Metric3D / training /mono /utils /avg_meter.py
zach
initial commit based on github repo
3ef1661
import numpy as np
import torch
import torch.distributed as dist
from .inverse_warp import pixel2cam, cam2pixel2
import torch.nn.functional as F
import matplotlib.pyplot as plt
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self) -> None:
self.reset()
def reset(self) -> None:
self.val = np.longdouble(0.0)
self.avg = np.longdouble(0.0)
self.sum = np.longdouble(0.0)
self.count = np.longdouble(0.0)
def update(self, val, n: float = 1) -> None:
self.val = val
self.sum += val
self.count += n
self.avg = self.sum / (self.count + 1e-6)
class MetricAverageMeter(AverageMeter):
"""
An AverageMeter designed specifically for evaluating segmentation results.
"""
def __init__(self, metrics: list) -> None:
""" Initialize object. """
# average meters for metrics
self.abs_rel = AverageMeter()
self.rmse = AverageMeter()
self.silog = AverageMeter()
self.delta1 = AverageMeter()
self.delta2 = AverageMeter()
self.delta3 = AverageMeter()
self.metrics = metrics
self.consistency = AverageMeter()
self.log10 = AverageMeter()
self.rmse_log = AverageMeter()
self.sq_rel = AverageMeter()
# normal
self.normal_mean = AverageMeter()
self.normal_rmse = AverageMeter()
self.normal_a1 = AverageMeter()
self.normal_a2 = AverageMeter()
self.normal_median = AverageMeter()
self.normal_a3 = AverageMeter()
self.normal_a4 = AverageMeter()
self.normal_a5 = AverageMeter()
def update_metrics_cpu(self,
pred: torch.Tensor,
target: torch.Tensor,
mask: torch.Tensor,):
"""
Update metrics on cpu
"""
assert pred.shape == target.shape
if len(pred.shape) == 3:
pred = pred[:, None, :, :]
target = target[:, None, :, :]
mask = mask[:, None, :, :]
elif len(pred.shape) == 2:
pred = pred[None, None, :, :]
target = target[None, None, :, :]
mask = mask[None, None, :, :]
# Absolute relative error
abs_rel_sum, valid_pics = get_absrel_err(pred, target, mask)
abs_rel_sum = abs_rel_sum.numpy()
valid_pics = valid_pics.numpy()
self.abs_rel.update(abs_rel_sum, valid_pics)
# squared relative error
sqrel_sum, _ = get_sqrel_err(pred, target, mask)
sqrel_sum = sqrel_sum.numpy()
self.sq_rel.update(sqrel_sum, valid_pics)
# root mean squared error
rmse_sum, _ = get_rmse_err(pred, target, mask)
rmse_sum = rmse_sum.numpy()
self.rmse.update(rmse_sum, valid_pics)
# log root mean squared error
log_rmse_sum, _ = get_rmse_log_err(pred, target, mask)
log_rmse_sum = log_rmse_sum.numpy()
self.rmse.update(log_rmse_sum, valid_pics)
# log10 error
log10_sum, _ = get_log10_err(pred, target, mask)
log10_sum = log10_sum.numpy()
self.rmse.update(log10_sum, valid_pics)
# scale-invariant root mean squared error in log space
silog_sum, _ = get_silog_err(pred, target, mask)
silog_sum = silog_sum.numpy()
self.silog.update(silog_sum, valid_pics)
# ratio error, delta1, ....
delta1_sum, delta2_sum, delta3_sum, _ = get_ratio_error(pred, target, mask)
delta1_sum = delta1_sum.numpy()
delta2_sum = delta2_sum.numpy()
delta3_sum = delta3_sum.numpy()
self.delta1.update(delta1_sum, valid_pics)
self.delta2.update(delta1_sum, valid_pics)
self.delta3.update(delta1_sum, valid_pics)
def update_metrics_gpu(
self,
pred: torch.Tensor,
target: torch.Tensor,
mask: torch.Tensor,
is_distributed: bool,
pred_next: torch.tensor = None,
pose_f1_to_f2: torch.tensor = None,
intrinsic: torch.tensor = None):
"""
Update metric on GPU. It supports distributed processing. If multiple machines are employed, please
set 'is_distributed' as True.
