|
|
|
|
|
|
|
from typing import Optional |
|
|
|
import torch |
|
import triton |
|
import triton.language as tl |
|
|
|
from fla.utils import autocast_custom_bwd, autocast_custom_fwd, contiguous |
|
|
|
|
|
@triton.jit |
|
def fused_chunk_based_fwd_kernel( |
|
q, |
|
k, |
|
v, |
|
o, |
|
z, |
|
s_k_h, |
|
s_k_t, |
|
s_k_d, |
|
s_v_h, |
|
s_v_t, |
|
s_v_d, |
|
scale, |
|
B: tl.constexpr, |
|
H: tl.constexpr, |
|
T: tl.constexpr, |
|
K: tl.constexpr, |
|
V: tl.constexpr, |
|
BT: tl.constexpr, |
|
BK: tl.constexpr, |
|
BV: tl.constexpr, |
|
): |
|
|
|
i_v, i_k, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2) |
|
|
|
o_i = tl.arange(0, BT) |
|
|
|
|
|
m_s = o_i[:, None] >= o_i[None, :] |
|
|
|
|
|
b_h_0o = tl.zeros([BV], dtype=tl.float32) |
|
|
|
b_h_1o = tl.zeros([BK, BV], dtype=tl.float32) |
|
|
|
b_h_2o = tl.zeros([BK*BK, BV], dtype=tl.float32) |
|
|
|
|
|
p_q = tl.make_block_ptr(q + i_bh * s_k_h, (T, K), (s_k_t, s_k_d), (0, i_k * BK), (BT, BK), (1, 0)) |
|
p_k = tl.make_block_ptr(k + i_bh * s_k_h, (K, T), (s_k_d, s_k_t), (i_k * BK, 0), (BK, BT), (0, 1)) |
|
p_v = tl.make_block_ptr(v + i_bh * s_v_h, (T, V), (s_v_t, s_v_d), (0, i_v * BV), (BT, BV), (1, 0)) |
|
p_o = tl.make_block_ptr(o + (i_bh + i_k*B*H) * s_v_h, (T, V), (s_v_t, s_v_d), (0, i_v * BV), (BT, BV), (1, 0)) |
|
|
|
p_z = z + (i_bh + i_k * B * H) * T + tl.arange(0, BT) |
|
k_2o = tl.zeros([1, BK * BK], dtype=tl.float32) |
|
k_1o = tl.zeros([1, BK], dtype=tl.float32) |
|
k_0o = 0 |
|
|
|
for i in range(0, tl.cdiv(T, BT)): |
|
|
|
b_k = tl.load(p_k, boundary_check=(0, 1)) |
|
|
|
b_k_2o = b_k[:, None, :] * b_k[None, :, :] |
|
b_k_2o = tl.reshape(b_k_2o, [BK * BK, BT]).to(b_k.dtype) |
|
|
|
b_v = tl.load(p_v, boundary_check=(0, 1)) |
|
|
|
b_q = (tl.load(p_q, boundary_check=(0, 1)) * scale).to(b_k.dtype) |
|
b_o = tl.zeros([BT, BV], dtype=tl.float32) |
|
b_z = tl.zeros([BT], dtype=tl.float32) |
|
|
|
|
|
|
|
b_o += b_h_0o |
|
b_z += k_0o |
|
|
|
b_o += tl.dot(b_q, b_h_1o.to(b_q.dtype), allow_tf32=False) |
|
b_z += tl.sum(b_q * k_1o, axis=1) |
|
|
|
b_q_2o = b_q[:, :, None] * b_q[:, None, :] |
|
b_q_2o = tl.reshape(b_q_2o, [BT, BK * BK]).to(b_k.dtype) |
|
b_o += tl.dot(b_q_2o, b_h_2o.to(b_q_2o.dtype), allow_tf32=False) * 0.5 |
|
b_z += tl.sum(b_q_2o * k_2o, axis=1) * 0.5 |
|
|
|
|
|
k_1o += tl.sum(b_k, axis=1)[None, :] |
|
k_2o += tl.sum(b_k_2o, axis=1)[None, :] |
