|
|
|
|
|
|
|
|
|
from typing import Optional |
|
|
|
import torch |
|
import triton |
|
import triton.language as tl |
|
|
|
from fla.utils import autocast_custom_bwd, autocast_custom_fwd, contiguous |
|
|
|
|
|
|
|
|
|
|
|
@triton.jit |
|
def parallel_based_fwd_kernel( |
|
q, |
|
k, |
|
v, |
|
o, |
|
z, |
|
s_k_h, |
|
s_k_t, |
|
s_k_d, |
|
s_v_h, |
|
s_v_t, |
|
s_v_d, |
|
scale, |
|
B: tl.constexpr, |
|
H: tl.constexpr, |
|
T: tl.constexpr, |
|
K: tl.constexpr, |
|
V: tl.constexpr, |
|
BTL: tl.constexpr, |
|
BTS: tl.constexpr, |
|
BK: tl.constexpr, |
|
BV: tl.constexpr, |
|
): |
|
|
|
i_kv, i_c, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2) |
|
NV = tl.cdiv(V, BV) |
|
i_k = i_kv // (NV) |
|
i_v = i_kv % (NV) |
|
|
|
p_q = tl.make_block_ptr(q + i_bh * s_k_h, (T, K), (s_k_t, s_k_d), (i_c * BTL, i_k * BK), (BTL, BK), (1, 0)) |
|
p_k = tl.make_block_ptr(k + i_bh * s_k_h, (K, T), (s_k_d, s_k_t), (i_k * BK, 0), (BK, BTS), (0, 1)) |
|
p_v = tl.make_block_ptr(v + i_bh * s_v_h, (T, V), (s_v_t, s_v_d), (0, i_v * BV), (BTS, BV), (1, 0)) |
|
|
|
|
|
b_q = tl.load(p_q, boundary_check=(0, 1)) |
|
b_q = (b_q * scale).to(b_q.dtype) |
|
b_o = tl.zeros([BTL, BV], dtype=tl.float32) |
|
b_z = tl.zeros([BTL], dtype=tl.float32) |
|
|
|
|
|
|
|
for _ in range(0, i_c * BTL, BTS): |
|
|
|
b_k = tl.load(p_k, boundary_check=(0, 1)) |
|
|
|
|
|
b_v = tl.load(p_v, boundary_check=(0, 1)) |
|
|
|
b_s = tl.dot(b_q, (b_k), allow_tf32=False) |
|
b_s = 1 + b_s + 0.5 * b_s * b_s |
|
b_z += tl.sum(b_s, axis=1) |
|
|
|
|
|
b_o = b_o + tl.dot(b_s.to(b_v.dtype), b_v, allow_tf32=False) |
|
p_k = tl.advance(p_k, (0, BTS)) |
|
p_v = tl.advance(p_v, (BTS, 0)) |
|
|
|
|
|
tl.debug_barrier() |
|
o_q = tl.arange(0, BTL) |
|
|
|
|
|
|
|
o_k = tl.arange(0, BTS) |
|
p_k = tl.make_block_ptr(k + i_bh * s_k_h, (K, T), (s_k_d, s_k_t), (i_k * BK, i_c * BTL), (BK, BTS), (0, 1)) |
|
p_v = tl.make_block_ptr(v + i_bh * s_v_h, (T, V), (s_v_t, s_v_d), (i_c * BTL, i_v * BV), (BTS, BV), (1, 0)) |
|
|
|
for _ in range(i_c * BTL, (i_c + 1) * BTL, BTS): |
|
|
|
b_k = tl.load(p_k, boundary_check=(0, 1)) |
|
|
|
b_v = tl.load(p_v, boundary_check=(0, 1)) |
|
|
|
m_s = o_q[:, None] >= o_k[None, :] |
|
b_s = tl.dot(b_q, b_k, allow_tf32=False) |
|
b_s = 1 + b_s + 0.5 * b_s * b_s |
|
b_s = tl.where(m_s, b_s, 0) |
|
b_z += tl.sum(b_s, axis=1) |
|
|
|
b_o += tl.dot(b_s.to(b_q.dtype), b_v, allow_tf32=False) |
|
|
|
p_k = tl.advance(p_k, (0, BTS)) |
|
p_v = tl.advance(p_v, (BTS, 0)) |
|
o_k += BTS |
|
|
|
