zaydzuhri's picture
Training in progress, step 2048
2f9282b verified
raw
history blame
1.58 kB
# -*- coding: utf-8 -*-
from typing import Optional
import torch
def naive_recurrent_hgrn(
x: torch.Tensor,
g: torch.Tensor,
initial_state: Optional[torch.Tensor] = None,
output_final_state: Optional[bool] = False
) -> torch.Tensor:
dtype = x.dtype
x, g = map(lambda i: i.float(), (x, g))
B, T, D = x.shape
h = torch.zeros(B, D, dtype=torch.float, device=x.device)
o = torch.zeros_like(x)
final_state = None
if initial_state is not None:
h += initial_state
for i in range(T):
h = g[:, i].exp() * h + x[:, i]
o[:, i] = h
if output_final_state:
final_state = h
return o.to(dtype), final_state
def naive_chunk_hgrn(
x: torch.Tensor,
g: torch.Tensor,
initial_state: Optional[torch.Tensor] = None,
output_final_state: Optional[bool] = False,
chunk_size: int = 64
) -> torch.Tensor:
dtype = x.dtype
x, g = map(lambda i: i.float(), (x, g))
B, T, D = x.shape
gc = g.view(B, chunk_size, D).cumsum(-2).view_as(g)
h = torch.zeros(B, D, dtype=torch.float, device=x.device)
o = torch.zeros_like(x)
final_state = None
if initial_state is not None:
h += initial_state
for i in range(0, T, chunk_size):
hp = h
h = torch.zeros(B, D, dtype=torch.float, device=x.device)
for j in range(i, i + chunk_size):
h = g[:, j].exp() * h + x[:, j]
o[:, j] = hp * gc[:, j].exp() + h
h = o[:, j].clone()
if output_final_state:
final_state = h
return o.to(dtype), final_state