"""
assert pred.shape == target.shape
if len(pred.shape) == 3:
pred = pred[:, None, :, :]
target = target[:, None, :, :]
mask = mask[:, None, :, :]
elif len(pred.shape) == 2:
pred = pred[None, None, :, :]
target = target[None, None, :, :]
mask = mask[None, None, :, :]
# Absolute relative error
abs_rel_sum, valid_pics = get_absrel_err(pred, target, mask)
if is_distributed:
dist.all_reduce(abs_rel_sum), dist.all_reduce(valid_pics)
abs_rel_sum = abs_rel_sum.cpu().numpy()
valid_pics = int(valid_pics)
self.abs_rel.update(abs_rel_sum, valid_pics)
# root mean squared error
rmse_sum, _ = get_rmse_err(pred, target, mask)
if is_distributed:
dist.all_reduce(rmse_sum)
rmse_sum = rmse_sum.cpu().numpy()
self.rmse.update(rmse_sum, valid_pics)
# log root mean squared error
log_rmse_sum, _ = get_rmse_log_err(pred, target, mask)
if is_distributed:
dist.all_reduce(log_rmse_sum)
log_rmse_sum = log_rmse_sum.cpu().numpy()
self.rmse_log.update(log_rmse_sum, valid_pics)
# log10 error
log10_sum, _ = get_log10_err(pred, target, mask)
if is_distributed:
dist.all_reduce(log10_sum)
log10_sum = log10_sum.cpu().numpy()
self.log10.update(log10_sum, valid_pics)
# scale-invariant root mean squared error in log space
silog_sum, _ = get_silog_err(pred, target, mask)
if is_distributed:
dist.all_reduce(silog_sum)
silog_sum = silog_sum.cpu().numpy()
self.silog.update(silog_sum, valid_pics)
# ratio error, delta1, ....
delta1_sum, delta2_sum, delta3_sum, _ = get_ratio_error(pred, target, mask)
if is_distributed:
dist.all_reduce(delta1_sum), dist.all_reduce(delta2_sum), dist.all_reduce(delta3_sum)
delta1_sum = delta1_sum.cpu().numpy()
delta2_sum = delta2_sum.cpu().numpy()
delta3_sum = delta3_sum.cpu().numpy()
self.delta1.update(delta1_sum, valid_pics)
self.delta2.update(delta2_sum, valid_pics)
self.delta3.update(delta3_sum, valid_pics)
# video consistency error
consistency_rel_sum, valid_warps = get_video_consistency_err(pred, pred_next, pose_f1_to_f2, intrinsic)
if is_distributed:
dist.all_reduce(consistency_rel_sum), dist.all_reduce(valid_warps)
consistency_rel_sum = consistency_rel_sum.cpu().numpy()
valid_warps = int(valid_warps)
self.consistency.update(consistency_rel_sum, valid_warps)
## for surface normal
def update_normal_metrics_gpu(
self,
pred: torch.Tensor, # (B, 3, H, W)
target: torch.Tensor, # (B, 3, H, W)
mask: torch.Tensor, # (B, 1, H, W)
is_distributed: bool,
):
"""
Update metric on GPU. It supports distributed processing. If multiple machines are employed, please
set 'is_distributed' as True.
"""
assert pred.shape == target.shape
valid_pics = torch.sum(mask, dtype=torch.float32) + 1e-6
if valid_pics < 10:
return
mean_error = rmse_error = a1_error = a2_error = dist_node_cnt = valid_pics
normal_error = torch.cosine_similarity(pred, target, dim=1)
normal_error = torch.clamp(normal_error, min=-1.0, max=1.0)
angle_error = torch.acos(normal_error) * 180.0 / torch.pi
angle_error = angle_error[:, None, :, :]
angle_error = angle_error[mask]
# Calculation error
mean_error = angle_error.sum() / valid_pics
rmse_error = torch.sqrt( torch.sum(torch.square(angle_error)) / valid_pics )
median_error = angle_error.median()
a1_error = 100.0 * (torch.sum(angle_error < 5) / valid_pics)
a2_error = 100.0 * (torch.sum(angle_error < 7.5) / valid_pics)
a3_error = 100.0 * (torch.sum(angle_error < 11.25) / valid_pics)
a4_error = 100.0 * (torch.sum(angle_error < 22.5) / valid_pics)
a5_error = 100.0 * (torch.sum(angle_error < 30) / valid_pics)
# if valid_pics > 1e-5:
# If the current node gets data with valid normal
dist_node_cnt = (valid_pics - 1e-6) / valid_pics
if is_distributed:
dist.all_reduce(dist_node_cnt)
dist.all_reduce(mean_error)
dist.all_reduce(rmse_error)
dist.all_reduce(a1_error)
dist.all_reduce(a2_error)
dist.all_reduce(a3_error)
dist.all_reduce(a4_error)
dist.all_reduce(a5_error)
dist_node_cnt = dist_node_cnt.cpu().numpy()
self.normal_mean.update(mean_error.cpu().numpy(), dist_node_cnt)
self.normal_rmse.update(rmse_error.cpu().numpy(), dist_node_cnt)
self.normal_a1.update(a1_error.cpu().numpy(), dist_node_cnt)
self.normal_a2.update(a2_error.cpu().numpy(), dist_node_cnt)
self.normal_median.update(median_error.cpu().numpy(), dist_node_cnt)
self.normal_a3.update(a3_error.cpu().numpy(), dist_node_cnt)
self.normal_a4.update(a4_error.cpu().numpy(), dist_node_cnt)
self.normal_a5.update(a5_error.cpu().numpy(), dist_node_cnt)
def get_metrics(self,):
"""
"""
metrics_dict = {}
for metric in self.metrics:
metrics_dict[metric] = self.__getattribute__(metric).avg
return metrics_dict
def get_metrics(self,):
"""
"""
metrics_dict = {}
for metric in self.metrics:
metrics_dict[metric] = self.__getattribute__(metric).avg
return metrics_dict
def get_absrel_err(pred: torch.tensor,
target: torch.tensor,
mask: torch.tensor):
"""
Computes absolute relative error.