p_o = tl.make_block_ptr(o + (i_bh + B * H * i_k) * s_v_h, (T, V), (s_v_t, s_v_d), (i_c*BTL, i_v*BV), (BTL, BV), (1, 0)) |
|
p_z = z + (i_bh + B * H * i_k) * T + i_c * BTL + tl.arange(0, BTL) |
|
tl.store(p_o, b_o.to(p_o.dtype.element_ty), boundary_check=(0, 1)) |
|
tl.store(p_z, b_z.to(p_z.dtype.element_ty), mask=((i_c * BTL + tl.arange(0, BTL)) < T)) |
|
|
|
|
|
@triton.jit |
|
def _parallel_based_bwd_dq( |
|
i_bh, |
|
i_c, |
|
i_k, |
|
i_v, |
|
i_h, |
|
q, |
|
k, |
|
v, |
|
do, |
|
dz, |
|
dq, |
|
s_k_h, |
|
s_k_t, |
|
s_k_d, |
|
s_v_h, |
|
s_v_t, s_v_d, B, H, T, scale, |
|
BTL: tl.constexpr, |
|
BTS: tl.constexpr, |
|
BK: tl.constexpr, |
|
BV: tl.constexpr, |
|
K: tl.constexpr, |
|
V: tl.constexpr, |
|
): |
|
p_do = tl.make_block_ptr(do + i_bh * s_v_h, (T, V), (s_v_t, s_v_d), |
|
(i_c * BTL, i_v * BV), (BTL, BV), (1, 0)) |
|
p_q = tl.make_block_ptr(q + (i_bh) * s_k_h, (T, K), |
|
(s_k_t, s_k_d), (i_c*BTL, i_k*BK), (BTL, BK), (1, 0)) |
|
b_q = tl.load(p_q, boundary_check=(0, 1)) |
|
b_do = tl.load(p_do, boundary_check=(0, 1)).to(b_q.dtype) |
|
b_q = (b_q * scale).to(b_q.dtype) |
|
b_dq = tl.zeros([BTL, BK], dtype=tl.float32) |
|
p_k = tl.make_block_ptr(k + i_bh * s_k_h, (T, K), (s_k_t, s_k_d), (0, i_k * BK), (BTS, BK), (1, 0)) |
|
p_v = tl.make_block_ptr(v + i_bh * s_v_h, (V, T), (s_v_d, s_v_t), (i_v * BV, 0), (BV, BTS), (0, 1)) |
|
p_dz = dz + i_bh * T + i_c * BTL + tl.arange(0, BTL) |
|
b_dz = tl.load(p_dz, mask=(i_c * BTL + tl.arange(0, BTL)) < T) |
|
|
|
for _ in range(0, i_c * BTL, BTS): |
|
|
|
b_k = tl.load(p_k, boundary_check=(0, 1)) |
|
|
|
b_v = tl.load(p_v, boundary_check=(0, 1)) |
|
|
|
b_ds = tl.dot(b_do, b_v, allow_tf32=False) |
|
if i_v == 0: |
|
b_ds += b_dz[:, None] |
|
else: |
|
b_ds = b_ds |
|
b_s = tl.dot(b_q, tl.trans(b_k), allow_tf32=False) |
|
|
|
b_dq += tl.dot((b_ds * (1 + b_s)).to(b_v.dtype), b_k, allow_tf32=False) |
|
p_k = tl.advance(p_k, (BTS, 0)) |
|
p_v = tl.advance(p_v, (0, BTS)) |
|
|
|
b_dq *= scale |
|
o_q = tl.arange(0, BTL) |
|
o_k = tl.arange(0, BTS) |
|
p_k = tl.make_block_ptr(k + i_bh * s_k_h, (T, K), (s_k_t, s_k_d), (i_c * BTL, i_k * BK), (BTS, BK), (1, 0)) |
|
p_v = tl.make_block_ptr(v + i_bh * s_v_h, (V, T), (s_v_d, s_v_t), (i_v * BV, i_c * BTL), (BV, BTS), (0, 1)) |
|
|
|
for _ in range(i_c * BTL, (i_c + 1) * BTL, BTS): |
|
|
|
b_k = tl.load(p_k, boundary_check=(0, 1)) |
|
|
|
b_v = tl.load(p_v, boundary_check=(0, 1)) |
|
|
|
m_s = o_q[:, None] >= o_k[None, :] |
|
b_ds = tl.dot(b_do, b_v, allow_tf32=False) |
|
if i_v == 0: |
|
b_ds += b_dz[:, None] |
|
else: |
|
b_ds = b_ds |
