File size: 10,876 Bytes
3ef1661
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
import torch
from torch import nn
import torch.nn.functional as F
import numpy as np

from mono.utils.inverse_warp import inverse_warp2

#device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")


class SSIM(nn.Module):
    """Layer to compute the SSIM loss between a pair of images
    """
    def __init__(self):
        super(SSIM, self).__init__()
        k = 7
        self.mu_x_pool = nn.AvgPool2d(k, 1)
        self.mu_y_pool = nn.AvgPool2d(k, 1)
        self.sig_x_pool = nn.AvgPool2d(k, 1)
        self.sig_y_pool = nn.AvgPool2d(k, 1)
        self.sig_xy_pool = nn.AvgPool2d(k, 1)

        self.refl = nn.ReflectionPad2d(k//2)

        self.C1 = 0.01 ** 2
        self.C2 = 0.03 ** 2

    def forward(self, x, y):
        x = self.refl(x)
        y = self.refl(y)

        mu_x = self.mu_x_pool(x)
        mu_y = self.mu_y_pool(y)

        sigma_x = self.sig_x_pool(x ** 2) - mu_x ** 2
        sigma_y = self.sig_y_pool(y ** 2) - mu_y ** 2
        sigma_xy = self.sig_xy_pool(x * y) - mu_x * mu_y

        SSIM_n = (2 * mu_x * mu_y + self.C1) * (2 * sigma_xy + self.C2)
        SSIM_d = (mu_x ** 2 + mu_y ** 2 + self.C1) * (sigma_x + sigma_y + self.C2)

        return torch.clamp((1 - SSIM_n / SSIM_d) / 2, 0, 1)


class PhotometricGeometricLoss(nn.Module):
    """The photometric and geometric loss between target and reference frames."""
    def __init__(self, loss_weight=1.0, data_type=['sfm', 'stereo', 'lidar'], **kwargs):
        super(PhotometricGeometricLoss, self).__init__()
        self.no_min_optimize = False
        self.no_auto_mask = False
        self.return_dynamic_mask = True
        self.ssim_loss = SSIM()
        self.no_ssim = False
        self.no_dynamic_mask = False
        self.loss_weight_photo = 1.0
        self.loss_weight_geometry = 0.5
        self.total_loss_weight = loss_weight
        self.data_type = data_type

    
    def photo_and_geometry_loss(self, tgt_img, ref_imgs, tgt_depth, ref_depths, intrinsics, poses, poses_inv):

        diff_img_list = []
        diff_color_list = []
        diff_depth_list = []
        valid_mask_list = []
        auto_mask_list = []

        for ref_img, ref_depth, pose, pose_inv in zip(ref_imgs, ref_depths, poses, poses_inv):
            (
                diff_img_tmp1, 
                diff_color_tmp1, 
                diff_depth_tmp1, 
                valid_mask_tmp1,
                auto_mask_tmp1
            ) = self.compute_pairwise_loss(
                tgt_img, 
                ref_img, 
                tgt_depth,
                ref_depth, 
                pose, 
                intrinsics,
                )

            (
                diff_img_tmp2, 
                diff_color_tmp2, 
                diff_depth_tmp2, 
                valid_mask_tmp2,
                auto_mask_tmp2
            ) = self.compute_pairwise_loss(
                ref_img, 
                tgt_img, 
                ref_depth, 
                tgt_depth, 
                pose_inv, 
                intrinsics, 
                )

            diff_img_list += [diff_img_tmp1, diff_img_tmp2]
            diff_color_list += [diff_color_tmp1, diff_color_tmp2]
            diff_depth_list += [diff_depth_tmp1, diff_depth_tmp2]
            valid_mask_list += [valid_mask_tmp1, valid_mask_tmp2]
            auto_mask_list += [auto_mask_tmp1, auto_mask_tmp2]

        diff_img = torch.cat(diff_img_list, dim=1)
        diff_color = torch.cat(diff_color_list, dim=1)
        diff_depth = torch.cat(diff_depth_list, dim=1)
        valid_mask = torch.cat(valid_mask_list, dim=1)
        auto_mask = torch.cat(auto_mask_list, dim=1)