Takes preprocessed depths (no nans, infs and non-positive values).
pred, target, and mask should be in the shape of [b, c, h, w]
"""
assert len(pred.shape) == 4, len(target.shape) == 4
b, c, h, w = pred.shape
mask = mask.to(torch.float)
t_m = target * mask
p_m = pred * mask
#Mean Absolute Relative Error
rel = torch.abs(t_m - p_m) / (t_m + 1e-10) # compute errors
abs_rel_sum = torch.sum(rel.reshape((b, c, -1)), dim=2) # [b, c]
num = torch.sum(mask.reshape((b, c, -1)), dim=2) # [b, c]
abs_err = abs_rel_sum / (num + 1e-10)
valid_pics = torch.sum(num > 0)
return torch.sum(abs_err), valid_pics
def get_sqrel_err(pred: torch.tensor,
target: torch.tensor,
mask: torch.tensor):
"""
Computes squared relative error.
Takes preprocessed depths (no nans, infs and non-positive values).
pred, target, and mask should be in the shape of [b, c, h, w]
"""
assert len(pred.shape) == 4, len(target.shape) == 4
b, c, h, w = pred.shape
mask = mask.to(torch.float)
t_m = target * mask
p_m = pred * mask
#Mean Absolute Relative Error
sq_rel = torch.abs(t_m - p_m)**2 / (t_m + 1e-10) # compute errors
sq_rel_sum = torch.sum(sq_rel.reshape((b, c, -1)), dim=2) # [b, c]
num = torch.sum(mask.reshape((b, c, -1)), dim=2) # [b, c]
sqrel_err = sq_rel_sum / (num + 1e-10)
valid_pics = torch.sum(num > 0)
return torch.sum(sqrel_err), valid_pics
def get_log10_err(pred: torch.tensor,
target: torch.tensor,
mask: torch.tensor):
"""
Computes log10 error.
Takes preprocessed depths (no nans, infs and non-positive values).
pred, target, and mask should be in the shape of [b, c, h, w]
"""
assert len(pred.shape) == 4, len(target.shape) == 4
b, c, h, w = pred.shape
mask = mask.to(torch.float)
t_m = target * mask
p_m = pred * mask
diff_log = (torch.log10(p_m+1e-10) - torch.log10(t_m+1e-10)) * mask
log10_diff = torch.abs(diff_log) # compute errors
log10_sum = torch.sum(log10_diff.reshape((b, c, -1)), dim=2) # [b, c]
num = torch.sum(mask.reshape((b, c, -1)), dim=2) # [b, c]
abs_err = log10_sum / (num + 1e-10)
valid_pics = torch.sum(num > 0)
return torch.sum(abs_err), valid_pics
def get_rmse_err(pred: torch.tensor,
target: torch.tensor,
mask: torch.tensor):
"""
Computes log root mean squared error.
Takes preprocessed depths (no nans, infs and non-positive values).
pred, target, and mask should be in the shape of [b, c, h, w]
"""
assert len(pred.shape) == 4, len(target.shape) == 4
b, c, h, w = pred.shape
mask = mask.to(torch.float)
t_m = target * mask
p_m = pred * mask
square = (t_m - p_m) ** 2
rmse_sum = torch.sum(square.reshape((b, c, -1)), dim=2) # [b, c]
num = torch.sum(mask.reshape((b, c, -1)), dim=2) # [b, c]
rmse = torch.sqrt(rmse_sum / (num + 1e-10))
valid_pics = torch.sum(num > 0)
return torch.sum(rmse), valid_pics
def get_rmse_log_err(pred: torch.tensor,
target: torch.tensor,
mask: torch.tensor):
"""
Computes root mean squared error.