|
k_0o += BT |
|
|
|
|
|
|
|
b_s = tl.dot(b_q, b_k, allow_tf32=False) |
|
b_s = 1 + b_s + 0.5 * b_s * b_s |
|
b_s = tl.where(m_s, b_s, 0) |
|
b_z += tl.sum(b_s, axis=1) |
|
b_o += tl.dot(b_s.to(b_q.dtype), b_v, allow_tf32=False) |
|
|
|
tl.store(p_o, b_o.to(p_o.dtype.element_ty), boundary_check=(0, 1)) |
|
tl.store(p_z, b_z.to(p_z.dtype.element_ty), mask=(i * BT + tl.arange(0, BT)) < T) |
|
|
|
|
|
|
|
b_h_2o = b_h_2o + tl.dot(b_k_2o.to(b_v.dtype), b_v, allow_tf32=False) |
|
b_h_1o = b_h_1o + tl.dot(b_k, b_v, allow_tf32=False) |
|
b_h_0o = b_h_0o + tl.sum(b_v, axis=0) |
|
|
|
p_q = tl.advance(p_q, (BT, 0)) |
|
p_k = tl.advance(p_k, (0, BT)) |
|
p_v = tl.advance(p_v, (BT, 0)) |
|
p_o = tl.advance(p_o, (BT, 0)) |
|
p_z += BT |
|
|
|
|
|
|
|
@triton.jit |
|
def fused_chunk_based_bwd_kernel( |
|
|
|
q, |
|
k, |
|
v, |
|
do, |
|
dz, |
|
dq, |
|
dk, |
|
dv, |
|
s_k_h, |
|
s_k_t, |
|
s_k_d, |
|
s_v_h, |
|
s_v_t, |
|
s_v_d, |
|
scale, |
|
B: tl.constexpr, |
|
H: tl.constexpr, |
|
T: tl.constexpr, |
|
K: tl.constexpr, |
|
V: tl.constexpr, |
|
BT: tl.constexpr, |
|
BK: tl.constexpr, |
|
BV: tl.constexpr, |
|
): |
|
i_v, i_k, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2) |
|
|
|
o_i = tl.arange(0, BT) |
|
m_s = o_i[:, None] >= o_i[None, :] |
|
|
|
|
|
|
|
|
|
b_h_1o = tl.zeros([BV, BK], dtype=tl.float32) |
|
|
|
b_h_2o = tl.zeros([BV, BK*BK], dtype=tl.float32) |
|
|
|
k_1o = tl.zeros([1, BK], dtype=tl.float32) |
|
k_2o = tl.zeros([1, BK * BK], dtype=tl.float32) |
|
|
|
for i in range(0, tl.cdiv(T, BT)): |
|
p_q = tl.make_block_ptr(q + i_bh * s_k_h, (T, K), (s_k_t, s_k_d), (i * BT, i_k * BK), (BT, BK), (1, 0)) |
|
p_k = tl.make_block_ptr(k + i_bh * s_k_h, (T, K), (s_k_t, s_k_d), (i * BT, i_k * BK), (BT, BK), (1, 0)) |
|
p_v = tl.make_block_ptr(v + i_bh * s_v_h, (V, T), (s_v_d, s_v_t), (i_v * BV, i * BT), (BV, BT), (0, 1)) |
|
p_do = tl.make_block_ptr(do + i_bh * s_v_h, (T, V), (s_v_t, s_v_d), (i * BT, i_v * BV), (BT, BV), (1, 0)) |
|
p_dq = tl.make_block_ptr(dq + (i_bh + i_v*B*H) * s_k_h, (T, K), (s_k_t, s_k_d), (i*BT, i_k*BK), (BT, BK), (1, 0)) |
|
p_dz = dz + (i_bh) * T + tl.arange(0, BT) + i * BT |
|
b_dq = tl.zeros([BT, BK], dtype=tl.float32) |
|
|
|
|
|
|
|
b_q = tl.load(p_q, boundary_check=(0, 1)) |
|
b_q = (b_q * scale).to(b_q.dtype) |
|
b_k = tl.load(p_k, boundary_check=(0, 1)) |
|
