ppo-LunarLander-v2 / config.json
zaringleb's picture
Upload PPO LunarLander-v2 trained agent
52943de verified
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7e1f86808dc0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7e1f86808e50>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7e1f86808ee0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7e1f86808f70>", "_build": "<function ActorCriticPolicy._build at 0x7e1f86809000>", "forward": "<function ActorCriticPolicy.forward at 0x7e1f86809090>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7e1f86809120>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7e1f868091b0>", "_predict": "<function ActorCriticPolicy._predict at 0x7e1f86809240>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7e1f868092d0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7e1f86809360>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7e1f868093f0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7e1f8e5d7e80>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1723299602200807971, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADMnKTwpZEO6xnXMugB8MLXjAg67+/fuOQAAgD8AAIA/TadNPVybbbohPp44ROU9so8mTbv9Mra3AACAPwAAgD8mH6E9uB7aOLzEkrvNHd81Pl6muwRAsToAAIA/AACAP2bYaT3soY25A4wyvDOtiDau5YG7DbX9tQAAgD8AAIA/muUzvMPtC7o0+C88jdynNi4iajumtpw1AACAPwAAgD8AkZo8j+YLuoLbqTvU7w04GJ6vumokMLcAAIA/AACAPwAR4j2uwYu6bhtyuF0nprPInZG58EWKNwAAgD8AAIA/LVkFPhSkirrIFuG7rP/lODz32blj4rw5AACAPwAAgD8zISy9RaiOP9x1q73rtPq+ofd6vZWIkbkAAAAAAAAAAAAOxrwKK2A6HUM5Pj5ouL1jCIw8JKulvgAAAAAAAIA/5iBhPVxzULqH5UQ6bH/dNSfJgLqYhGO5AACAPwAAgD+NjLs9YTypPnNVW74WSby+hDm7veoLRLsAAAAAAAAAAGb0bDyLKe89PNtDPoSkc76tAqM9arlVPQAAAAAAAAAAmh21PMhltT8J8Qo//3jvPAPSZbzdgHq8AAAAAAAAAADNlDM94WiLuuMRMju6hEg2dTGzOtUDT7oAAIA/AACAP+azOD32pEa6eHeluV2hp7UIbwy522XDOAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVPQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGVc3Nke6qeMAWyUTegDjAF0lEdAlhjYbXHzYnV9lChoBkdAZPRiTdLxqmgHTegDaAhHQJYcYFB6a9d1fZQoaAZHQGdAzV2A5JdoB03oA2gIR0CWHaj3mFJydX2UKGgGR0BNceKsMiKSaAdL5mgIR0CWJzItlI3BdX2UKGgGR0BYsDiGWUr1aAdN6ANoCEdAljePZmI0qHV9lChoBkdAXrJKcurZJ2gHTegDaAhHQJY33FKkEcN1fZQoaAZHQGO2kVvddmhoB03oA2gIR0CWOe/QSi/PdX2UKGgGR0Bl5KdhAnlXaAdN6ANoCEdAljrsoUi6hHV9lChoBkdAXh0c5sCT2WgHTegDaAhHQJY8mQDFId51fZQoaAZHQGiG+PikwexoB03oA2gIR0CWPSWuX/o8dX2UKGgGR0BnICsbNr0raAdN6ANoCEdAlj3WoNutOnV9lChoBkdAZE5io86mwmgHTegDaAhHQJZEb/dZaFF1fZQoaAZHQGTNCrcTJyRoB03oA2gIR0CWR6Ek0JnhdX2UKGgGR0BkbetW+49YaAdN6ANoCEdAlkhQTIvJzXV9lChoBkdAYLfcSoOx0WgHTegDaAhHQJZIZG6PKdR1fZQoaAZHQGA3yPuG9HtoB03oA2gIR0CWYvxW1c+rdX2UKGgGR0BjzltO2y9maAdN6ANoCEdAlmU7Ak9lmXV9lChoBkdAZxbdUKiPAGgHTegDaAhHQJZrTR7Z39t1fZQoaAZHQGLeWoWHk95oB03oA2gIR0CWbKTqB3A3dX2UKGgGR0BksUG9pRGdaAdN6ANoCEdAlnSRVZLZjHV9lChoBkdAZAGJHiFTN2gHTegDaAhHQJaDhDWsijd1fZQoaAZHQFzhmoBJZntoB03oA2gIR0CWg9NOM2m6dX2UKGgGR0Bj3orMC9ytaAdN6ANoCEdAloXlhw2l23V9lChoBkdAZ91C2tuDSWgHTegDaAhHQJaG3MV1wHZ1fZQoaAZHQGgbFKkEcKhoB03oA2gIR0CWiJFTNt65dX2UKGgGR0BmPtX9zfaYaAdN6ANoCEdAlokiq2jO9nV9lChoBkdAaCvVAiV0LmgHTegDaAhHQJaJ1I8QqZt1fZQoaAZHQGHLzWGyon9oB03oA2gIR0CWkyk6tDD1dX2UKGgGR0Bi2IbOu7pWaAdN6ANoCEdAlpdloL5RCXV9lChoBkdANx4rrgOz6mgHS9poCEdAlpeufAbhnHV9lChoBkdAZG+O2iL2pWgHTegDaAhHQJaYJ+so2GZ1fZQoaAZHQGZQ3Upd8iRoB03oA2gIR0CWmDoOQQtjdX2UKGgGR0BkzRpaiblSaAdN6ANoCEdAlq8xK6FuenV9lChoBkdAYxS8XenAI2gHTegDaAhHQJaxW4Vh1DB1fZQoaAZHQGWDw0O3DvVoB03oA2gIR0CWt0l1bJOndX2UKGgGR0BiJcFbFCLNaAdN6ANoCEdAlriH1OCXhXV9lChoBkdAZY4YUFjd6GgHTegDaAhHQJbA/i6xxDN1fZQoaAZHQGZDLyDqW1NoB03oA2gIR0CW0ecO9WZJdX2UKGgGR0BkiKtHQQcxaAdN6ANoCEdAltIxIz3yqnV9lChoBkdAYxlFNtZV42gHTegDaAhHQJbUHJMg2ZR1fZQoaAZHQGhQjNY8uBdoB03oA2gIR0CW1QiQDFIedX2UKGgGR0BivpBZ6lchaAdN6ANoCEdAltaizw+dLHV9lChoBkdAZK8HN5dGAmgHTegDaAhHQJbX3/Mnqml1fZQoaAZHQGY0NBWxQi1oB03oA2gIR0CW3plAu7HydX2UKGgGR0BiPhikO7QLaAdN6ANoCEdAluH7kwN9Y3V9lChoBkdAYW6ESM98qmgHTegDaAhHQJbiRAbADaJ1fZQoaAZHQF/yohY/3WZoB03oA2gIR0CW4r4S6DoRdX2UKGgGR0BhSto11nuiaAdN6ANoCEdAluLQwj+rEXV9lChoBkdAYlcFbmlqJ2gHTegDaAhHQJb9J+qioKl1fZQoaAZHQGGP7drO7g9oB03oA2gIR0CW/2S39aUzdX2UKGgGR0BUx4oRZlnRaAdLu2gIR0CXAZRuTA32dX2UKGgGR0BnHzER8MNMaAdN6ANoCEdAlwWmrKeTV3V9lChoBkdAY251DjR2KWgHTegDaAhHQJcG9schkiF1fZQoaAZHQF+SRQ79ycVoB03oA2gIR0CXDuDtw71adX2UKGgGR0BkNMmnfl6raAdN6ANoCEdAlx9q4lQdj3V9lChoBkdAY4wCq6vq1WgHTegDaAhHQJcfx7+kxh51fZQoaAZHQGXIdh7Vrh1oB03oA2gIR0CXIhMNc4YKdX2UKGgGR0Bgrrv1DjR2aAdN6ANoCEdAlyMraIvalHV9lChoBkdAYkXCD28IzGgHTegDaAhHQJclWFoL5RF1fZQoaAZHQGPlt1QqI8BoB03oA2gIR0CXJzE87p3YdX2UKGgGR0Bm041m8M/haAdN6ANoCEdAlzGPcN6PbXV9lChoBkdAA4K9f1Hvt2gHS7xoCEdAlzLuKfnOjnV9lChoBkdAYnVVn27FsGgHTegDaAhHQJc07VhCtzV1fZQoaAZHQGcAgIppeu5oB03oA2gIR0CXNTPqcEvCdX2UKGgGR0BiLsjRlYlqaAdN6ANoCEdAlzXBaTwDvHV9lChoBkdAZJ+eq7yxzWgHTegDaAhHQJc6vwPRRdh1fZQoaAZHQGA+igbp/w1oB03oA2gIR0CXT28XN1QqdX2UKGgGR0BiZZLXcxj8aAdN6ANoCEdAl1GI3vQWvnV9lChoBkdAZB9iAlOXV2gHTegDaAhHQJdVKG5+Ytx1fZQoaAZHQGBrIVdonKJoB03oA2gIR0CXVnPEbYK6dX2UKGgGR0BoGST0QK8daAdN6ANoCEdAl2BI7muDBnV9lChoBkdAZeS8La24NWgHTegDaAhHQJdyaGZeAut1fZQoaAZHQGPOmVJL/S9oB03oA2gIR0CXcrzQ/oq1dX2UKGgGR0Bn67M9r434aAdN6ANoCEdAl3TqS9ugpXV9lChoBkdAZrbRPXTVlWgHTegDaAhHQJd1/x2B8QZ1fZQoaAZHQGbH0l7dBSloB03oA2gIR0CXeVn27FsIdX2UKGgGR0BiKL4+KTB7aAdN6ANoCEdAl4FJAUtZm3V9lChoBkdAZU3wKjSG8GgHTegDaAhHQJeC0RzzVc51fZQoaAZHQGRjwY+B6KNoB03oA2gIR0CXhNxiXpnpdX2UKGgGR0Bh5E+s5n14aAdN6ANoCEdAl4UkfLcKxHV9lChoBkdAZI5XGwRoRWgHTegDaAhHQJeFqE7GNrF1fZQoaAZHQGag4Jmdy1hoB03oA2gIR0CXimwob4rSdX2UKGgGR0BLKVA7gbZOaAdLu2gIR0CXivbcGkeqdX2UKGgGR0BfaKVQhwERaAdN6ANoCEdAl6HrQTmGNHV9lChoBkdAZFyTA31jAmgHTegDaAhHQJej2rtE5Qx1fZQoaAZHQEp9l9Sde6ZoB0vEaAhHQJekVJtix3V1fZQoaAZHQGQrxFy7wrloB03oA2gIR0CXpytQbdaddX2UKGgGR0BmlETxoZhsaAdN6ANoCEdAl6hDKoybhHV9lChoBkdAQ1ClxffGdmgHS+JoCEdAl6n41pCa7XV9lChoBkdAZLH06o2n9GgHTegDaAhHQJeut5jYqXp1fZQoaAZHQGUBeUQkHD9oB03oA2gIR0CXvNLHuJDWdX2UKGgGR0BopbSeAd4naAdN6ANoCEdAl70iILw4KnV9lChoBkdAX419a2WpqGgHTegDaAhHQJe/JjZteld1fZQoaAZHQGQuV32VVxVoB03oA2gIR0CXwB3RG+bmdX2UKGgGR0BmzDFOwgTzaAdN6ANoCEdAl8P6wMYuTXV9lChoBkdAY56PCEYfn2gHTegDaAhHQJfPZgZ0jkd1fZQoaAZHQGZ8kcjqv/1oB03oA2gIR0CX0WPHktEodX2UKGgGR0Bg5HB3zMA4aAdN6ANoCEdAl9Gq/Zdv9HV9lChoBkdAY/eS/TLGJmgHTegDaAhHQJfYFayKNyZ1fZQoaAZHQGfxy9M9KVZoB03oA2gIR0CX2c9/jKgadWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.3.1+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}