|
b_ds = tl.where(m_s, b_ds, 0) * scale |
|
b_s = tl.dot(b_q, tl.trans(b_k), allow_tf32=False) |
|
b_s = tl.where(m_s, b_s, 0) |
|
|
|
b_dq += tl.dot((b_ds + b_ds * b_s).to(b_k.dtype), |
|
b_k, allow_tf32=False) |
|
p_k = tl.advance(p_k, (BTS, 0)) |
|
p_v = tl.advance(p_v, (0, BTS)) |
|
o_k += BTS |
|
p_dq = tl.make_block_ptr(dq + (i_bh + B * H * i_v) * s_k_h, (T, K), |
|
(s_k_t, s_k_d), (i_c*BTL, i_k*BK), (BTL, BK), (1, 0)) |
|
tl.store(p_dq, b_dq.to(p_dq.dtype.element_ty), boundary_check=(0, 1)) |
|
return |
|
|
|
|
|
@triton.jit |
|
def _parallel_based_bwd_dkv( |
|
i_bh, i_c, i_k, i_v, i_h, |
|
q, k, v, do, dz, dk, dv, s_k_h, s_k_t, s_k_d, s_v_h, |
|
s_v_t, s_v_d, B, H, T, scale, |
|
BTL: tl.constexpr, BTS: tl.constexpr, BK: tl.constexpr, BV: tl.constexpr, |
|
K: tl.constexpr, V: tl.constexpr, |
|
): |
|
|
|
p_k = tl.make_block_ptr(k + i_bh * s_k_h, (T, K), (s_k_t, s_k_d), (i_c * BTL, i_k * BK), (BTL, BK), (1, 0)) |
|
p_v = tl.make_block_ptr(v + i_bh * s_v_h, (T, V), (s_v_t, s_v_d), (i_c * BTL, i_v * BV), (BTL, BV), (1, 0)) |
|
b_k, b_v = tl.load(p_k, boundary_check=(0, 1)), tl.load( |
|
p_v, boundary_check=(0, 1)) |
|
b_dk, b_dv = tl.zeros([BTL, BK], dtype=tl.float32), tl.zeros( |
|
[BTL, BV], dtype=tl.float32) |
|
|
|
for i in range((tl.cdiv(T, BTS) * BTS)-BTS, (i_c + 1) * BTL - BTS, -BTS): |
|
p_q = tl.make_block_ptr(q + i_bh * s_k_h, (K, T), (s_k_d, s_k_t), (i_k * BK, i), (BK, BTS), (0, 1)) |
|
p_do = tl.make_block_ptr(do + i_bh * s_v_h, (V, T), (s_v_d, s_v_t), (i_v * BV, i), (BV, BTS), (0, 1)) |
|
p_dz = dz + i_bh * T + i + tl.arange(0, BTS) |
|
b_q = tl.load(p_q, boundary_check=(0, 1)) |
|
b_do = tl.load(p_do, boundary_check=(0, 1)).to(b_q.dtype) |
|
b_dz = tl.load(p_dz, mask=(i + tl.arange(0, BTS)) < T) |
|
b_s = tl.dot(b_k.to(b_q.dtype), b_q, allow_tf32=False) * \ |
|
scale |
|
b_s2 = 1 + b_s + 0.5 * b_s * b_s |
|
b_dv += tl.dot(b_s2.to(b_q.dtype), tl.trans(b_do), allow_tf32=False) |
|
b_ds = tl.dot(b_v, b_do, allow_tf32=False) * scale |
|
if i_v == 0: |
|
b_ds += b_dz[None, :] * scale |
|
else: |
|
b_ds = b_ds |
|
b_dk += tl.dot((b_ds + b_ds * b_s).to(b_q.dtype), tl.trans(b_q), allow_tf32=False) |
|
|
|
tl.debug_barrier() |
|
o_q, o_k = tl.arange(0, BTS), tl.arange(0, BTL) |
|
for i in range(i_c*BTL, (i_c+1)*BTL, BTS): |
|
p_q = tl.make_block_ptr(q + i_bh * s_k_h, (K, T), (s_k_d, s_k_t), (i_k * BK, i), (BK, BTS), (0, 1)) |
|
p_do = tl.make_block_ptr(do + i_bh * s_v_h, (V, T), (s_v_d, s_v_t), (i_v * BV, i), (BV, BTS), (0, 1)) |
|
p_dz = dz + i_bh * T + i + tl.arange(0, BTS) |
