File size: 31,938 Bytes
3ef1661
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
import torch
import torch.nn as nn
import numpy as np
import torch.nn.functional as F
from .depth_to_normal import Depth2Normal

# compute loss
class NormalBranchLoss(nn.Module):
    def __init__(self, loss_weight=1.0, data_type=['sfm', 'stereo', 'denselidar', 'denselidar_syn'], d2n_dataset=['ScanNetAll'], loss_fn='UG_NLL_ours', **kwargs):
        """loss_fn can be one of following:
            - L1            - L1 loss (no uncertainty)
            - L2            - L2 loss (no uncertainty)
            - AL            - Angular loss (no uncertainty)
            - NLL_vMF       - NLL of vonMF distribution
            - NLL_ours      - NLL of Angular vonMF distribution
            - UG_NLL_vMF    - NLL of vonMF distribution (+ pixel-wise MLP + uncertainty-guided sampling)
            - UG_NLL_ours   - NLL of Angular vonMF distribution (+ pixel-wise MLP + uncertainty-guided sampling)
            - NLL_ours_GRU  - NLL of Angular vonMF distribution for GRU sequence
        """
        super(NormalBranchLoss, self).__init__()
        self.loss_type = loss_fn
        if self.loss_type in ['L1', 'L2', 'AL', 'NLL_vMF', 'NLL_ours']:
            # self.loss_fn = self.forward_R
            raise NotImplementedError
        elif self.loss_type in ['UG_NLL_vMF']:
            # self.loss_fn = self.forward_UG
            raise NotImplementedError
        elif self.loss_type in ['UG_NLL_ours']:
            self.loss_fn = self.forward_UG
        elif self.loss_type in ['NLL_ours_GRU', 'NLL_ours_GRU_auxi']:
            self.loss_type = 'NLL_ours'
            self.loss_fn = self.forward_GRU
            self.loss_gamma = 0.9
            try:
                self.loss_weight_auxi = kwargs['loss_weight_auxi']
            except:
                self.loss_weight_auxi = 0.0
        else:
            raise Exception('invalid loss type')
        
        self.loss_weight = loss_weight
        self.data_type = data_type
        
        #self.d2n_dataset = d2n_dataset
        #self.depth2normal = Depth2Normal()

        
    
    def forward(self, **kwargs):
        # device = kwargs['mask'].device
        # B, _, H, W = kwargs['mask'].shape
        # pad_mask = torch.zeros_like(kwargs['mask'], device=device)
        # for b in range(B):
        #     pad = kwargs['pad'][b].squeeze()
        #     pad_mask[b, :, pad[0]:H-pad[1], pad[2]:W-pad[3]] = True

        # loss  = self.loss_fn(pad_mask=pad_mask, **kwargs)
        loss  = self.loss_fn(**kwargs)

        return loss * self.loss_weight


    def forward_GRU(self, normal_out_list, normal, target, mask, intrinsic, pad_mask=None, auxi_normal=None, **kwargs):
        n_predictions = len(normal_out_list)
        assert n_predictions >= 1
        loss = 0.0

        # device = pad_mask.device
        # batches_dataset = kwargs['dataset']
        # self.batch_with_d2n = torch.tensor([0 if batch_dataset not in self.d2n_dataset else 1 \
        #                                       for batch_dataset in batches_dataset], device=device)[:,None,None,None]

        # scale = kwargs['scale'][:, None, None].float()
        # normal_d2n, new_mask_d2n = self.depth2normal(target, intrinsic, pad_mask, scale)

        gt_normal_mask = ~torch.all(normal == 0, dim=1, keepdim=True) & mask

        if auxi_normal != None:
            auxi_normal_mask = ~gt_normal_mask

        #normal = normal * (1 -  self.batch_with_d2n) + normal_d2n * self.batch_with_d2n
        # gt_normal_mask = gt_normal_mask * (1 -  self.batch_with_d2n) + mask * new_mask_d2n * self.batch_with_d2n

        if gt_normal_mask.sum() < 10:
            if auxi_normal == None:
                for norm_out in normal_out_list:
                    loss += norm_out.sum() * 0
                return loss

