|
|
|
|
|
from typing import Optional |
|
|
|
import torch |
|
from einops import rearrange |
|
|
|
|
|
def naive_parallel_based( |
|
q: torch.Tensor, |
|
k: torch.Tensor, |
|
v: torch.Tensor, |
|
scale: Optional[float] = None, |
|
use_norm: bool = True |
|
): |
|
if scale is None: |
|
scale = q.shape[-1] ** -0.5 |
|
q = q * scale |
|
attn = q @ k.transpose(-2, -1) |
|
attn = 1 + attn + 1/2 * (attn ** 2) |
|
attn.masked_fill_(~torch.tril(torch.ones( |
|
q.shape[-2], q.shape[-2], dtype=torch.bool, device=q.device)), 0) |
|
o = attn @ v |
|
if use_norm: |
|
z = attn.sum(-1) |
|
return o / (z[..., None] + 1e-6) |
|
else: |
|
return o |
|
|
|
|
|
def naive_chunk_based(q, k, v, chunk_size=256): |
|
q = q * (q.shape[-1] ** -0.5) |
|
|
|
k_cumsum = torch.cumsum(k, dim=-2) |
|
kk_cumsum = torch.cumsum(k.unsqueeze(-1) * k.unsqueeze(-2), dim=-3) |
|
|
|
z = (q * k_cumsum).sum(-1) |
|
|
|
z += (q.unsqueeze(-1) * q.unsqueeze(-2) * kk_cumsum).sum((-1, -2)) * 0.5 |
|
|
|
z += (torch.arange(0, q.shape[-2]).to(z.device) * 1.0 + 1.0)[None, None, :] |
|
|
|
|
|
|
|
_o = v.cumsum(-2) |
|
|
|
q = rearrange(q, 'b h (n c) d -> b h n c d', c=chunk_size) |
|
|
|
k = rearrange(k, 'b h (n c) d -> b h n c d', c=chunk_size) |
|
v = rearrange(v, 'b h (n c) d -> b h n c d', c=chunk_size) |
|
|
|
intra_chunk_attn = q @ k.transpose(-2, -1) |
|
intra_chunk_attn = intra_chunk_attn + 1/2 * (intra_chunk_attn ** 2) |
|
intra_chunk_attn.masked_fill_(~torch.tril(torch.ones(chunk_size, chunk_size, dtype=torch.bool, device=q.device)), 0) |
|
o = intra_chunk_attn @ v |
|
|
|
|
|
kv = torch.einsum('b h n c x, b h n c y, b h n c z -> b h n x y z', k, k, v) |
|
kv = kv.cumsum(2) |
|
kv = torch.cat([torch.zeros_like(kv[:, :, :1]), kv[:, :, :-1]], dim=2) |
|
|
|
o += 0.5 * torch.einsum('b h n x y z, b h n c x, b h n c y -> b h n c z', kv, q, q) |
|
|
|
|
|
kv = torch.einsum('b h n c x, b h n c y -> b h n x y', k, v) |
|
kv = kv.cumsum(2) |
|
kv = torch.cat([torch.zeros_like(kv[:, :, :1]), kv[:, :, :-1]], dim=2) |
|
o += torch.einsum('b h n x y, b h n c x -> b h n c y', kv, q) |
|
|
|
o = rearrange(o, 'b h n c d -> b h (n c) d') |
|
o = o + _o |
|
return o / (z[..., None] + 1e-6) |
|
|