b_do = tl.load(p_do, boundary_check=(0, 1)).to(b_q.dtype) |
|
b_dz = tl.load(p_dz, mask=(tl.arange(0, BT) + i * BT) < T) |
|
|
|
b_v = tl.load(p_v, boundary_check=(0, 1)) |
|
|
|
|
|
b_dq += tl.dot(b_do, (b_h_1o).to(b_do.dtype), allow_tf32=False) |
|
if i_v == 0: |
|
b_dq += b_dz[:, None] * k_1o |
|
b_dq_2o = tl.dot(b_do, (b_h_2o).to(b_do.dtype), allow_tf32=False) * 0.5 |
|
if i_v == 0: |
|
b_dq_2o += (b_dz[:, None] * k_2o) * 0.5 |
|
b_dq_2o = tl.reshape(b_dq_2o, [BT, BK, BK]) |
|
b_dq += tl.sum(b_dq_2o * b_q[:, :, None], axis=1) |
|
b_dq += tl.sum(b_dq_2o * b_q[:, None, :], axis=2) |
|
b_dq *= scale |
|
|
|
|
|
|
|
b_ds = tl.dot(b_do, b_v, allow_tf32=False) |
|
if i_v == 0: |
|
b_ds += b_dz[:, None] |
|
b_ds = tl.where(m_s, b_ds, 0) * scale |
|
b_s = tl.dot(b_q, tl.trans(b_k), allow_tf32=False) |
|
b_s = tl.where(m_s, b_s, 0) |
|
b_dq += tl.dot((b_ds * (1 + b_s)).to(b_q.dtype), b_k, allow_tf32=False) |
|
|
|
|
|
tl.store(p_dq, b_dq.to(p_dq.dtype.element_ty), boundary_check=(0, 1)) |
|
|
|
|
|
|
|
b_k_2o = b_k[:, :, None] * b_k[:, None, :] |
|
b_k_2o = tl.reshape(b_k_2o, [BT, BK * BK]).to(b_k.dtype) |
|
|
|
b_h_2o = b_h_2o + tl.dot(b_v, b_k_2o.to(b_v.dtype), allow_tf32=False) |
|
|
|
b_h_1o = b_h_1o + tl.dot(b_v, b_k, allow_tf32=False) |
|
|
|
if i_v == 0: |
|
|
|
k_1o += tl.sum(b_k, axis=0)[None, :] |
|
k_2o += tl.sum(b_k_2o, axis=0)[None, :] |
|
|
|
tl.debug_barrier() |
|
b_h_1o = None |
|
b_h_2o = None |
|
|
|
|
|
b_dh_1o = tl.zeros([BK, BV], dtype=tl.float32) |
|
|
|
b_dh_2o = tl.zeros([BK*BK, BV], dtype=tl.float32) |
|
b_dh_0o = tl.zeros([BV], dtype=tl.float32) |
|
m_s = tl.arange(0, BT)[:, None] <= tl.arange(0, BT)[None, :] |
|
|
|
dq_1o = tl.zeros([1, BK], dtype=tl.float32) |
|
dq_2o = tl.zeros([BK * BK, 1], dtype=tl.float32) |
|
|
|
for i in range(tl.cdiv(T, BT) * BT - BT, -BT, -BT): |
|
p_q = tl.make_block_ptr(q + i_bh * s_k_h, (K, T), (s_k_d, s_k_t), (i_k * BK, i), (BK, BT), (0, 1)) |
|
p_k = tl.make_block_ptr(k + i_bh * s_k_h, (T, K), (s_k_t, s_k_d), (i, i_k * BK), (BT, BK), (1, 0)) |
|
p_v = tl.make_block_ptr(v + i_bh * s_v_h, (T, V), (s_v_t, s_v_d), (i, i_v * BV), (BT, BV), (1, 0)) |
|
p_do = tl.make_block_ptr(do + i_bh * s_v_h, (T, V), (s_v_t, s_v_d), (i, i_v * BV), (BT, BV), (1, 0)) |
|
p_dk = tl.make_block_ptr(dk + (i_bh+i_v*B*H) * s_k_h, (T, K), (s_k_t, s_k_d), (i, i_k*BK), (BT, BK), (1, 0)) |
|