        for i, norm_out in enumerate(normal_out_list):
            # We adjust the loss_gamma so it is consistent for any number of RAFT-Stereo iterations
            adjusted_loss_gamma = self.loss_gamma**(15/(n_predictions - 1))
            i_weight = adjusted_loss_gamma**(n_predictions - i - 1)

            curr_loss = self.forward_R(norm_out.clone(), normal, gt_normal_mask)
            if auxi_normal != None:
                auxi_loss = self.forward_R(norm_out.clone(), auxi_normal[:, :3], auxi_normal_mask)
                curr_loss = curr_loss + self.loss_weight_auxi * auxi_loss

            if torch.isnan(curr_loss).item() | torch.isinf(curr_loss).item():
                curr_loss = 0 * torch.sum(norm_out)
                print(f'NormalBranchLoss forward_GRU NAN error, {curr_loss}')
            
            loss += curr_loss * i_weight

        return loss

    def forward_R(self, norm_out, gt_norm, gt_norm_mask):
        pred_norm, pred_kappa = norm_out[:, 0:3, :, :], norm_out[:, 3:, :, :]

        if self.loss_type == 'L1':
            l1 = torch.sum(torch.abs(gt_norm - pred_norm), dim=1, keepdim=True)
            loss = torch.mean(l1[gt_norm_mask])

        elif self.loss_type == 'L2':
            l2 = torch.sum(torch.square(gt_norm - pred_norm), dim=1, keepdim=True)
            loss = torch.mean(l2[gt_norm_mask])

        elif self.loss_type == 'AL':
            dot = torch.cosine_similarity(pred_norm, gt_norm, dim=1)

            valid_mask = gt_norm_mask[:, 0, :, :].float() \
                         * (dot.detach() < 0.999).float() \
                         * (dot.detach() > -0.999).float()
            valid_mask = valid_mask > 0.0

            al = torch.acos(dot[valid_mask])
            loss = torch.mean(al)

        elif self.loss_type == 'NLL_vMF':
            dot = torch.cosine_similarity(pred_norm, gt_norm, dim=1)

            valid_mask = gt_norm_mask[:, 0, :, :].float() \
                         * (dot.detach() < 0.999).float() \
                         * (dot.detach() > -0.999).float()
            valid_mask = valid_mask > 0.0

            dot = dot[valid_mask]
            kappa = pred_kappa[:, 0, :, :][valid_mask]

            loss_pixelwise = - torch.log(kappa) \
                             - (kappa * (dot - 1)) \
                             + torch.log(1 - torch.exp(- 2 * kappa))
            loss = torch.mean(loss_pixelwise)

        elif self.loss_type == 'NLL_ours':
            dot = torch.cosine_similarity(pred_norm, gt_norm, dim=1)

            valid_mask = gt_norm_mask[:, 0, :, :].float() \
                         * (dot.detach() < 0.999).float() \
                         * (dot.detach() > -0.999).float()
            valid_mask = valid_mask > 0.5

            dot = dot[valid_mask]
            kappa = pred_kappa[:, 0, :, :][valid_mask]

            loss_pixelwise = - torch.log(torch.square(kappa) + 1) \
                             + kappa * torch.acos(dot) \
                             + torch.log(1 + torch.exp(-kappa * np.pi))
            loss = torch.mean(loss_pixelwise)

        else:
            raise Exception('invalid loss type')

        return loss


    def forward_UG(self, normal_pred_list, normal_coord_list, normal, mask, **kwargs):
        gt_normal_mask = ~torch.all(normal == 0, dim=1, keepdim=True) & mask

        # gt_norm = norms[0]
        # gt_normal_mask = (gt_norm[:, 0:1, :, :] == 0) & (gt_norm[:, 1:2, :, :] == 0) & (gt_norm[:, 2:3, :, :] == 0)
        # gt_normal_mask = ~gt_normal_mask
        loss = 0.0

        if gt_normal_mask[gt_normal_mask].numel() < 10:
            for (pred, coord) in zip(normal_pred_list, normal_coord_list):
                if pred is not None:
                    loss += pred.sum() * 0.
                if coord is not None:
                    loss += coord.sum() * 0.
            return loss

        
        for (pred, coord) in zip(normal_pred_list, normal_coord_list):
            if coord is None:
                pred = F.interpolate(pred, size=[normal.size(2), normal.size(3)], mode='bilinear', align_corners=True)
                pred_norm, pred_kappa = pred[:, 0:3, :, :], pred[:, 3:, :, :]

