|
|
|
|
|
|
|
|
|
from __future__ import annotations |
|
|
|
from typing import TYPE_CHECKING, Optional, Tuple |
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from einops import rearrange, repeat |
|
|
|
from fla.modules import FusedRMSNormSwishGate, RMSNorm, ShortConvolution |
|
from fla.modules.activations import ACT2FN |
|
from fla.ops.gla import chunk_gla, fused_chunk_gla, fused_recurrent_gla |
|
|
|
if TYPE_CHECKING: |
|
from fla.models.utils import Cache |
|
|
|
|
|
class GatedLinearAttention(nn.Module): |
|
r""" |
|
The layer implementaion for [Gated Linear Attention Transformers with Hardware-Efficient Training](https://arxiv.org/abs/2312.06635). # noqa |
|
|
|
Args: |
|
mode (str, Optional): |
|
Which GLA kernel to use. |
|
Currently available: `chunk`, `fused_recurrent`, and `fused_chunk`. |
|
Default: `chunk`. |
|
hidden_size (int, Optional): |
|
The hidden size of the input. Default: 1024. |
|
expand_k (float, Optional): |
|
The expansion ratio for the key dim. Default: 0.5. |
|
expand_v (float, Optional): |
|
The expansion ratio for the value dim. Default: 1.0. |
|
num_heads (int, Optional): |
|
The number of heads. Default: 4. |
|
num_kv_heads (int, Optional): |
|
The number of key/value heads, used for MQA. Default: None. |
|
feature_map (str, Optional): |
|
Feature map function applied to queries/keys. Default: None. |
|
use_short_conv (bool, Optional): |
|
Whether to use short convolutions. Default: `False`. |
|
conv_size (int, Optional): |
|
The kernel size of the short convolution, only used when `use_short_conv` is `True`. Default: 4. |
|
conv_bias (bool, Optional): |
|
Whether to use bias in the short convolution, only used when `use_short_conv` is `True`. Default: `False`. |
|
use_output_gate (bool, Optional): |
|
Whether to use output gate. Default: `True`. |
|
gate_fn (str, Optional): |
|
The activation function for the output gate. Default: `swish`. |
|
elementwise_affine (bool, Optional): |
|
If `True`, applies elementwise affine to LayerNorm with learnable parameters. Default: `True`. |
|
norm_eps (float, Optional): |
|
The epsilon value for the layernorm/rmsnorm layer. Default: 1e-5. |
|
gate_logit_normalizer (int, Optional): |
|
The normalizer for the gate logits, appied after `logsigmoid`. Default: 16. |
|
gate_low_rank_dim (int, Optional): |
|
The low rank dim for the gate projection. Default: 16. |
|
clamp_min (float, Optional): |
|
The minimum value for the gate logits. Default: None. |
|
fuse_norm (bool, Optional): |
|
Whether to fuse the norm and the output gate for better memory footprint. Default: `True`. |
|
layer_idx (int, Optional): |
|
The index of the layer. Default: None. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
mode: str = 'chunk', |
|
hidden_size: int = 1024, |
|
expand_k: float = 0.5, |
|
expand_v: float = 1.0, |
|
num_heads: int = 4, |
|
num_kv_heads: Optional[int] = None, |
|
feature_map: Optional[str] = None, |
|
use_short_conv: bool = False, |
|
conv_size: int = 4, |
|
conv_bias: bool = False, |
|
use_output_gate: bool = True, |
|
gate_fn: str = 'swish', |
|
elementwise_affine: Optional[bool] = True, |
|
norm_eps: float = 1e-5, |
|
gate_logit_normalizer: int = 16, |
|
gate_low_rank_dim: int = 16, |
|
clamp_min: Optional[float] = None, |
|
fuse_norm: bool = True, |
|
layer_idx: int = None, |
|
) -> GatedLinearAttention: |
|
super().__init__() |
|
|
|
self.mode = mode |
|
self.hidden_size = hidden_size |
|
self.expand_k = expand_k |