Takes preprocessed depths (no nans, infs and non-positive values).
pred, target, and mask should be in the shape of [b, c, h, w]
"""
assert len(pred.shape) == 4, len(target.shape) == 4
b, c, h, w = pred.shape
mask = mask.to(torch.float)
t_m = target * mask
p_m = pred * mask
diff_log = (torch.log(p_m+1e-10) - torch.log(t_m+1e-10)) * mask
square = diff_log ** 2
rmse_sum = torch.sum(square.reshape((b, c, -1)), dim=2) # [b, c]
num = torch.sum(mask.reshape((b, c, -1)), dim=2) # [b, c]
rmse = torch.sqrt(rmse_sum / (num + 1e-10))
valid_pics = torch.sum(num > 0)
return torch.sum(rmse), valid_pics
def get_silog_err(pred: torch.tensor,
target: torch.tensor,
mask: torch.tensor):
"""
Computes scale invariant loss based on differences of logs of depth maps.
Takes preprocessed depths (no nans, infs and non-positive values).
pred, target, and mask should be in the shape of [b, c, h, w]
"""
assert len(pred.shape) == 4, len(target.shape) == 4
b, c, h, w = pred.shape
mask = mask.to(torch.float)
t_m = target * mask
p_m = pred * mask
diff_log = (torch.log(p_m+1e-10) - torch.log(t_m+1e-10)) * mask
diff_log_sum = torch.sum(diff_log.reshape((b, c, -1)), dim=2) # [b, c]
diff_log_square = diff_log ** 2
diff_log_square_sum = torch.sum(diff_log_square.reshape((b, c, -1)), dim=2) # [b, c]
num = torch.sum(mask.reshape((b, c, -1)), dim=2) # [b, c]
silog = torch.sqrt(diff_log_square_sum / (num + 1e-10) - (diff_log_sum / (num + 1e-10)) **2 )
valid_pics = torch.sum(num > 0)
if torch.isnan(torch.sum(silog)):
print('None in silog')
return torch.sum(silog), valid_pics
def get_ratio_error(pred: torch.tensor,
target: torch.tensor,
mask: torch.tensor):
"""
Computes the percentage of pixels for which the ratio of the two depth maps is less than a given threshold.
Takes preprocessed depths (no nans, infs and non-positive values).
pred, target, and mask should be in the shape of [b, c, h, w]
"""
assert len(pred.shape) == 4, len(target.shape) == 4
b, c, h, w = pred.shape
mask = mask.to(torch.float)
t_m = target * mask
p_m = pred
gt_pred = t_m / (p_m + 1e-10)
pred_gt = p_m / (t_m + 1e-10)
gt_pred = gt_pred.reshape((b, c, -1))
pred_gt = pred_gt.reshape((b, c, -1))
gt_pred_gt = torch.cat((gt_pred, pred_gt), axis=1)
ratio_max = torch.amax(gt_pred_gt, axis=1)
mask = mask.reshape((b, -1))
delta_1_sum = torch.sum((ratio_max < 1.25) * mask, dim=1) # [b, ]
delta_2_sum = torch.sum((ratio_max < 1.25**2) * mask, dim=1) # [b,]
delta_3_sum = torch.sum((ratio_max < 1.25**3) * mask, dim=1) # [b, ]
num = torch.sum(mask, dim=1) # [b, ]
delta_1 = delta_1_sum / (num + 1e-10)
delta_2 = delta_2_sum / (num + 1e-10)
delta_3 = delta_3_sum / (num + 1e-10)
valid_pics = torch.sum(num > 0)
return torch.sum(delta_1), torch.sum(delta_2), torch.sum(delta_3), valid_pics
def unproj_pcd(
depth: torch.tensor,
intrinsic: torch.tensor
):
depth = depth.squeeze(1) # [B, H, W]
b, h, w = depth.size()
v = torch.arange(0, h).view(1, h, 1).expand(b, h, w).type_as(depth) # [B, H, W]
u = torch.arange(0, w).view(1, 1, w).expand(b, h, w).type_as(depth) # [B, H, W]
x = (u - intrinsic[:, 0, 2]) / intrinsic[:, 0, 0] * depth # [B, H, W]
y = (v - intrinsic[:, 1, 2]) / intrinsic[:, 0, 0] * depth # [B, H, W]
pcd = torch.stack([x, y, depth], dim=1)
return pcd
def forward_warp(
depth: torch.tensor,
intrinsic: torch.tensor,
pose: torch.tensor,
):
"""
Warp the depth with the provided pose.
