import os import json import torch import torchvision.transforms as transforms import os.path import numpy as np import cv2 from torch.utils.data import Dataset import random from .__base_dataset__ import BaseDataset class BlendedMVGOmniDataset(BaseDataset): def __init__(self, cfg, phase, **kwargs): super(BlendedMVGOmniDataset, self).__init__( cfg=cfg, phase=phase, **kwargs) self.metric_scale = cfg.metric_scale #self.cap_range = self.depth_range # in meter # def __getitem__(self, idx: int) -> dict: # if self.phase == 'test': # return self.get_data_for_test(idx) # else: # return self.get_data_for_trainval(idx) def process_depth(self, depth: np.array, rgb: np.array) -> np.array: depth[depth>60000] = 0 depth = depth / self.metric_scale return depth