fix can't set attribute 'eos_token' when loading the saved tokenizer (#27)
Browse files- fix can't set attribute 'eos_token' when loading the saved tokenizer (72e7f646bc14c58534be3abd4001116bf20c18cc)
Co-authored-by: hoshi hiyouga <[email protected]>
- tokenization_chatglm.py +48 -20
tokenization_chatglm.py
CHANGED
|
@@ -8,6 +8,9 @@ from transformers.utils import logging, PaddingStrategy
|
|
| 8 |
from transformers.tokenization_utils_base import EncodedInput, BatchEncoding
|
| 9 |
|
| 10 |
|
|
|
|
|
|
|
|
|
|
| 11 |
class SPTokenizer:
|
| 12 |
def __init__(self, model_path: str):
|
| 13 |
# reload tokenizer
|
|
@@ -89,25 +92,34 @@ class SPTokenizer:
|
|
| 89 |
|
| 90 |
|
| 91 |
class ChatGLMTokenizer(PreTrainedTokenizer):
|
| 92 |
-
vocab_files_names = {"vocab_file": "tokenizer.model"}
|
| 93 |
|
|
|
|
| 94 |
model_input_names = ["input_ids", "attention_mask", "position_ids"]
|
| 95 |
|
| 96 |
-
def __init__(
|
| 97 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 98 |
self.name = "GLMTokenizer"
|
| 99 |
-
|
| 100 |
self.vocab_file = vocab_file
|
| 101 |
self.tokenizer = SPTokenizer(vocab_file)
|
| 102 |
self.special_tokens = {
|
| 103 |
"<bos>": self.tokenizer.bos_id,
|
| 104 |
"<eos>": self.tokenizer.eos_id,
|
|
|
|
| 105 |
"<pad>": self.tokenizer.pad_id
|
| 106 |
}
|
| 107 |
self.encode_special_tokens = encode_special_tokens
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
|
|
|
|
|
|
|
|
|
| 111 |
|
| 112 |
def get_command(self, token):
|
| 113 |
if token in self.special_tokens:
|
|
@@ -117,24 +129,40 @@ class ChatGLMTokenizer(PreTrainedTokenizer):
|
|
| 117 |
|
| 118 |
@property
|
| 119 |
def unk_token(self) -> str:
|
| 120 |
-
return "<unk>"
|
| 121 |
|
| 122 |
@property
|
| 123 |
def pad_token(self) -> str:
|
| 124 |
-
return "<
|
| 125 |
|
| 126 |
@property
|
| 127 |
-
def
|
| 128 |
-
return self.get_command("<
|
| 129 |
|
| 130 |
@property
|
| 131 |
-
def
|
| 132 |
-
return "
|
|
|
|
|
|
|
|
|
|
|
|
|
| 133 |
|
| 134 |
@property
|
| 135 |
def eos_token_id(self):
|
| 136 |
return self.get_command("<eos>")
|
| 137 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 138 |
@property
|
| 139 |
def vocab_size(self):
|
| 140 |
return self.tokenizer.n_words
|
|
@@ -212,7 +240,7 @@ class ChatGLMTokenizer(PreTrainedTokenizer):
|
|
| 212 |
return self.batch_encode_plus([input_ids], return_tensors="pt", is_split_into_words=True)
|
| 213 |
|
| 214 |
def build_inputs_with_special_tokens(
|
| 215 |
-
|
| 216 |
) -> List[int]:
|
| 217 |
"""
|
| 218 |
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
|
|
@@ -237,12 +265,12 @@ class ChatGLMTokenizer(PreTrainedTokenizer):
|
|
| 237 |
return token_ids_0
|
| 238 |
|
| 239 |
def _pad(
|
| 240 |
-
|
| 241 |
-
|
| 242 |
-
|
| 243 |
-
|
| 244 |
-
|
| 245 |
-
|
| 246 |
) -> dict:
|
| 247 |
"""
|
| 248 |
Pad encoded inputs (on left/right and up to predefined length or max length in the batch)
|
|
|
|
| 8 |
from transformers.tokenization_utils_base import EncodedInput, BatchEncoding
|
| 9 |
|
| 10 |
|
| 11 |
+
logger = logging.get_logger(__name__)
|
| 12 |
+
|
| 13 |
+
|
| 14 |
class SPTokenizer:
|
| 15 |
def __init__(self, model_path: str):
|
| 16 |
# reload tokenizer
|
|
|
|
| 92 |
|
| 93 |
|
| 94 |
class ChatGLMTokenizer(PreTrainedTokenizer):
|
|
|
|
| 95 |
|
| 96 |
+