                # if self.loss_type == 'UG_NLL_vMF':
                #     dot = torch.cosine_similarity(pred_norm, normal, dim=1)

                #     valid_mask = normal_mask[:, 0, :, :].float() \
                #                 * (dot.detach() < 0.999).float() \
                #                 * (dot.detach() > -0.999).float()
                #     valid_mask = valid_mask > 0.5

                #     # mask
                #     dot = dot[valid_mask]
                #     kappa = pred_kappa[:, 0, :, :][valid_mask]

                #     loss_pixelwise = - torch.log(kappa) \
                #                      - (kappa * (dot - 1)) \
                #                      + torch.log(1 - torch.exp(- 2 * kappa))
                #     loss = loss + torch.mean(loss_pixelwise)

                if self.loss_type == 'UG_NLL_ours':
                    dot = torch.cosine_similarity(pred_norm, normal, dim=1)

                    valid_mask = gt_normal_mask[:, 0, :, :].float() \
                                * (dot.detach() < 0.999).float() \
                                * (dot.detach() > -0.999).float()
                    valid_mask = valid_mask > 0.5

                    dot = dot[valid_mask]
                    kappa = pred_kappa[:, 0, :, :][valid_mask]

                    loss_pixelwise = - torch.log(torch.square(kappa) + 1) \
                                     + kappa * torch.acos(dot) \
                                     + torch.log(1 + torch.exp(-kappa * np.pi))
                    loss = loss + torch.mean(loss_pixelwise)

                else:
                    raise Exception

            else:
                # coord: B, 1, N, 2
                # pred: B, 4, N
                gt_norm_ = F.grid_sample(normal, coord, mode='nearest', align_corners=True)  # (B, 3, 1, N)
                gt_norm_mask_ = F.grid_sample(gt_normal_mask.float(), coord, mode='nearest', align_corners=True)  # (B, 1, 1, N)
                gt_norm_ = gt_norm_[:, :, 0, :]  # (B, 3, N)
                gt_norm_mask_ = gt_norm_mask_[:, :, 0, :] > 0.5  # (B, 1, N)

                pred_norm, pred_kappa = pred[:, 0:3, :], pred[:, 3:, :]

                # if self.loss_type == 'UG_NLL_vMF':
                #     dot = torch.cosine_similarity(pred_norm, gt_norm_, dim=1)  # (B, N)

                #     valid_mask = gt_norm_mask_[:, 0, :].float() \
                #                  * (dot.detach() < 0.999).float() \
                #                  * (dot.detach() > -0.999).float()
                #     valid_mask = valid_mask > 0.5

                #     dot = dot[valid_mask]
                #     kappa = pred_kappa[:, 0, :][valid_mask]

                #     loss_pixelwise = - torch.log(kappa) \
                #                      - (kappa * (dot - 1)) \
                #                      + torch.log(1 - torch.exp(- 2 * kappa))
                #     loss = loss + torch.mean(loss_pixelwise)

                if self.loss_type == 'UG_NLL_ours':
                    dot = torch.cosine_similarity(pred_norm, gt_norm_, dim=1)  # (B, N)

                    valid_mask = gt_norm_mask_[:, 0, :].float() \
                                 * (dot.detach() < 0.999).float() \
                                 * (dot.detach() > -0.999).float()
                    valid_mask = valid_mask > 0.5

                    dot = dot[valid_mask]
                    kappa = pred_kappa[:, 0, :][valid_mask]

                    loss_pixelwise = - torch.log(torch.square(kappa) + 1) \
                                     + kappa * torch.acos(dot) \
                                     + torch.log(1 + torch.exp(-kappa * np.pi))
                    loss = loss + torch.mean(loss_pixelwise)

                else:
                    raise Exception
        return loss




# confidence-guided sampling
@torch.no_grad()
def sample_points(init_normal, confidence_map, gt_norm_mask, sampling_ratio, beta=1):
    device = init_normal.device
    B, _, H, W = init_normal.shape
    N = int(sampling_ratio * H * W)
    beta = beta

