File size: 6,334 Bytes
3ef1661
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
import os
import os.path as osp
import time
import sys
CODE_SPACE=os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
sys.path.append(CODE_SPACE)
#os.chdir(CODE_SPACE)
import argparse
import mmcv
import torch
import torch.distributed as dist
import torch.multiprocessing as mp

try:
    from mmcv.utils import Config, DictAction
except:
    from mmengine import Config, DictAction
from datetime import timedelta
import random
import numpy as np

from mono.datasets.distributed_sampler import log_canonical_transfer_info
from mono.utils.comm import init_env
from mono.utils.logger import setup_logger
from mono.utils.db import load_data_info, reset_ckpt_path
from mono.model.monodepth_model import get_configured_monodepth_model
from mono.datasets.distributed_sampler import build_dataset_n_sampler_with_cfg
from mono.utils.running import load_ckpt
from mono.utils.do_test import do_test_with_dataloader, do_test_check_data

def parse_args():
    parser = argparse.ArgumentParser(description='Train a segmentor')
    parser.add_argument('config', help='train config file path')
    parser.add_argument('--show-dir', help='the dir to save logs and visualization results')
    parser.add_argument(
        '--load-from', help='the checkpoint file to load weights from')
    parser.add_argument('--node_rank', type=int, default=0)
    parser.add_argument('--nnodes', 
                        type=int, 
                        default=1, 
                        help='number of nodes')
    parser.add_argument(
        '--options', nargs='+', action=DictAction, help='custom options')   
    parser.add_argument(
        '--launcher', choices=['None', 'pytorch', 'slurm'], default='slurm',
        help='job launcher')
    args = parser.parse_args()
    return args

        
def main(args):
    os.chdir(CODE_SPACE)
    cfg = Config.fromfile(args.config)
    cfg.dist_params.nnodes = args.nnodes
    cfg.dist_params.node_rank = args.node_rank

    if args.options is not None:
        cfg.merge_from_dict(args.options)
    # set cudnn_benchmark
    #if cfg.get('cudnn_benchmark', False) and args.launcher != 'ror':
    #    torch.backends.cudnn.benchmark = True

    # show_dir is determined in this priority: CLI > segment in file > filename
    if args.show_dir is not None:
        # update configs according to CLI args if args.show_dir is not None
        cfg.show_dir = args.show_dir
    elif cfg.get('show_dir', None) is None:
        # use config filename + timestamp as default show_dir if cfg.show_dir is None
        cfg.show_dir = osp.join('./show_dirs',
                                osp.splitext(osp.basename(args.config))[0], 
                                args.timestamp)

    # ckpt path
    if args.load_from is None:
        raise RuntimeError('Please set model path!')
    cfg.load_from = args.load_from
    
    # create show dir
    os.makedirs(osp.abspath(cfg.show_dir), exist_ok=True)
    
    # init the logger before other steps
    cfg.log_file = osp.join(cfg.show_dir, f'{args.timestamp}.log')
    logger = setup_logger(cfg.log_file)

    # log some basic info
    logger.info(f'Config:\n{cfg.pretty_text}')

    # load db_info for data
    # load data info
    data_info = {}
    load_data_info('data_server_info', data_info=data_info)
    cfg.db_info = data_info
    # update check point info
    reset_ckpt_path(cfg.model, data_info)

    # log data transfer to canonical space info
    # log_canonical_transfer_info(cfg)
    
    # init distributed env first, since logger depends on the dist info.
    if args.launcher == 'none':
        cfg.distributed = False
    else:
        cfg.distributed = True
        init_env(args.launcher, cfg)
    logger.info(f'Distributed training: {cfg.distributed}')

    # dump config
    cfg.dump(osp.join(cfg.show_dir, osp.basename(args.config)))
    
    if not cfg.distributed:
        main_worker(0, cfg, args.launcher)
    else:
        mp.spawn(main_worker, nprocs=cfg.dist_params.num_gpus_per_node, args=(cfg, args.launcher))

def main_worker(local_rank: int, cfg: dict, launcher: str):
    if cfg.distributed:
        cfg.dist_params.global_rank = cfg.dist_params.node_rank * cfg.dist_params.num_gpus_per_node + local_rank
        cfg.dist_params.local_rank = local_rank
        
        torch.cuda.set_device(local_rank)
        default_timeout = timedelta(minutes=30)
        dist.init_process_group(backend=cfg.dist_params.backend,
                            init_method=cfg.dist_params.dist_url,
                            world_size=cfg.dist_params.world_size,
                            rank=cfg.dist_params.global_rank,
                            timeout=default_timeout,)

    logger = setup_logger(cfg.log_file)
    # build model
    model = get_configured_monodepth_model(cfg,
                                           None,
                                           )
    
    # build datasets
    test_dataset, test_sampler = build_dataset_n_sampler_with_cfg(cfg, 'test')
    # build data loaders
    test_dataloader = torch.utils.data.DataLoader(dataset=test_dataset,
                                                   batch_size=1,
                                                   num_workers=1,
                                                   sampler=test_sampler,
                                                   drop_last=False)

   
    # config distributed training
    if cfg.distributed:
        model = torch.nn.parallel.DistributedDataParallel(model.cuda(), 
                                                          device_ids=[local_rank], 
                                                          output_device=local_rank, 
                                                          find_unused_parameters=True)
    else:
        model = torch.nn.DataParallel(model.cuda())
    
    # load ckpt
    #model, _, _, _ = load_ckpt(cfg.load_from, model, strict_match=False)
    model.eval()
    do_test_with_dataloader(model, cfg, test_dataloader, logger=logger, is_distributed=cfg.distributed)
    # do_test_check_data(model, cfg, test_dataloader, logger=logger, is_distributed=cfg.distributed, local_rank=local_rank)


if __name__=='__main__':
    # load args
    args = parse_args()
    timestamp = time.strftime('%Y%m%d_%H%M%S', time.localtime())
    args.timestamp = timestamp
    main(args)