p_dv = tl.make_block_ptr(dv + (i_bh+i_k*B*H) * s_v_h, (T, V), (s_v_t, s_v_d), (i, i_v*BV), (BT, BV), (1, 0)) |
|
p_dz = dz + (i_bh) * T + tl.arange(0, BT) + i |
|
|
|
b_dk = tl.zeros([BT, BK], dtype=tl.float32) |
|
b_dv = tl.zeros([BT, BV], dtype=tl.float32) |
|
|
|
b_q = tl.load(p_q, boundary_check=(0, 1)) |
|
b_k = tl.load(p_k, boundary_check=(0, 1)) |
|
b_v = tl.load(p_v, boundary_check=(0, 1)) |
|
b_do = tl.load(p_do, boundary_check=(0, 1)).to(b_q.dtype) |
|
b_dz = tl.load(p_dz, mask=(tl.arange(0, BT)+i) < T) |
|
b_q = (b_q * scale).to(b_k.dtype) |
|
|
|
|
|
b_ds = tl.dot(b_v, tl.trans(b_do), allow_tf32=False) |
|
if i_v == 0: |
|
b_ds += b_dz[None, :] |
|
b_ds = tl.where(m_s, b_ds, 0) |
|
b_s = tl.dot(b_k, b_q, allow_tf32=False) |
|
b_s2 = 1 + b_s + 0.5 * b_s * b_s |
|
b_s = tl.where(m_s, b_s, 0) |
|
b_s2 = tl.where(m_s, b_s2, 0) |
|
b_ds *= (1+b_s) |
|
|
|
b_dk += tl.dot(b_ds.to(b_k.dtype), tl.trans(b_q), allow_tf32=False) |
|
b_dv += tl.dot(b_s2.to(b_do.dtype), b_do, allow_tf32=False) |
|
|
|
|
|
b_k_2o = b_k[:, :, None] * b_k[:, None, :] |
|
b_k_2o = tl.reshape(b_k_2o, [BT, BK * BK]).to(b_k.dtype) |
|
|
|
b_dv += tl.dot(b_k, b_dh_1o.to(b_k.dtype), allow_tf32=False) |
|
b_dv += tl.dot(b_k_2o, b_dh_2o.to(b_k.dtype), allow_tf32=False) |
|
b_dv += b_dh_0o |
|
|
|
b_dk += tl.dot(b_v, tl.trans(b_dh_1o).to(b_k.dtype), allow_tf32=False) |
|
|
|
if i_v == 0: |
|
b_dk += dq_1o |
|
|
|
b_dk_2o = tl.dot(b_dh_2o.to(b_k.dtype), tl.trans(b_v), allow_tf32=False) |
|
if i_v == 0: |
|
b_dk_2o += dq_2o |
|
b_dk_2o = tl.reshape(b_dk_2o, [BK, BK, BT]) |
|
b_k_fp32 = tl.trans(b_k.to(tl.float32)) |
|
b_dk2 = tl.sum(b_dk_2o * b_k_fp32[:, None, :], axis=0) |
|
b_dk2 += tl.sum(b_dk_2o * b_k_fp32[None, :, :], axis=1) |
|
b_dk += tl.trans(b_dk2) |
|
|
|
|
|
b_dh_0o += tl.sum(b_do, axis=0) |
|
b_dh_1o = b_dh_1o + tl.dot(b_q, b_do, allow_tf32=False) |
|
b_q_2o = b_q[None, :, :] * b_q[:, None, :] |
|
b_q_2o = tl.reshape(b_q_2o, [BK * BK, BT]).to(b_k.dtype) |
|
b_dh_2o = b_dh_2o + tl.dot(b_q_2o, b_do, allow_tf32=False) * 0.5 |
|
|
|
if i_v == 0: |
|
dq_1o += (tl.sum(b_dz[None, :] * b_q, axis=1))[None, :] |
|
dq_2o += (tl.sum(b_dz[None, :] * b_q_2o, axis=1) * 0.5)[:, None] |
|
|
|
tl.store(p_dk, b_dk.to(p_dk.dtype.element_ty), boundary_check=(0, 1)) |
|
tl.store(p_dv, b_dv.to(p_dv.dtype.element_ty), boundary_check=(0, 1)) |
|
|
|
|
|
class FusedChunkBasedFunction(torch.autograd.Function): |