    # confidence map
    # confidence_map = init_normal[:, 3, :, :]  # B, H, W

    # gt_invalid_mask (B, H, W)
    if gt_norm_mask is not None:
        gt_invalid_mask = F.interpolate(gt_norm_mask.float(), size=[H, W], mode='nearest')
        gt_invalid_mask = gt_invalid_mask < 0.5
        confidence_map[gt_invalid_mask] = -1e4

    # (B, H*W)
    _, idx = confidence_map.view(B, -1).sort(1, descending=True)

    # confidence sampling
    if int(beta * N) > 0:
        importance = idx[:, :int(beta * N)]    # B, beta*N

        # remaining
        remaining = idx[:, int(beta * N):]     # B, H*W - beta*N

        # coverage
        num_coverage = N - int(beta * N)

        if num_coverage <= 0:
            samples = importance
        else:
            coverage_list = []
            for i in range(B):
                idx_c = torch.randperm(remaining.size()[1])    # shuffles "H*W - beta*N"
                coverage_list.append(remaining[i, :][idx_c[:num_coverage]].view(1, -1))     # 1, N-beta*N
            coverage = torch.cat(coverage_list, dim=0)                                      # B, N-beta*N
            samples = torch.cat((importance, coverage), dim=1)                              # B, N

    else:
        # remaining
        remaining = idx[:, :]  # B, H*W

        # coverage
        num_coverage = N

        coverage_list = []
        for i in range(B):
            idx_c = torch.randperm(remaining.size()[1])  # shuffles "H*W - beta*N"
            coverage_list.append(remaining[i, :][idx_c[:num_coverage]].view(1, -1))  # 1, N-beta*N
        coverage = torch.cat(coverage_list, dim=0)  # B, N-beta*N
        samples = coverage

    # point coordinates
    rows_int = samples // W         # 0 for first row, H-1 for last row
    # rows_float = rows_int / float(H-1)         # 0 to 1.0
    # rows_float = (rows_float * 2.0) - 1.0       # -1.0 to 1.0

    cols_int = samples % W          # 0 for first column, W-1 for last column
    # cols_float = cols_int / float(W-1)         # 0 to 1.0
    # cols_float = (cols_float * 2.0) - 1.0       # -1.0 to 1.0

    # point_coords = torch.zeros(B, 1, N, 2)
    # point_coords[:, 0, :, 0] = cols_float             # x coord
    # point_coords[:, 0, :, 1] = rows_float             # y coord
    # point_coords = point_coords.to(device)
    # return point_coords, rows_int, cols_int

    sample_mask = torch.zeros((B,1,H,W), dtype=torch.bool, device=device)
    for i in range(B):
        sample_mask[i, :, rows_int[i,:], cols_int[i,:]] = True
    return sample_mask

# depth-normal consistency loss
class DeNoConsistencyLoss(nn.Module):
    def __init__(self, loss_weight=1.0, data_type=['stereo', 'lidar', 'denselidar', 'denselidar_nometric', 'denselidar_syn'], loss_fn='NLL_ours', \
                 sky_id=142, scale=1, norm_dataset=['Taskonomy', 'Matterport3D', 'Replica', 'Hypersim', 'NYU'], no_sky_dataset=['BigData', 'DIODE', 'Completion', 'Matterport3D'], disable_dataset=[], depth_detach=False, **kwargs):
        """loss_fn can be one of following:
            - L1            - L1 loss (no uncertainty)
            - L2            - L2 loss (no uncertainty)
            - AL            - Angular loss (no uncertainty)
            - NLL_vMF       - NLL of vonMF distribution
            - NLL_ours      - NLL of Angular vonMF distribution
            - UG_NLL_vMF    - NLL of vonMF distribution (+ pixel-wise MLP + uncertainty-guided sampling)
            - UG_NLL_ours   - NLL of Angular vonMF distribution (+ pixel-wise MLP + uncertainty-guided sampling)
            - NLL_ours_GRU  - NLL of Angular vonMF distribution for GRU sequence
            - CEL           - cosine embedding loss
            - CEL_GRU
        """
        super(DeNoConsistencyLoss, self).__init__()
        self.loss_type = loss_fn
        if self.loss_type in ['L1', 'L2', 'NLL_vMF']:
            # self.loss_fn = self.forward_R
            raise NotImplementedError
        elif self.loss_type in ['UG_NLL_vMF']:
            # self.loss_fn = self.forward_UG
            raise NotImplementedError
        elif self.loss_type in ['UG_NLL_ours']:
            # self.loss_fn = self.forward_UG
            raise NotImplementedError
        elif self.loss_type in ['NLL_ours']:
            self.loss_fn = self.forward_J # confidence Joint optimization
            self.loss_gamma = 0.9
        elif self.loss_type in ['AL', 'CEL', 'CEL_L2']:
            self.loss_fn = self.forward_S # confidence Sample
        elif self.loss_type in ['CEL_GRU']:
            self.loss_fn = self.forward_S_GRU # gru
            self.loss_gamma = 0.9
        elif 'Search' in self.loss_type:
            self.loss_fn = self.forward_S_Search
        else:
            raise Exception('invalid loss type')
        
