|
import os |
|
import json |
|
import torch |
|
import torchvision.transforms as transforms |
|
import os.path |
|
import numpy as np |
|
import cv2 |
|
from PIL import Image |
|
from torch.utils.data import Dataset |
|
import random |
|
from .__base_dataset__ import BaseDataset |
|
|
|
|
|
class Matterport3DDataset(BaseDataset): |
|
def __init__(self, cfg, phase, **kwargs): |
|
super(Matterport3DDataset, self).__init__( |
|
cfg=cfg, |
|
phase=phase, |
|
**kwargs) |
|
self.metric_scale = cfg.metric_scale |
|
|
|
|
|
def load_norm_label(self, norm_path, H, W): |
|
normal_x = cv2.imread(norm_path['x'], cv2.IMREAD_ANYCOLOR | cv2.IMREAD_ANYDEPTH) |
|
normal_y = cv2.imread(norm_path['y'], cv2.IMREAD_ANYCOLOR | cv2.IMREAD_ANYDEPTH) |
|
normal_z = cv2.imread(norm_path['z'], cv2.IMREAD_ANYCOLOR | cv2.IMREAD_ANYDEPTH) |
|
raw_normal = np.array([normal_x, normal_y, normal_z]) |
|
invalid_mask = np.all(raw_normal == 0, axis=0) |
|
|
|
ego_normal = raw_normal.astype(np.float64) / 32768.0 - 1 |
|
ego2cam = np.array([[1,0,0], |
|
[0,-1,0], |
|
[0,0,-1]]) |
|
normal = (ego2cam @ ego_normal.reshape(3,-1)).reshape(ego_normal.shape) |
|
normal[:,invalid_mask] = 0 |
|
normal = normal.transpose((1,2,0)) |
|
if normal.shape[0] != H or normal.shape[1] != W: |
|
normal = cv2.resize(normal, [W,H], interpolation=cv2.INTER_NEAREST) |
|
return normal |
|
|
|
def process_depth(self, depth: np.array, rgb: np.array) -> np.array: |
|
depth[depth>65500] = 0 |
|
depth = depth / self.metric_scale |
|
return depth |
|
|