vocab_files_names = {"vocab_file": "tokenizer.model"}
|
| 97 |
model_input_names = ["input_ids", "attention_mask", "position_ids"]
|
| 98 |
|
| 99 |
+
def __init__(
|
| 100 |
+
self,
|
| 101 |
+
vocab_file,
|
| 102 |
+
padding_side="left",
|
| 103 |
+
clean_up_tokenization_spaces=False,
|
| 104 |
+
encode_special_tokens=False,
|
| 105 |
+
**kwargs
|
| 106 |
+
):
|
| 107 |
self.name = "GLMTokenizer"
|
|
|
|
| 108 |
self.vocab_file = vocab_file
|
| 109 |
self.tokenizer = SPTokenizer(vocab_file)
|
| 110 |
self.special_tokens = {
|
| 111 |
"<bos>": self.tokenizer.bos_id,
|
| 112 |
"<eos>": self.tokenizer.eos_id,
|
| 113 |
+
"<unk>": self.tokenizer.pad_id,
|
| 114 |
"<pad>": self.tokenizer.pad_id
|
| 115 |
}
|
| 116 |
self.encode_special_tokens = encode_special_tokens
|
| 117 |
+
|
| 118 |
+
super().__init__(
|
| 119 |
+
padding_side=padding_side,
|
| 120 |
+
clean_up_tokenization_spaces=clean_up_tokenization_spaces,
|
| 121 |
+
**kwargs
|
| 122 |
+
)
|
| 123 |
|
| 124 |
def get_command(self, token):
|
| 125 |
if token in self.special_tokens:
|
|
|
|
| 129 |
|
| 130 |
@property
|
| 131 |
def unk_token(self) -> str:
|
| 132 |
+
return self.tokenizer.sp_model.IdToPiece(self.get_command("<unk>"))
|
| 133 |
|
| 134 |
@property
|
| 135 |
def pad_token(self) -> str:
|
| 136 |
+
return self.tokenizer.sp_model.IdToPiece(self.get_command("<pad>"))
|
| 137 |
|
| 138 |
@property
|
| 139 |
+
def eos_token(self) -> str:
|
| 140 |
+
return self.tokenizer.sp_model.IdToPiece(self.get_command("<eos>"))
|
| 141 |
|
| 142 |
@property
|
| 143 |
+
def unk_token_id(self) -> int:
|
| 144 |
+
return self.get_command("<unk>")
|
| 145 |
+
|
| 146 |
+
@property
|
| 147 |
+
def pad_token_id(self) -> int:
|
| 148 |
+
return self.get_command("<pad>")
|
| 149 |
|
| 150 |
@property
|
| 151 |
def eos_token_id(self):
|
| 152 |
return self.get_command("<eos>")
|
| 153 |
|
| 154 |
+
@unk_token.setter
|
| 155 |
+
def unk_token(self, value):
|
| 156 |
+
logger.warning("Setting unk_token is not supported, use the default one.")
|
| 157 |
+
|
| 158 |
+
@pad_token.setter
|
| 159 |
+
def pad_token(self, value):
|
| 160 |
+
logger.warning("Setting pad_token is not supported, use the default one.")
|
| 161 |
+
|
| 162 |
+
@eos_token.setter
|
| 163 |
+
def eos_token(self, value):
|
| 164 |
+
logger.warning("Setting eos_token is not supported, use the default one.")
|
| 165 |
+
|
| 166 |
@property
|
| 167 |
def vocab_size(self):
|
| 168 |
return self.tokenizer.n_words
|
|
|
|
| 240 |
return self.batch_encode_plus([input_ids], return_tensors="pt", is_split_into_words=True)
|
| 241 |
|
| 242 |
def build_inputs_with_special_tokens(
|
| 243 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
| 244 |
) -> List[int]:
|
| 245 |
"""
|
| 246 |
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
|
|
|
|
| 265 |
return token_ids_0
|
| 266 |
|
| 267 |
def _pad(
|
| 268 |
+
self,
|
| 269 |
+
encoded_inputs: Union[Dict[str, EncodedInput], BatchEncoding],
|
| 270 |
+
max_length: Optional[int] = None,
|
| 271 |
+
padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
|
| 272 |
+
pad_to_multiple_of: Optional[int] = None,
|
| 273 |
+
return_attention_mask: Optional[bool] = None,
|
| 274 |
) -> dict:
|
| 275 |
"""
|
| 276 |
Pad encoded inputs (on left/right and up to predefined length or max length in the batch)
|