Args:
depth: depth map of the target image -- [B, 1, H, W]
intrinsic: camera intrinsic parameters -- [B, 3, 3]
pose: the camera pose -- [B, 4, 4]
"""
B, _, H, W = depth.shape
pcd = unproj_pcd(depth.float(), intrinsic.float())
pcd = pcd.reshape(B, 3, -1) # [B, 3, H*W]
rot, tr = pose[:, :3, :3], pose[:, :3, -1:]
proj_pcd = rot @ pcd + tr
img_coors = intrinsic @ proj_pcd
X = img_coors[:, 0, :]
Y = img_coors[:, 1, :]
Z = img_coors[:, 2, :].clamp(min=1e-3)
x_img_coor = (X/Z + 0.5).long()
y_img_coor = (Y/Z + 0.5).long()
X_mask = ((x_img_coor >=0) & (x_img_coor < W))
Y_mask = ((y_img_coor >=0) & (y_img_coor < H))
mask = X_mask & Y_mask
proj_depth = torch.zeros_like(Z).reshape(B, 1, H, W)
for i in range(B):
proj_depth[i, :, y_img_coor[i,...][mask[i,...]], x_img_coor[i,...][mask[i,...]]] = Z[i,...][mask[i,...]]
plt.imsave('warp2.png', proj_depth.squeeze().cpu().numpy(), cmap='rainbow')
return proj_depth
def get_video_consistency_err(
pred_f1: torch.tensor,
pred_f2: torch.tensor,
ego_pose_f1_to_f2: torch.tensor,
intrinsic: torch.tensor,
):
"""
Compute consistency error between consecutive frames.
"""
if pred_f2 is None or ego_pose_f1_to_f2 is None or intrinsic is None:
return torch.zeros_like(pred_f1).sum(), torch.zeros_like(pred_f1).sum()
ego_pose_f1_to_f2 = ego_pose_f1_to_f2.float()
pred_f2 = pred_f2.float()
pred_f1 = pred_f1[:, None, :, :] if pred_f1.ndim == 3 else pred_f1
pred_f2 = pred_f2[:, None, :, :] if pred_f2.ndim == 3 else pred_f2
pred_f1 = pred_f1[None, None, :, :] if pred_f1.ndim == 2 else pred_f1
pred_f2 = pred_f2[None, None, :, :] if pred_f2.ndim == 2 else pred_f2
B, _, H, W = pred_f1.shape
# Get projection matrix for tgt camera frame to source pixel frame
cam_coords = pixel2cam(pred_f1.squeeze(1).float(), intrinsic.inverse().float()) # [B,3,H,W]
#proj_depth_my = forward_warp(pred_f1, intrinsic, ego_pose_f1_to_f2)
proj_f1_to_f2 = intrinsic @ ego_pose_f1_to_f2[:, :3, :] # [B, 3, 4]
rot, tr = proj_f1_to_f2[:, :, :3], proj_f1_to_f2[:, :, -1:]
f2_pixel_coords, warped_depth_f1_to_f2 = cam2pixel2(cam_coords, rot, tr, padding_mode="zeros") # [B,H,W,2]
projected_depth = F.grid_sample(pred_f2, f2_pixel_coords, padding_mode="zeros", align_corners=False)
mask_valid = (projected_depth > 1e-6) & (warped_depth_f1_to_f2 > 1e-6)
# plt.imsave('f1.png', pred_f1.squeeze().cpu().numpy(), cmap='rainbow')
# plt.imsave('f2.png', pred_f2.squeeze().cpu().numpy(), cmap='rainbow')
# plt.imsave('warp.png', warped_depth_f1_to_f2.squeeze().cpu().numpy(), cmap='rainbow')
# plt.imsave('proj.png', projected_depth.squeeze().cpu().numpy(), cmap='rainbow')
consistency_rel_err, valid_pix = get_absrel_err(warped_depth_f1_to_f2, projected_depth, mask_valid)
return consistency_rel_err, valid_pix
if __name__ == '__main__':
cfg = ['abs_rel', 'delta1']
dam = MetricAverageMeter(cfg)
pred_depth = np.random.random([2, 480, 640])
gt_depth = np.random.random([2, 480, 640]) - 0.5 #np.ones_like(pred_depth) * (-1) #
intrinsic = [[100, 100, 200, 200], [200, 200, 300, 300]]
pred = torch.from_numpy(pred_depth).cuda()
gt = torch.from_numpy(gt_depth).cuda()
mask = gt > 0
dam.update_metrics_gpu(pred, pred, mask, False)
eval_error = dam.get_metrics()
print(eval_error)