        self.loss_weight = loss_weight
        self.data_type = data_type
        self.sky_id = sky_id

        # For datasets without surface normal gt, enhance its weight (decrease the weight of the dataset with gt).
        self.nonorm_data_scale = scale 
        self.norm_dataset = norm_dataset
        self.no_sky_dataset = no_sky_dataset
        self.disable_dataset = disable_dataset

        self.depth_detach = depth_detach
        self.depth2normal = Depth2Normal()
    
    def forward(self, **kwargs):
        device = kwargs['mask'].device

        batches_dataset = kwargs['dataset']
        self.batch_with_norm = torch.tensor([self.nonorm_data_scale if batch_dataset not in self.norm_dataset else 1 \
                                              for batch_dataset in batches_dataset], device=device)[:,None,None,None]

        self.batch_enabled= torch.tensor([1 if batch_dataset not in  self.disable_dataset  else 0 \
                                              for batch_dataset in batches_dataset], device=device, dtype=torch.bool)[:,None,None,None]
        self.batch_with_norm = self.batch_with_norm * self.batch_enabled


        self.batch_with_norm_sky = torch.tensor([1 if batch_dataset not in  self.no_sky_dataset  else 0 \
                                              for batch_dataset in batches_dataset], device=device, dtype=torch.bool)[:,None,None,None]

        B, _, H, W = kwargs['mask'].shape
        pad_mask = torch.zeros_like(kwargs['mask'], device=device)
        for b in range(B):
            pad = kwargs['pad'][b].squeeze()
            pad_mask[b, :, pad[0]:H-pad[1], pad[2]:W-pad[3]] = True

        loss  = self.loss_fn(pad_mask=pad_mask, **kwargs)
        return loss * self.loss_weight


    def forward_J(self, prediction, confidence, normal_out_list, intrinsic, pad_mask, sem_mask=None, **kwargs):
        prediction_normal = normal_out_list[-1].clone()

        # get normal from depth-prediction 
        normal, new_mask = self.depth2normal(prediction.detach() if self.depth_detach else prediction, intrinsic, pad_mask)
        # mask sky
        sky_mask = sem_mask != self.sky_id
        new_mask = new_mask & sky_mask
        # normal = normal * (~sky_mask)
        # normal[:,1:2,:,:][sky_mask] = 1
        # confidence sampling (sample good depth -> good normal -> to )
        sample_mask_d = sample_points(prediction, confidence, new_mask, sampling_ratio=0.7)

        # all mask
        normal_mask = ~torch.all(normal == 0, dim=1, keepdim=True) & new_mask & sample_mask_d
        if normal_mask.sum() < 10:
            return 0 * prediction_normal.sum()

        loss = self.forward_R(prediction_normal, normal, normal_mask)
        if torch.isnan(loss).item() | torch.isinf(loss).item():
            loss = 0 * torch.sum(prediction_normal)
            print(f'NormalBranchLoss forward_GRU NAN error, {loss}')

        return loss

    #def forward_S(self, prediction, confidence, normal_out_list, intrinsic, pad_mask, sem_mask=None, **kwargs):
    def forward_S(self, prediction, confidence, intrinsic, pad_mask, normal_pred=None, sem_mask=None, target=None, is_initial_pair=False, **kwargs):
        
        if normal_pred is None:
            prediction_normal = kwargs['normal_out_list'][-1]
        else:
            prediction_normal = normal_pred