|
self.expand_v = expand_v |
|
self.num_heads = num_heads |
|
self.num_kv_heads = num_kv_heads if num_kv_heads is not None else num_heads |
|
self.num_kv_groups = self.num_heads // self.num_kv_heads |
|
self.feature_map_fn = ACT2FN[feature_map] if feature_map is not None else None |
|
|
|
self.use_short_conv = use_short_conv |
|
self.conv_size = conv_size |
|
self.conv_bias = conv_bias |
|
self.use_output_gate = use_output_gate |
|
|
|
self.key_dim = int(hidden_size * expand_k) |
|
self.value_dim = int(hidden_size * expand_v) |
|
self.key_dim_per_group = self.key_dim // self.num_kv_groups |
|
self.value_dim_per_group = self.value_dim // self.num_kv_groups |
|
self.clamp_min = clamp_min |
|
self.layer_idx = layer_idx |
|
|
|
assert mode in ['chunk', 'fused_recurrent', 'fused_chunk'], f"Not suppoerted mode `{mode}`." |
|
assert self.key_dim % num_heads == 0, f"key dim must be divisible by num_heads of {num_heads}" |
|
assert self.value_dim % num_heads == 0, f"value dim must be divisible by num_heads of {num_heads}" |
|
|
|
self.head_qk_dim = self.key_dim // num_heads |
|
self.head_v_dim = self.value_dim // num_heads |
|
|
|
self.q_proj = nn.Linear(hidden_size, self.key_dim, bias=False) |
|
self.k_proj = nn.Linear(hidden_size, self.key_dim_per_group, bias=False) |
|
self.v_proj = nn.Linear(hidden_size, self.value_dim_per_group, bias=False) |
|
if self.use_output_gate: |
|
self.g_proj = nn.Linear(hidden_size, self.value_dim, bias=False) |
|
|
|
if use_short_conv: |
|
self.conv_size = conv_size |
|
self.q_conv1d = ShortConvolution(self.key_dim, conv_size, activation='silu') |
|
self.k_conv1d = ShortConvolution(self.key_dim_per_group, conv_size, activation='silu') |
|
self.v_conv1d = ShortConvolution(self.value_dim_per_group, conv_size, activation='silu') |
|
|
|
self.gk_proj = nn.Sequential(nn.Linear(hidden_size, gate_low_rank_dim, bias=False), |
|
nn.Linear(gate_low_rank_dim, self.key_dim_per_group, bias=True)) |
|
self.o_proj = nn.Linear(self.value_dim, hidden_size, bias=False) |
|
|
|
if gate_fn == 'swish' and fuse_norm and use_output_gate: |
|
self.g_norm_swish_gate = FusedRMSNormSwishGate(self.head_v_dim, elementwise_affine, norm_eps) |
|
self.fuse_norm_and_gate = True |
|
else: |
|
self.fuse_norm_and_gate = False |
|
self.g_norm = RMSNorm(hidden_size=self.head_v_dim, elementwise_affine=elementwise_affine, eps=norm_eps) |
|
self.gate_fn = ACT2FN[gate_fn] |
|
|
|
self.gate_logit_normalizer = gate_logit_normalizer |
|
|
|
self.apply(self._initialize_weights) |
|
|
|
def _initialize_weights(self, module: nn.Module): |
|
if getattr(module, "_is_hf_initialized", False): |
|
return |
|
if isinstance(module, nn.Linear): |
|
nn.init.xavier_uniform_(module.weight, gain=2 ** -2.5) |
|
if module.bias is not None: |
|
nn.init.zeros_(module.bias) |
|
module._is_hf_initialized = True |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
past_key_values: Optional[Cache] = None, |
|
use_cache: Optional[bool] = False, |
|
output_attentions: Optional[bool] = False, |
|
**kwargs |
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Cache]]: |
|
if attention_mask is not None: |
|
assert len(attention_mask.shape) == 2, ( |
|
"Expected attention_mask as a 0-1 matrix with shape [batch_size, seq_len] " |
|
"for padding purposes (0 indicating padding). " |
|
"Arbitrary attention masks of shape [batch_size, seq_len, seq_len] are not allowed." |
|
) |
|
|
|
|
|
mode = 'fused_recurrent' if hidden_states.shape[1] == 1 else self.mode |
