zaydzuhri's picture
Training in progress, step 2048
2f9282b verified
raw
history blame
7.5 kB
# -*- coding: utf-8 -*-
# Copyright (c) 2024, Songlin Yang, Yu Zhang
from __future__ import annotations
import warnings
from typing import TYPE_CHECKING, Optional, Tuple
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.checkpoint
from einops import rearrange
from transformers.utils import logging
from fla.modules import RMSNorm, RotaryEmbedding
if TYPE_CHECKING:
from fla.models.utils import Cache
try:
from flash_attn import flash_attn_func, flash_attn_varlen_func
from flash_attn.bert_padding import (index_first_axis, pad_input,
unpad_input)
except ImportError:
warnings.warn(
"Flash Attention is not installed. Please install it via `pip install flash-attn --no-build-isolation`",
category=ImportWarning
)
flash_attn_func = None
logger = logging.get_logger(__name__)
class Attention(nn.Module):
def __init__(
self,
hidden_size: int = 2048,
num_heads: int = 32,
num_kv_heads: Optional[int] = None,
window_size: Optional[int] = None,
rope_theta: Optional[float] = 10000.,
max_position_embeddings: Optional[int] = None,
norm_first: bool = False,
norm_eps: float = 1e-5,
layer_idx: int = None
):
super().__init__()
self.num_heads = num_heads
if num_kv_heads is None:
self.num_kv_heads = self.num_heads
else:
self.num_kv_heads = num_kv_heads
self.num_kv_groups = num_heads // self.num_kv_heads
self.hidden_size = hidden_size
self.head_dim = self.hidden_size // self.num_heads
self.kv_dim = self.num_kv_heads * self.head_dim
self.kv_dim = self.num_kv_heads * self.head_dim
self.window_size = window_size
self.rope_theta = rope_theta
self.max_position_embeddings = max_position_embeddings
self.norm_first = norm_first
self.layer_idx = layer_idx
if norm_first:
self.norm = RMSNorm(self.hidden_size, eps=norm_eps)
self.q_proj = nn.Linear(self.hidden_size, self.hidden_size, bias=False)
self.k_proj = nn.Linear(self.hidden_size, self.kv_dim, bias=False)
self.v_proj = nn.Linear(self.hidden_size, self.kv_dim, bias=False)
self.o_proj = nn.Linear(self.hidden_size, self.hidden_size, bias=False)
self.rotary = RotaryEmbedding(dim=self.head_dim, base=self.rope_theta)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.LongTensor] = None,
past_key_values: Optional[Cache] = None,
output_attentions: bool = False,
use_cache: bool = False,
**kwargs,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
if attention_mask is not None:
assert len(attention_mask.shape) == 2, (
"Expected attention_mask as a 0-1 matrix with shape [batch_size, seq_len] "
"for padding purposes (0 indicating padding). "
"Arbitrary attention masks of shape [batch_size, seq_len, seq_len] are not allowed."
)
batch_size, q_len, _ = hidden_states.size()
if self.norm_first:
hidden_states = self.norm(hidden_states)
q = rearrange(self.q_proj(hidden_states), '... (h d) -> ... h d', h=self.num_heads)
k = rearrange(self.k_proj(hidden_states), '... (h d) -> ... h d', h=self.num_kv_heads)
v = rearrange(self.v_proj(hidden_states), '... (h d) -> ... h d', h=self.num_kv_heads)
seqlen_offset, max_seqlen = 0, q_len
if past_key_values is not None:
seqlen_offset = past_key_values.get_seq_length(self.layer_idx)
max_seqlen = q.shape[1] + seqlen_offset
if attention_mask is not None:
# to deliminate the offsets of padding tokens
seqlen_offset = (seqlen_offset + attention_mask.sum(-1) - attention_mask.shape[-1]).clamp(min=0)
max_seqlen = q.shape[1] + max(seqlen_offset)
if self.max_position_embeddings is not None:
max_seqlen = max(max_seqlen, self.max_position_embeddings)
q, k = self.rotary(q, k, seqlen_offset, max_seqlen)
if past_key_values is not None:
k, v = past_key_values.update(
attn_state=(k.flatten(-2, -1), v.flatten(-2, -1)),
layer_idx=self.layer_idx,
offset=q_len,
cache_kwargs=dict(window_size=self.window_size)
)['attn_state']
k = rearrange(k, '... (h d) -> ... h d', h=self.num_kv_heads)
v = rearrange(v, '... (h d) -> ... h d', h=self.num_kv_heads)
if flash_attn_func is None:
raise ImportError("Please install Flash Attention via `pip install flash-attn --no-build-isolation` first")
# Contains at least one padding token in the sequence
if attention_mask is not None:
q, k, v, indices_q, cu_seq_lens, max_seq_lens = self._upad_input(q, k, v, attention_mask, q_len)
cu_seqlens_q, cu_seqlens_k = cu_seq_lens
max_seqlen_q, max_seqlen_k = max_seq_lens
o = flash_attn_varlen_func(
q, k, v,
cu_seqlens_q=cu_seqlens_q,
cu_seqlens_k=cu_seqlens_k,
max_seqlen_q=max_seqlen_q,
max_seqlen_k=max_seqlen_k,
causal=True,
window_size=(-1, -1) if self.window_size is None else (self.window_size-1, 0)
)
o = pad_input(o, indices_q, batch_size, q_len)
else:
o = flash_attn_func(
q, k, v,
causal=True,
window_size=(-1, -1) if self.window_size is None else (self.window_size-1, 0)
)
o = o.reshape(batch_size, q_len, self.hidden_size)
o = self.o_proj(o)
if not output_attentions:
attentions = None
return o, attentions, past_key_values
def _upad_input(self, q, k, v, attention_mask, q_len):
seqlens = attention_mask.sum(-1, dtype=torch.int32)
indices_k = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
max_seqlen_k = seqlens.max().item()
cu_seqlens_k = F.pad(torch.cumsum(seqlens, dim=0, dtype=torch.int32), (1, 0))
batch_size, seq_len, num_key_value_heads, head_dim = k.shape
k = index_first_axis(k.reshape(batch_size * seq_len, num_key_value_heads, head_dim), indices_k)
v = index_first_axis(v.reshape(batch_size * seq_len, num_key_value_heads, head_dim), indices_k)
if q_len == seq_len:
q = index_first_axis(q.reshape(batch_size * seq_len, self.num_heads, head_dim), indices_k)
cu_seqlens_q = cu_seqlens_k
max_seqlen_q = max_seqlen_k
indices_q = indices_k
elif q_len == 1:
max_seqlen_q = 1
# There is a memcpy here, that is very bad.
cu_seqlens_q = torch.arange(batch_size + 1, dtype=torch.int32, device=q.device)
indices_q = cu_seqlens_q[:-1]
q = q.squeeze(1)
else:
# The -q_len: slice assumes left padding.
attention_mask = attention_mask[:, -q_len:]
q, indices_q, cu_seqlens_q, max_seqlen_q = unpad_input(q, attention_mask)
return q, k, v, indices_q, (cu_seqlens_q, cu_seqlens_k), (max_seqlen_q, max_seqlen_k)