        # get normal from depth-prediction 
        #try:
        scale = kwargs['scale'][:, None, None].float()
        #except:
            #scale = 1.0
        normal, new_mask = self.depth2normal(prediction.detach() if self.depth_detach else prediction, intrinsic, pad_mask, scale)

        sky_mask = sem_mask != self.sky_id
        if target != None:
            sampling_ratio = 0.7
            target_mask = (target > 0) 
            if is_initial_pair == False:
                pass
            # mask sky
            else:
                sky_mask = torch.nn.functional.interpolate(sky_mask.float(), scale_factor=0.25).bool()
                target_mask = torch.nn.functional.interpolate(target_mask.float(), scale_factor=0.25).bool()
                new_mask = new_mask & ((sky_mask & self.batch_with_norm_sky) | target_mask)
        else:
            new_mask =  torch.ones_like(prediction).bool()
            sampling_ratio = 0.5

        # normal = normal * (~sky_mask)
        # normal[:,1:2,:,:][sky_mask] = 1

        # dual sampling
        confidence_normal = prediction_normal[:, 3:, :, :]
        sample_mask_n = sample_points(prediction_normal, confidence_normal, new_mask, sampling_ratio=sampling_ratio)
        sample_mask_d = sample_points(prediction, confidence, new_mask, sampling_ratio=sampling_ratio)
        conf_mask = confidence > 0.5

        # all mask
        normal_mask = ~torch.all(normal == 0, dim=1, keepdim=True) & new_mask & sample_mask_n & sample_mask_d & conf_mask
        if normal_mask.sum() < 10:
            return 0 * prediction_normal.sum() 

        loss = self.forward_R(prediction_normal, normal, normal_mask)
        if torch.isnan(loss).item() | torch.isinf(loss).item():
            loss = 0 * torch.sum(prediction_normal)
            print(f'NormalBranchLoss forward_GRU NAN error, {loss}')

        return loss

    def forward_S_GRU(self, predictions_list, confidence_list, normal_out_list, intrinsic, pad_mask, sem_mask, target, low_resolution_init, **kwargs):
        n_predictions = len(normal_out_list)
        assert n_predictions >= 1
        loss = 0.0

        for i, (norm, conf, depth) in enumerate(zip(normal_out_list, confidence_list, predictions_list)):
            # We adjust the loss_gamma so it is consistent for any number of RAFT-Stereo iterations
            adjusted_loss_gamma = self.loss_gamma**(15/(n_predictions - 1))
            i_weight = adjusted_loss_gamma**(n_predictions - i - 1)

            if i == 0:
                is_initial_pair = True
                new_intrinsic =  torch.cat((intrinsic[:, :2, :]/4, intrinsic[:, 2:3, :]), dim=1)
                curr_loss = self.forward_S(low_resolution_init[0], low_resolution_init[1], new_intrinsic, torch.nn.functional.interpolate(pad_mask.float(), scale_factor=0.25).bool(), low_resolution_init[2], sem_mask, target, is_initial_pair, scale=kwargs['scale'])
            else:
                is_initial_pair = False
                curr_loss = self.forward_S(depth, conf, intrinsic, pad_mask, norm, sem_mask, target, is_initial_pair, scale=kwargs['scale'])
            
            if torch.isnan(curr_loss).item() | torch.isinf(curr_loss).item():
                curr_loss = 0 * torch.sum(norm)
                print(f'NormalBranchLoss forward_GRU NAN error, {curr_loss}')
            
            loss += curr_loss * i_weight

        return loss


    def forward_R(self, norm_out, gt_norm, gt_norm_mask, pred_kappa=None):
        pred_norm = norm_out[:, 0:3, :, :]
        if pred_kappa is None:
            pred_kappa = norm_out[:, 3:, :, :]

        if self.loss_type == 'L1':
            l1 = torch.sum(torch.abs(gt_norm - pred_norm), dim=1, keepdim=True)
            loss = torch.mean(l1[gt_norm_mask])

        elif self.loss_type == 'L2' or self.loss_type == 'CEL_L2':
            l2 = torch.sum(torch.square(gt_norm - pred_norm), dim=1, keepdim=True)
            loss = torch.mean(l2[gt_norm_mask])

