File size: 12,323 Bytes
3ef1661
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
import numpy as np
import torch
import torch.nn as nn

class Backprojection(nn.Module):
    """Layer to backproject a depth image given the camera intrinsics
    Attributes
        xy (Nx3x(HxW)): homogeneous pixel coordinates on regular grid
    """
    def __init__(self, height, width):
        """
        Args:
            height (int): image height
            width (int): image width
        """
        super(Backprojection, self).__init__()

        self.height = height
        self.width = width

        # generate regular grid
        meshgrid = np.meshgrid(range(self.width), range(self.height), indexing='xy')
        id_coords = np.stack(meshgrid, axis=0).astype(np.float32)
        id_coords = torch.tensor(id_coords, device="cuda")

        # generate homogeneous pixel coordinates
        # self.ones = nn.Parameter(torch.ones(1, 1, self.height * self.width),
        #                          requires_grad=False)
        ones = torch.ones(1, 1, self.height * self.width, device="cuda")
        xy = torch.unsqueeze(
            torch.stack([id_coords[0].view(-1), id_coords[1].view(-1)], 0),
            0
            )
        xy = torch.cat([xy, ones], 1)
        #self.xy = nn.Parameter(self.xy, requires_grad=False)
        self.register_buffer('xy', xy, persistent=False)
        self.register_buffer('ones', ones, persistent=False)

        # for virtual camera only
        horizontal_angle_range=[195.0, -15.0]
        vertical_angle_range=[150.0, 0.0]
        
        horizontal_sample_num=641
        vertical_sample_num=481

        self.horizontal_angle_range = horizontal_angle_range
        self.vertical_angle_range = vertical_angle_range
        self.horizontal_sample_num = horizontal_sample_num
        self.vertical_sample_num = vertical_sample_num

        self.horizontal_step = (self.horizontal_angle_range[1] - self.horizontal_angle_range[0]) / (
            self.horizontal_sample_num - 1)
        self.vertical_step = (self.vertical_angle_range[1] - self.vertical_angle_range[0]) / (
            self.vertical_sample_num - 1)

        self.horizontal_samples = np.arange(self.horizontal_angle_range[0], self.horizontal_angle_range[1],
                                            self.horizontal_step)
        self.vertical_samples = np.arange(self.vertical_angle_range[0], self.vertical_angle_range[1],
                                          self.vertical_step)

        horizontal_samples_in_rad = self.horizontal_samples / 180.0 * np.pi
        vertical_samples_in_rad = self.vertical_samples / 180.0 * np.pi

        virt_H = len(self.vertical_samples)
        virt_W = len(self.horizontal_samples)

        self.virt_H, self.virt_W = virt_H, virt_W

        cos_theta = np.tile(np.cos(vertical_samples_in_rad).reshape(-1, 1), (1, virt_W))
        sin_theta = np.tile(np.sin(vertical_samples_in_rad).reshape(-1, 1), (1, virt_W))
        cos_phi = np.tile(np.cos(horizontal_samples_in_rad).reshape(1, -1), (virt_H, 1))
        sin_phi = np.tile(np.sin(horizontal_samples_in_rad).reshape(1, -1), (virt_H, 1))

        x = (sin_theta * cos_phi).reshape(1, virt_H, virt_W)
        y = cos_theta.reshape(1, virt_H, virt_W)
        z = (sin_theta * sin_phi).reshape(1, virt_H, virt_W)

        self.dir_in_virt_cam = np.concatenate((x, y, z), axis=0)
        self.dir_in_virt_cam = self.dir_in_virt_cam.reshape(3, self.virt_H * self.virt_W)


    def forward(self, depth, inv_K, img_like_out=False):
        """
        Args:
            depth (Nx1xHxW): depth map
            inv_K (Nx4x4): inverse camera intrinsics
            img_like_out (bool): if True, the output shape is Nx4xHxW; else Nx4x(HxW)
        Returns:
            points (Nx4x(HxW)): 3D points in homogeneous coordinates
        """
        depth = depth.contiguous()

        xy = self.xy.repeat(depth.shape[0], 1, 1)
        ones = self.ones.repeat(depth.shape[0],1,1)
        
        points = torch.matmul(inv_K[:, :3, :3], xy)
        points = depth.view(depth.shape[0], 1, -1) * points
        points = torch.cat([points, ones], 1)

        if img_like_out:
            points = points.reshape(depth.shape[0], 4, self.height, self.width)
        return points


def get_surface_normalv2(xyz, patch_size=5, mask_valid=None):
    """
    xyz: xyz coordinates, in [b, h, w, c]
    patch: [p1, p2, p3,
            p4, p5, p6,
            p7, p8, p9]
    surface_normal = [(p9-p1) x (p3-p7)] + [(p6-p4) - (p8-p2)]
    return: normal [h, w, 3, b]
    """
    b, h, w, c = xyz.shape
    half_patch = patch_size // 2