|
b_q = tl.load(p_q, boundary_check=(0, 1)) |
|
b_do = tl.load(p_do, boundary_check=(0, 1)).to(b_q.dtype) |
|
b_dz = tl.load(p_dz, mask=(i + tl.arange(0, BTS)) < T) |
|
|
|
m_s = o_k[:, None] <= o_q[None, :] |
|
b_s = tl.dot(b_k, b_q, allow_tf32=False) * scale |
|
b_s2 = 1 + b_s + 0.5 * b_s * b_s |
|
b_s = tl.where(m_s, b_s, 0) |
|
b_s2 = tl.where(m_s, b_s2, 0) |
|
|
|
b_ds = tl.dot(b_v, b_do, allow_tf32=False) |
|
if i_v == 0: |
|
b_ds += b_dz[None, :] |
|
else: |
|
b_ds = b_ds |
|
b_ds = tl.where(m_s, b_ds, 0) * scale |
|
|
|
b_dv += tl.dot(b_s2.to(b_q.dtype), tl.trans(b_do), allow_tf32=False) |
|
b_dk += tl.dot((b_ds + b_ds * b_s).to(b_q.dtype), |
|
tl.trans(b_q), allow_tf32=False) |
|
o_q += BTS |
|
|
|
p_dk = tl.make_block_ptr(dk + (i_bh + B * H * i_v) * s_k_h, (T, K), |
|
(s_k_t, s_k_d), (i_c*BTL, i_k*BK), (BTL, BK), (1, 0)) |
|
p_dv = tl.make_block_ptr(dv + (i_bh + B * H * i_k) * s_v_h, (T, V), |
|
(s_v_t, s_v_d), (i_c*BTL, i_v*BV), (BTL, BV), (1, 0)) |
|
tl.store(p_dk, b_dk.to(p_dk.dtype.element_ty), boundary_check=(0, 1)) |
|
tl.store(p_dv, b_dv.to(p_dv.dtype.element_ty), boundary_check=(0, 1)) |
|
return |
|
|
|
|
|
@triton.jit |
|
def parallel_based_bwd_kernel( |
|
q, |
|
k, |
|
v, |
|
do, |
|
dz, |
|
dq, |
|
dk, |
|
dv, |
|
s_k_h, |
|
s_k_t, |
|
s_k_d, |
|
s_v_h, |
|
s_v_t, |
|
s_v_d, |
|
scale, |
|
B: tl.constexpr, |
|
H: tl.constexpr, |
|
T: tl.constexpr, |
|
K: tl.constexpr, |
|
V: tl.constexpr, |
|
BTL: tl.constexpr, |
|
BTS: tl.constexpr, |
|
BK: tl.constexpr, |
|
BV: tl.constexpr, |
|
): |
|
i_kv, i_c, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2) |
|
NV = tl.cdiv(V, BV) |
|
i_k = i_kv // (NV) |
|
i_v = i_kv % (NV) |
|
i_h = i_bh % H |
|
_parallel_based_bwd_dq( |
|
i_bh, i_c, i_k, i_v, i_h, |
|
q, k, v, do, dz, dq, s_k_h, s_k_t, s_k_d, s_v_h, |
|
s_v_t, s_v_d, B, H, T, scale, BTL=BTL, BTS=BTS, BK=BK, BV=BV, K=K, V=V |
|
) |
|
tl.debug_barrier() |
|
_parallel_based_bwd_dkv( |
|
i_bh, i_c, i_k, i_v, i_h, |
|
q, k, v, do, dz, dk, dv, s_k_h, s_k_t, s_k_d, s_v_h, |
|
s_v_t, s_v_d, B, H, T, scale, BTL, BTS, BK, BV, K, V |
|
) |
|
|
|
|
|
class ParallelBasedFunction(torch.autograd.Function): |
|
|
|
@staticmethod |
|
@contiguous |
|
@autocast_custom_fwd |
|
def forward(ctx, q, k, v, scale): |
|
BTL, BTS = 128, 32 |
|
assert BTL % BTS == 0 |
|
|
|
BK = min(128, triton.next_power_of_2(k.shape[-1])) |
|
BV = min(128, triton.next_power_of_2(v.shape[-1])) |
|
BK, BV = max(BK, 16), max(BV, 16) |
|
B, H, T, K, V = *k.shape, v.shape[-1] |
|
num_stages = 2 |