        elif self.loss_type == 'AL':
            dot = torch.cosine_similarity(pred_norm, gt_norm, dim=1)

            valid_mask = gt_norm_mask[:, 0, :, :].float() \
                         * (dot.detach() < 0.999).float() \
                         * (dot.detach() > -0.999).float()
            valid_mask = valid_mask > 0.0

            al = torch.acos(dot * valid_mask)
            al = al * self.batch_with_norm[:, 0, :, :]
            loss = torch.mean(al)
        
        elif self.loss_type == 'CEL' or self.loss_type == 'CEL_GRU':
            dot = torch.cosine_similarity(pred_norm, gt_norm, dim=1)

            valid_mask = gt_norm_mask[:, 0, :, :].float() \
                         * (dot.detach() < 0.999).float() \
                         * (dot.detach() > -0.999).float()
            valid_mask = valid_mask > 0.0

            al = 1 - dot * valid_mask
            al = al * self.batch_with_norm[:, 0, :, :]
            loss = torch.mean(al)

        elif self.loss_type == 'NLL_vMF':
            dot = torch.cosine_similarity(pred_norm, gt_norm, dim=1)

            valid_mask = gt_norm_mask[:, 0, :, :].float() \
                         * (dot.detach() < 0.999).float() \
                         * (dot.detach() > -0.999).float()
            valid_mask = valid_mask > 0.0

            dot = dot[valid_mask]
            kappa = pred_kappa[:, 0, :, :][valid_mask]

            loss_pixelwise = - torch.log(kappa) \
                             - (kappa * (dot - 1)) \
                             + torch.log(1 - torch.exp(- 2 * kappa))
            loss = torch.mean(loss_pixelwise)

        elif self.loss_type == 'NLL_ours':
            dot = torch.cosine_similarity(pred_norm, gt_norm, dim=1)

            valid_mask = gt_norm_mask[:, 0, :, :].float() \
                         * (dot.detach() < 0.999).float() \
                         * (dot.detach() > -0.999).float()
            valid_mask = valid_mask > 0.5

            dot = dot * valid_mask
            kappa = pred_kappa[:, 0, :, :] * valid_mask

            loss_pixelwise = - torch.log(torch.square(kappa) + 1) \
                             + kappa * torch.acos(dot) \
                             + torch.log(1 + torch.exp(-kappa * np.pi))
            loss_pixelwise = loss_pixelwise * self.batch_with_norm[:, 0, :, :]
            loss = torch.mean(loss_pixelwise)

        else:
            raise Exception('invalid loss type')

        return loss

    def forward_S_Search(self, prediction, confidence, intrinsic, pad_mask, normal_pred=None, sem_mask=None, target=None, is_initial_pair=False, **kwargs):
        
        if normal_pred is None:
            prediction_normal = kwargs['normal_out_list'][-1]
        else:
            prediction_normal = normal_pred

        # get normal from depth-prediction 
        scale = kwargs['scale'][:, None, None].float()
        candidate_scale = kwargs['candidate_scale'][:, None, None, None].float() 
        normal, new_mask = self.depth2normal(prediction.detach() if self.depth_detach else prediction, intrinsic, pad_mask, scale)

        sky_mask = sem_mask != self.sky_id
        if target != None:
            sampling_ratio = 0.7
            target_mask = (target > 0) 
            if is_initial_pair == False:
                pass
            # mask sky
            else:
                sky_mask = torch.nn.functional.interpolate(sky_mask.float(), scale_factor=0.25).bool()
                target_mask = torch.nn.functional.interpolate(target_mask.float(), scale_factor=0.25).bool()
                new_mask = new_mask & ((sky_mask & self.batch_with_norm_sky) | target_mask)
        else:
            new_mask =  torch.ones_like(prediction).bool()
            sampling_ratio = 0.5

        # normal = normal * (~sky_mask)
        # normal[:,1:2,:,:][sky_mask] = 1

        # dual sampling
        confidence_normal = prediction_normal[:, 3:, :, :]
        sample_mask_n = sample_points(prediction_normal, confidence_normal, new_mask, sampling_ratio=sampling_ratio)
        sample_mask_d = sample_points(prediction, confidence, new_mask, sampling_ratio=sampling_ratio)
        conf_mask = confidence > 0.5