    if mask_valid == None:
        mask_valid = xyz[:, :, :, 2] > 0 # [b, h, w]
    mask_pad = torch.zeros((b, h + patch_size - 1, w + patch_size - 1), device=mask_valid.device).bool()
    mask_pad[:, half_patch:-half_patch, half_patch:-half_patch] = mask_valid
    
    xyz_pad = torch.zeros((b, h + patch_size - 1, w + patch_size - 1, c), dtype=xyz.dtype, device=xyz.device)
    xyz_pad[:, half_patch:-half_patch, half_patch:-half_patch, :] = xyz

    xyz_left = xyz_pad[:, half_patch:half_patch + h, :w, :]  # p4
    xyz_right = xyz_pad[:, half_patch:half_patch + h, -w:, :]  # p6
    xyz_top = xyz_pad[:, :h, half_patch:half_patch + w, :]  # p2
    xyz_bottom = xyz_pad[:, -h:, half_patch:half_patch + w, :]  # p8
    xyz_horizon = xyz_left - xyz_right  # p4p6
    xyz_vertical = xyz_top - xyz_bottom  # p2p8

    xyz_left_in = xyz_pad[:, half_patch:half_patch + h, 1:w+1, :]  # p4
    xyz_right_in = xyz_pad[:, half_patch:half_patch + h, patch_size-1:patch_size-1+w, :]  # p6
    xyz_top_in = xyz_pad[:, 1:h+1, half_patch:half_patch + w, :]  # p2
    xyz_bottom_in = xyz_pad[:, patch_size-1:patch_size-1+h, half_patch:half_patch + w, :]  # p8
    xyz_horizon_in = xyz_left_in - xyz_right_in  # p4p6
    xyz_vertical_in = xyz_top_in - xyz_bottom_in  # p2p8

    n_img_1 = torch.cross(xyz_horizon_in, xyz_vertical_in, dim=3)
    n_img_2 = torch.cross(xyz_horizon, xyz_vertical, dim=3)

    # re-orient normals consistently
    orient_mask = torch.sum(n_img_1 * xyz, dim=3) > 0
    n_img_1[orient_mask] *= -1
    orient_mask = torch.sum(n_img_2 * xyz, dim=3) > 0
    n_img_2[orient_mask] *= -1

    n_img1_L2 = torch.sqrt(torch.sum(n_img_1 ** 2, dim=3, keepdim=True)  + 1e-4)
    n_img1_norm = n_img_1 / (n_img1_L2 + 1e-8)

    n_img2_L2 = torch.sqrt(torch.sum(n_img_2 ** 2, dim=3, keepdim=True)  + 1e-4)
    n_img2_norm = n_img_2 / (n_img2_L2 + 1e-8)

    # average 2 norms
    n_img_aver = n_img1_norm + n_img2_norm
    n_img_aver_L2 = torch.sqrt(torch.sum(n_img_aver ** 2, dim=3, keepdim=True) + 1e-4)
    n_img_aver_norm = n_img_aver / (n_img_aver_L2 + 1e-8)
    # re-orient normals consistently
    orient_mask = torch.sum(n_img_aver_norm * xyz, dim=3) > 0
    n_img_aver_norm[orient_mask] *= -1
    #n_img_aver_norm_out = n_img_aver_norm.permute((1, 2, 3, 0))  # [h, w, c, b]

    # get mask for normals
    mask_p4p6 = mask_pad[:, half_patch:half_patch + h, :w] & mask_pad[:, half_patch:half_patch + h, -w:]
    mask_p2p8 = mask_pad[:, :h, half_patch:half_patch + w] & mask_pad[:, -h:, half_patch:half_patch + w]
    mask_normal = mask_p2p8 & mask_p4p6
    n_img_aver_norm[~mask_normal] = 0

    # a = torch.sum(n_img1_norm_out*n_img2_norm_out, dim=2).cpu().numpy().squeeze()
    # plt.imshow(np.abs(a), cmap='rainbow')
    # plt.show()
    return n_img_aver_norm.permute(0, 3, 1, 2).contiguous(), mask_normal[:, None, :, :] # [b, h, w, 3]

class Depth2Normal(nn.Module):
    """Layer to compute surface normal from depth map
    """
    def __init__(self,):
        """
        Args:
            height (int): image height
            width (int): image width
        """
        super(Depth2Normal, self).__init__()
    
    def init_img_coor(self, height, width):
        """
        Args:
            height (int): image height
            width (int): image width
        """
        y, x = torch.meshgrid([torch.arange(0, height, dtype=torch.float32, device="cuda"),
                               torch.arange(0, width, dtype=torch.float32, device="cuda")], indexing='ij')
        meshgrid = torch.stack((x, y))
        