        # using photo loss to select best match in multiple views
        if not self.no_min_optimize:
            indices = torch.argmin(diff_color, dim=1, keepdim=True)
        
            diff_img = torch.gather(diff_img, 1, indices)
            diff_depth = torch.gather(diff_depth, 1, indices)
            valid_mask = torch.gather(valid_mask, 1, indices)
            auto_mask = torch.gather(auto_mask, 1, indices)
        
        if not self.no_auto_mask:
            photo_loss = self.mean_on_mask(diff_img, valid_mask * auto_mask)
            geometry_loss = self.mean_on_mask(diff_depth, valid_mask * auto_mask)
        else:
            photo_loss = self.mean_on_mask(diff_img, valid_mask)
            geometry_loss = self.mean_on_mask(diff_depth, valid_mask)
        
        dynamic_mask = None
        if self.return_dynamic_mask:
            # get dynamic mask for tgt image       
            dynamic_mask_list = []
            for i in range(0, len(diff_depth_list), 2):
                tmp = diff_depth_list[i]
                tmp[valid_mask_list[1]<1] = 0
                dynamic_mask_list += [1-tmp]
            
            dynamic_mask = torch.cat(dynamic_mask_list, dim=1).mean(dim=1, keepdim=True)

        return photo_loss, geometry_loss, dynamic_mask


    def compute_pairwise_loss(self, tgt_img, ref_img, tgt_depth, ref_depth, pose, intrinsic):

        ref_img_warped, projected_depth, computed_depth = inverse_warp2(ref_img, tgt_depth, ref_depth, pose, intrinsic, padding_mode='zeros')

        
        diff_depth = (computed_depth-projected_depth).abs()/(computed_depth+projected_depth)

        # masking zero values
        valid_mask_ref = (ref_img_warped.abs().mean(dim=1, keepdim=True) > 1e-3).float()
        valid_mask_tgt = (tgt_img.abs().mean(dim=1, keepdim=True) > 1e-3).float()
        valid_mask =  valid_mask_tgt * valid_mask_ref

        diff_color = (tgt_img-ref_img_warped).abs().mean(dim=1, keepdim=True)
        identity_warp_err = (tgt_img-ref_img).abs().mean(dim=1, keepdim=True)
        auto_mask = (diff_color<identity_warp_err).float()
    
        diff_img = (tgt_img-ref_img_warped).abs().clamp(0,1)
        if not self.no_ssim:
            ssim_map = self.ssim_loss(tgt_img, ref_img_warped)
            diff_img = (0.15 * diff_img + 0.85 * ssim_map)
        diff_img = torch.mean(diff_img, dim=1, keepdim=True)

        # reduce photometric loss weight for dynamic regions
        if not self.no_dynamic_mask:
            weight_mask = (1-diff_depth)
            diff_img = diff_img * weight_mask

        return diff_img, diff_color, diff_depth, valid_mask, auto_mask

    # compute mean value on a binary mask
    def mean_on_mask(self, diff, valid_mask):
        mask = valid_mask.expand_as(diff)
        # if mask.sum() > 100:
        #     mean_value = (diff * mask).sum() / mask.sum()
        # else:
        #     mean_value = torch.tensor(0).float().to(device)
        mean_value = (diff * mask).sum() / (mask.sum() + 1e-6)
        return mean_value

    
    def forward(self, input, ref_input, prediction, ref_prediction, intrinsic, **kwargs):
        photo_loss, geometry_loss, dynamic_mask = self.photo_and_geometry_loss(
            tgt_img=input, 
            ref_imgs=ref_input, 
            tgt_depth=prediction, 
            ref_depths=ref_prediction,
            intrinsics=intrinsic, 
            poses=kwargs['pose'], 
            poses_inv=kwargs['inv_pose'])
        loss = self.loss_weight_geometry * geometry_loss + self.loss_weight_photo * photo_loss
        if torch.isnan(loss).item() | torch.isinf(loss).item():
            raise RuntimeError(f'VNL error, {loss}')
        return loss * self.total_loss_weight








# def compute_smooth_loss(tgt_depth, tgt_img):
#     def get_smooth_loss(disp, img):
#         """
#         Computes the smoothness loss for a disparity image
#         The color image is used for edge-aware smoothness
#         """