|
num_warps = 4 |
|
NK = triton.cdiv(K, BK) |
|
NV = triton.cdiv(V, BV) |
|
grid = (NK * NV, triton.cdiv(T, BTL), B * H) |
|
|
|
assert NK == 1, "will encounter some synchronization issue if not." |
|
|
|
o = torch.empty(NK, B, H, T, V, device=q.device) |
|
z = torch.empty(NK, B, H, T, device=q.device) |
|
parallel_based_fwd_kernel[grid]( |
|
q, k, v, o, z, |
|
q.stride(1), q.stride(2), q.stride(3), |
|
v.stride(1), v.stride(2), v.stride(3), |
|
scale, |
|
B=B, H=H, T=T, K=K, V=V, |
|
BTL=BTL, BTS=BTS, BK=BK, BV=BV, |
|
num_warps=num_warps, |
|
num_stages=num_stages |
|
) |
|
ctx.save_for_backward(q, k, v) |
|
ctx.scale = scale |
|
return o.sum(0).to(q.dtype), z.sum(0).to(q.dtype) |
|
|
|
@staticmethod |
|
@contiguous |
|
@autocast_custom_bwd |
|
def backward(ctx, do, dz): |
|
q, k, v = ctx.saved_tensors |
|
scale = ctx.scale |
|
BTL, BTS = 64, 32 |
|
assert BTL % BTS == 0 |
|
BK = min(128, triton.next_power_of_2(k.shape[-1])) |
|
BV = min(128, triton.next_power_of_2(v.shape[-1])) |
|
BK, BV = max(BK, 16), max(BV, 16) |
|
B, H, T, K, V = *k.shape, v.shape[-1] |
|
num_stages = 2 |
|
num_warps = 4 |
|
NK = triton.cdiv(K, BK) |
|
NV = triton.cdiv(V, BV) |
|
grid = (NK * NV, triton.cdiv(T, BTL), B * H) |
|
|
|
assert NK == 1, "will encounter some synchronization issue if not" |
|
|
|
dq = torch.empty(NV, B, H, T, K, dtype=q.dtype, device=q.device) |
|
dk = torch.empty(NV, B, H, T, K, dtype=q.dtype, device=q.device) |
|
dv = torch.empty(NK, B, H, T, V, dtype=q.dtype, device=q.device) |
|
|
|
parallel_based_bwd_kernel[grid]( |
|
q, k, v, do, dz, dq, dk, dv, |
|
q.stride(1), q.stride(2), q.stride(3), |
|
v.stride(1), v.stride(2), v.stride(3), |
|
scale, |
|
B=B, H=H, T=T, K=K, V=V, |
|
BTL=BTL, BTS=BTS, BK=BK, BV=BV, |
|
num_warps=num_warps, |
|
num_stages=num_stages |
|
) |
|
|
|
return dq.sum(0).to(q.dtype), dk.sum(0).to(k.dtype), dv.sum(0).to(v.dtype), None |
|
|
|
|
|
triton_parallel_based = ParallelBasedFunction.apply |
|
|
|
|
|
def parallel_based( |
|
q: torch.Tensor, |
|
k: torch.Tensor, |
|
v: torch.Tensor, |
|
scale: Optional[float] = None, |
|
use_norm: bool = True, |
|
head_first: bool = True |
|
): |
|
assert q.shape[-1] <= 128, "only support feature dim up to 128" |
|
if scale is None: |
|
scale = q.shape[-1] ** -0.5 |
|
if not head_first: |
|
q, k, v = map(lambda x: x.transpose(1, 2), (q, k, v)) |
|
o, z = triton_parallel_based(q, k, v, scale) |
|
if use_norm: |
|
o = o / (z[..., None] + 1e-6) |
|
if not head_first: |
|
o = o.transpose(1, 2) |
|
return o.to(q.dtype) |
|
|