first=True` else `[B, T, H, K]` |
|
v (torch.Tensor): |
|
values of shape `[B, H, T, V]` if `head_first=True` else `[B, T, H, V]` |
|
scale (Optional[int]): |
|
Scale factor for the linear attention scores. |
|
If not provided, it will default to `1 / sqrt(K)`. Default: `None`. |
|
initial_state (Optional[torch.Tensor]): |
|
Initial state of shape `[B, H, K, V]`. Default: `None`. |
|
output_final_state (Optional[bool]): |
|
Whether to output the final state of shape `[B, H, K, V]`. Default: `False`. |
|
normalize (bool): |
|
Whether to normalize the output. Default: `True`. |
|
head_first (Optional[bool]): |
|
Whether the inputs are in the head-first format. Default: `True`. |
|
|
|
Returns: |
|
o (torch.Tensor): |
|
Outputs of shape `[B, H, T, V]` if `head_first=True` else `[B, T, H, V]` |
|
final_state (torch.Tensor): |
|
Final state of shape `[B, H, K, V]` if `output_final_state=True` else `None` |
|
""" |
|
if scale is None: |
|
scale = q.shape[-1] ** -0.5 |
|
if not head_first: |
|
q, k, v = map(lambda x: x.transpose(1, 2), (q, k, v)) |
|
o, final_state = ChunkLinearAttentionFunction.apply(q, k, v, scale, initial_state, output_final_state) |
|
if normalize: |
|
o = normalize_output(q * scale, k, o) |
|
if not head_first: |
|
o = o.transpose(1, 2) |
|
return o, final_state |
|
|