|
|
|
@staticmethod |
|
@contiguous |
|
@autocast_custom_fwd |
|
def forward(ctx, q, k, v, scale=1): |
|
B, H, T, K, V = *k.shape, v.shape[-1] |
|
|
|
scale = scale |
|
BT = 16 |
|
BK, BV = min(K, 16), min(V, 32) |
|
BK, BV = max(BK, 16), max(BV, 16) |
|
NK, NV = triton.cdiv(K, BK), triton.cdiv(V, BV) |
|
|
|
num_warps = 4 |
|
|
|
|
|
o = q.new_empty(NK, B, H, T, V, dtype=torch.float32) |
|
z = q.new_empty(NK, B, H, T, dtype=torch.float32) |
|
|
|
grid = (NV, NK, B * H) |
|
fused_chunk_based_fwd_kernel[grid]( |
|
q, k, v, o, z, |
|
q.stride(1), q.stride(2), q.stride(3), |
|
v.stride(1), v.stride(2), v.stride(3), |
|
scale, |
|
B=B, H=H, T=T, K=K, V=V, BT=BT, BK=BK, BV=BV, |
|
num_warps=num_warps, |
|
) |
|
o = o.sum(0) |
|
z = z.sum(0) |
|
ctx.save_for_backward(q, k, v) |
|
ctx.scale = scale |
|
return o.to(q.dtype), z.to(z.dtype) |
|
|
|
@staticmethod |
|
@contiguous |
|
@autocast_custom_bwd |
|
def backward(ctx, do, dz): |
|
q, k, v = ctx.saved_tensors |
|
B, H, T, K, V = *k.shape, v.shape[-1] |
|
scale = ctx.scale |
|
|
|
BT = 16 |
|
BK, BV = min(K, 16), min(V, 32) |
|
BK, BV = max(BK, 16), max(BV, 16) |
|
NK, NV = triton.cdiv(K, BK), triton.cdiv(V, BV) |
|
num_stages = 1 |
|
num_warps = 4 |
|
|
|
dq = q.new_empty(NV, B, H, T, K) |
|
dk = q.new_empty(NV, B, H, T, K) |
|
dv = q.new_empty(NK, B, H, T, V) |
|
grid = (NV, NK, B * H) |
|
|
|
fused_chunk_based_bwd_kernel[grid]( |
|
q, k, v, do, dz, dq, dk, dv, |
|
q.stride(1), q.stride(2), q.stride(3), |
|
v.stride(1), v.stride(2), v.stride(3), |
|
scale, |
|
B=B, H=H, T=T, K=K, V=V, BT=BT, BK=BK, BV=BV, |
|
num_warps=num_warps, |
|
num_stages=num_stages |
|
) |
|
dq = dq.sum(0) |
|
dk = dk.sum(0) |
|
dv = dv.sum(0) |
|
return dq.to(q.dtype), dk.to(k.dtype), dv.to(v.dtype), None |
|
|
|
|
|
def fused_chunk_based( |
|
q: torch.Tensor, |
|
k: torch.Tensor, |
|
v: torch.Tensor, |
|
scale: Optional[float] = None, |
|
use_norm: bool = True, |
|
head_first: bool = True |
|
): |
|
assert q.shape[-1] <= 16, 'only support feature dimension up to 16.' |
|
if scale is None: |
|
scale = q.shape[-1] ** -0.5 |
|
if not head_first: |
|
q, k, v = map(lambda x: x.transpose(1, 2), (q, k, v)) |
|
o, z = FusedChunkBasedFunction.apply(q, k, v, scale) |
|
if use_norm: |
|
o = o / (z[..., None] + 1e-6) |
|
if not head_first: |
|
o = o.transpose(1, 2) |
|
return o.to(q.dtype) |
|
|