|
|
|
last_state = None |
|
if past_key_values is not None and len(past_key_values) > self.layer_idx: |
|
last_state = past_key_values[self.layer_idx] |
|
if self.use_short_conv: |
|
conv_state_q, conv_state_k, conv_state_v = None, None, None |
|
if last_state is not None: |
|
conv_state_q, conv_state_k, conv_state_v = last_state['conv_state'] |
|
conv_mask = attention_mask[:, -hidden_states.shape[1]:] if attention_mask is not None else None |
|
q, conv_state_q = self.q_conv1d(x=self.q_proj(hidden_states), |
|
mask=conv_mask, |
|
cache=conv_state_q, |
|
output_final_state=use_cache) |
|
k, conv_state_k = self.k_conv1d(x=self.k_proj(hidden_states), |
|
mask=conv_mask, |
|
cache=conv_state_k, |
|
output_final_state=use_cache) |
|
v, conv_state_v = self.v_conv1d(x=self.v_proj(hidden_states), |
|
mask=conv_mask, |
|
cache=conv_state_v, |
|
output_final_state=use_cache) |
|
else: |
|
q = self.q_proj(hidden_states) |
|
k = self.k_proj(hidden_states) |
|
v = self.v_proj(hidden_states) |
|
gk = self.gk_proj(hidden_states) |
|
|
|
if self.feature_map_fn is not None: |
|
q, k = map(self.feature_map_fn, (q, k)) |
|
|
|
if attention_mask is not None: |
|
v = v.mul_(attention_mask[:, -v.shape[-2]:, None]) |
|
q = rearrange(q, 'b t (h d) -> b t h d', h=self.num_heads) |
|
if self.num_kv_groups > 1: |
|
k, v, gk = (repeat(x, 'b t (h d) -> b t (h g) d', h=self.num_kv_heads, g=self.num_kv_groups) for x in (k, v, gk)) |
|
else: |
|
k, v, gk = (rearrange(x, 'b t (h d) -> b t h d', h=self.num_kv_heads) for x in (k, v, gk)) |
|
gk = F.logsigmoid(gk) / self.gate_logit_normalizer |
|
|
|
if self.clamp_min is not None: |
|
gk = torch.clamp_min(gk, self.clamp_min) |
|
|
|
recurrent_state = last_state['recurrent_state'] if last_state is not None else None |
|
if mode == 'fused_recurrent': |
|
o, recurrent_state = fused_recurrent_gla( |
|
q=q, |
|
k=k, |
|
v=v, |
|
gk=gk, |
|
initial_state=recurrent_state, |
|
output_final_state=use_cache, |
|
head_first=False |
|
) |
|
elif mode == 'fused_chunk': |
|
o, recurrent_state = fused_chunk_gla( |
|
q=q, |
|
k=k, |
|
v=v, |
|
g=gk, |
|
initial_state=recurrent_state, |
|
output_final_state=use_cache, |
|
head_first=False |
|
) |
|
elif mode == 'chunk': |
|
o, recurrent_state = chunk_gla( |
|
q=q, |
|
k=k, |
|
v=v, |
|
g=gk, |
|
initial_state=recurrent_state, |
|
output_final_state=use_cache, |
|
head_first=False |
|
) |
|
else: |
|
raise NotImplementedError(f"Not supported mode `{mode}`.") |
|
|
|
if past_key_values is not None: |
|
past_key_values.update( |
|
recurrent_state=recurrent_state, |
|
conv_state=(conv_state_q, conv_state_k, conv_state_v) if self.use_short_conv else None, |
|
layer_idx=self.layer_idx, |
|
offset=q.shape[2] |
|
) |
|
|
|
if self.use_output_gate: |
|
g = self.g_proj(hidden_states) |
|
if self.fuse_norm_and_gate: |
|
g = rearrange(g, 'b t (h d) -> b t h d', h=self.num_heads) |
|
o = self.g_norm_swish_gate(o, g) |
|
o = rearrange(o, 'b t h d -> b t (h d)') |
|
else: |
|
o = rearrange(self.g_norm(o), 'b t h d -> b t (h d)') |
|
o = o * self.gate_fn(g) |
|
else: |
|
o = rearrange(self.g_norm(o), 'b t h d -> b t (h d)') |
|
o = self.o_proj(o) |
|
|
|
return o, None, past_key_values |
|
|
|
def state_size(self, **kwargs) -> int: |
|
state_size = self.key_dim * self.head_v_dim |
|
for module in self.children(): |
|
if isinstance(module, ShortConvolution): |
|
state_size += module.state_size |
|
return state_size |
|
|