        # # generate regular grid
        # meshgrid = np.meshgrid(range(width), range(height), indexing='xy')
        # id_coords = np.stack(meshgrid, axis=0).astype(np.float32)
        # id_coords = torch.tensor(id_coords)

        # generate homogeneous pixel coordinates
        ones = torch.ones((1, 1, height * width), device="cuda")
        # xy = torch.unsqueeze(
        #     torch.stack([x.reshape(-1), y.reshape(-1)], 0),
        #     0
        #     )
        xy = meshgrid.reshape(2, -1).unsqueeze(0)
        xy = torch.cat([xy, ones], 1)
        
        self.register_buffer('xy', xy, persistent=False)

    def back_projection(self, depth, inv_K, img_like_out=False, scale=1.0):
        """
        Args:
            depth (Nx1xHxW): depth map
            inv_K (Nx4x4): inverse camera intrinsics
            img_like_out (bool): if True, the output shape is Nx4xHxW; else Nx4x(HxW)
        Returns:
            points (Nx4x(HxW)): 3D points in homogeneous coordinates
        """
        B, C, H, W = depth.shape
        depth = depth.contiguous()
        # xy = self.init_img_coor(height=H, width=W)
        xy = self.xy # xy.repeat(depth.shape[0], 1, 1)
        #ones = self.ones.repeat(depth.shape[0],1,1)
        
        points = torch.matmul(inv_K[:, :3, :3], xy)
        points = depth.view(depth.shape[0], 1, -1) * points
        depth_descale = points[:, 2:3, :] / scale
        points = torch.cat((points[:, 0:2, :], depth_descale), dim=1)
        #points = torch.cat([points, ones], 1)

        if img_like_out:
            points = points.reshape(depth.shape[0], 3, H, W)
        return points
    
    # def transfer_xyz(self, u0, v0, H, W, depth, focal_length):
    #     x_row = np.arange(0, W)
    #     x = np.tile(x_row, (H, 1))
    #     x = x.astype(np.float32)
    #     x = torch.from_numpy(x.copy()).cuda()
    #     u_m_u0 = x[None, None, :, :] - u0
    #     self.register_buffer('u_m_u0', u_m_u0, persistent=False)

    #     y_col = np.arange(0, H)  # y_col = np.arange(0, height)
    #     y = np.tile(y_col, (W, 1)).T
    #     y = y.astype(np.float32)
    #     y = torch.from_numpy(y.copy()).cuda()
    #     v_m_v0 = y[None, None, :, :] - v0
    #     self.register_buffer('v_m_v0', v_m_v0, persistent=False)

    #     pix_idx_mat = torch.arange(H*W).reshape((H, W)).cuda()
    #     self.register_buffer('pix_idx_mat', pix_idx_mat, persistent=False)

    #     x = self.u_m_u0 * depth / focal_length
    #     y = self.v_m_v0 * depth / focal_length
    #     z = depth
    #     pw = torch.cat([x, y, z], 1).permute(0, 2, 3, 1) # [b, h, w, c]
    #     return pw

    def forward(self, depth, intrinsics, masks, scale):
        """
        Args:
            depth (Nx1xHxW): depth map
            #inv_K (Nx4x4): inverse camera intrinsics
            intrinsics (Nx4): camera intrinsics
        Returns:
            normal (Nx3xHxW): normalized surface normal
            mask (Nx1xHxW): valid mask for surface normal
        """
        B, C, H, W = depth.shape
        if 'xy' not in self._buffers or self.xy.shape[-1] != H*W:
            self.init_img_coor(height=H, width=W)
        # Compute 3D point cloud
        inv_K = intrinsics.inverse()
        
        xyz = self.back_projection(depth, inv_K, scale=scale) # [N, 4, HxW]

        xyz = xyz.view(depth.shape[0], 3, H, W)
        xyz = xyz[:,:3].permute(0, 2, 3, 1).contiguous() # [b, h, w, c]

        # focal_length = intrinsics[:, 0, 0][:, None, None, None]
        # u0 = intrinsics[:, 0, 2][:, None, None, None]
        # v0 = intrinsics[:, 1, 2][:, None, None, None]        
        # xyz2 = self.transfer_xyz(u0, v0, H, W, depth, focal_length)

        normals, normal_masks = get_surface_normalv2(xyz, mask_valid=masks.squeeze())
        normal_masks = normal_masks & masks
        return normals, normal_masks



if __name__ == '__main__':
    d2n = Depth2Normal()
    depth = np.random.randn(2, 1, 20, 22)
    intrin = np.array([[300, 0, 10], [0, 300, 10], [0,0,1]])
    intrinsics = np.stack([intrin, intrin], axis=0)

    depth_t = torch.from_numpy(depth).cuda().float()
    intrinsics = torch.from_numpy(intrinsics).cuda().float()
    normal = d2n(depth_t, intrinsics)
    normal2 = d2n(depth_t, intrinsics)
    print(normal)