        # all mask
        normal_mask = ~torch.all(normal == 0, dim=1, keepdim=True) & new_mask & sample_mask_n & sample_mask_d & conf_mask
        if normal_mask.sum() < 10:
            return 0 * prediction_normal.sum() 

        prediction_normal = torch.cat((prediction_normal[:,:2]*torch.ones_like(candidate_scale), prediction_normal[:,2:3]*candidate_scale, prediction_normal[:,3:4]*torch.ones_like(candidate_scale)), dim=1)
        
        norm_x = prediction_normal[:,0:1]
        norm_y = prediction_normal[:,1:2]
        norm_z = prediction_normal[:,2:3]
        
        prediction_normal[:,:3] = prediction_normal[:,:3] / (torch.sqrt(norm_x ** 2.0 + norm_y ** 2.0 + norm_z ** 2.0) + 1e-10)
        
        loss = self.forward_R_Search(prediction_normal, normal, normal_mask)
        #if torch.isnan(loss).item() | torch.isinf(loss).item():
            #loss = 0 * torch.sum(prediction_normal)
            #print(f'NormalBranchLoss forward_GRU NAN error, {loss}')

        return loss


    def forward_R_Search(self, norm_out, gt_norm, gt_norm_mask, pred_kappa=None):
        pred_norm = norm_out[:, 0:3, :, :]
        if pred_kappa is None:
            pred_kappa = norm_out[:, 3:, :, :]

        if 'L1' in self.loss_type:
            l1 = torch.sum(torch.abs(gt_norm - pred_norm), dim=1, keepdim=True)
            loss = torch.mean(l1*gt_norm_mask, dim=[1, 2, 3])

        elif 'L2' in self.loss_type:
            l2 = torch.sum(torch.square(gt_norm - pred_norm), dim=1, keepdim=True)
            loss = torch.mean(l2*gt_norm_mask, dim=[1, 2, 3])

        elif 'AL' in self.loss_type:
            dot = torch.cosine_similarity(pred_norm, gt_norm, dim=1)

            valid_mask = gt_norm_mask[:, 0, :, :].float() \
                         * (dot.detach() < 0.999).float() \
                         * (dot.detach() > -0.999).float()
            valid_mask = valid_mask > 0.0

            al = torch.acos(dot * valid_mask)
            loss = torch.mean(al, dim=[1, 2])

        elif 'CEL' in self.loss_type:
            dot = torch.cosine_similarity(pred_norm, gt_norm, dim=1)

            valid_mask = gt_norm_mask[:, 0, :, :].float() \
                         * (dot.detach() < 0.999).float() \
                         * (dot.detach() > -0.999).float()
            valid_mask = valid_mask > 0.0

            al = 1 - dot * valid_mask
            loss = torch.mean(al, dim=[1, 2])

        elif 'NLL_vMF' in self.loss_type:
            dot = torch.cosine_similarity(pred_norm, gt_norm, dim=1)

            valid_mask = gt_norm_mask[:, 0, :, :].float() \
                         * (dot.detach() < 0.999).float() \
                         * (dot.detach() > -0.999).float()
            valid_mask = valid_mask > 0.0

            dot = dot[valid_mask]
            kappa = pred_kappa[:, 0, :, :][valid_mask]

            loss_pixelwise = - torch.log(kappa) \
                             - (kappa * (dot - 1)) \
                             + torch.log(1 - torch.exp(- 2 * kappa))
            loss = torch.mean(loss_pixelwise, dim=[1, 2])

        elif 'NLL_ours' in self.loss_type:
            dot = torch.cosine_similarity(pred_norm, gt_norm, dim=1)

            valid_mask = gt_norm_mask[:, 0, :, :].float() \
                         * (dot.detach() < 0.999).float() \
                         * (dot.detach() > -0.999).float()
            valid_mask = valid_mask > 0.5

            dot = dot * valid_mask
            kappa = pred_kappa[:, 0, :, :] * valid_mask

            loss_pixelwise = - torch.log(torch.square(kappa) + 1) \
                             + kappa * torch.acos(dot) \
                             + torch.log(1 + torch.exp(-kappa * np.pi))
            loss = torch.mean(loss_pixelwise, dim=[1, 2])

        else:
            raise Exception('invalid loss type')

        return loss