#         # normalize
#         mean_disp = disp.mean(2, True).mean(3, True)
#         norm_disp = disp / (mean_disp + 1e-7)
#         disp = norm_disp

#         grad_disp_x = torch.abs(disp[:, :, :, :-1] - disp[:, :, :, 1:])
#         grad_disp_y = torch.abs(disp[:, :, :-1, :] - disp[:, :, 1:, :])

#         grad_img_x = torch.mean(torch.abs(img[:, :, :, :-1] - img[:, :, :, 1:]), 1, keepdim=True)
#         grad_img_y = torch.mean(torch.abs(img[:, :, :-1, :] - img[:, :, 1:, :]), 1, keepdim=True)

#         grad_disp_x *= torch.exp(-grad_img_x)
#         grad_disp_y *= torch.exp(-grad_img_y)

#         return grad_disp_x.mean() + grad_disp_y.mean()

#     loss = get_smooth_loss(tgt_depth, tgt_img)

#     return loss


# @torch.no_grad()
# def compute_errors(gt, pred, dataset):
#     # pred : b c h w
#     # gt: b h w

#     abs_diff = abs_rel = sq_rel = log10 = rmse = rmse_log = a1 = a2 = a3 = 0.0

#     batch_size, h, w = gt.size()
    
#     if pred.nelement() != gt.nelement():
#         pred = F.interpolate(pred, [h,w], mode='bilinear', align_corners=False)
#         # pred = F.interpolate(pred, [h,w], mode='nearest')

#     pred = pred.view(batch_size, h, w)

#     if dataset == 'kitti':
#         crop_mask = gt[0] != gt[0]
#         y1, y2 = int(0.40810811 * gt.size(1)), int(0.99189189 * gt.size(1))
#         x1, x2 = int(0.03594771 * gt.size(2)), int(0.96405229 * gt.size(2))
#         crop_mask[y1:y2, x1:x2] = 1
#         max_depth = 80

#     if dataset == 'cs':
#         crop_mask = gt[0] != gt[0]
#         crop_mask[256:, 192:1856] = 1
#         max_depth = 80

#     if dataset == 'nyu':
#         crop_mask = gt[0] != gt[0]
#         crop = np.array([45, 471, 41, 601]).astype(np.int32)
#         crop_mask[crop[0]:crop[1], crop[2]:crop[3]] = 1
#         max_depth = 10

#     if dataset == 'bonn':
#         crop_mask = gt[0] != gt[0]
#         crop_mask[:,:] = 1
#         max_depth = 10

#     if dataset == 'ddad':
#         crop_mask = gt[0] != gt[0]
#         crop_mask[:,:] = 1
#         max_depth = 200

#     min_depth = 1e-3
#     for current_gt, current_pred in zip(gt, pred):
#         valid = (current_gt > min_depth) & (current_gt < max_depth)
#         valid = valid & crop_mask

#         valid_gt = current_gt[valid]
#         valid_pred = current_pred[valid]

#         # align scale
#         valid_pred = valid_pred * torch.median(valid_gt)/torch.median(valid_pred)

#         valid_pred = valid_pred.clamp(min_depth, max_depth)

#         thresh = torch.max((valid_gt / valid_pred), (valid_pred / valid_gt))
#         a1 += (thresh < 1.25).float().mean()
#         a2 += (thresh < 1.25 ** 2).float().mean()
#         a3 += (thresh < 1.25 ** 3).float().mean()

#         diff_i = valid_gt - valid_pred
#         abs_diff += torch.mean(torch.abs(diff_i))
#         abs_rel += torch.mean(torch.abs(diff_i) / valid_gt)
#         sq_rel += torch.mean(((diff_i)**2) / valid_gt)
#         rmse += torch.sqrt(torch.mean(diff_i ** 2))
#         rmse_log += torch.sqrt(torch.mean((torch.log(valid_gt) - torch.log(valid_pred)) ** 2))
#         log10 += torch.mean(torch.abs((torch.log10(valid_gt) - torch.log10(valid_pred))))

#     return [metric.item() / batch_size for metric in [abs_diff, abs_rel, sq_rel, log10, rmse, rmse_log, a1, a2, a3]]