File size: 10,741 Bytes
3ef1661
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
import torch
import torch.nn as nn
import numpy as np
#from numba import jit

class HDSNRandomLoss(nn.Module):
    """
    Hieratical depth spatial normalization loss.
    Replace the original grid masks with the random created masks.
    loss = MAE((d-median(d)/s - (d'-median(d'))/s'), s = mean(d- median(d))
    """
    def __init__(self, loss_weight=1.0, random_num=32, data_type=['sfm', 'stereo', 'lidar', 'denselidar', 'denselidar_nometric','denselidar_syn'], disable_dataset=['MapillaryPSD'], sky_id=142, batch_limit=8, **kwargs):
        super(HDSNRandomLoss, self).__init__()
        self.loss_weight = loss_weight
        self.random_num = random_num
        self.data_type = data_type
        self.sky_id = sky_id
        self.batch_limit = batch_limit
        self.eps = 1e-6
        self.disable_dataset = disable_dataset

    def get_random_masks_for_batch(self, image_size: list)-> torch.Tensor:
        height, width = image_size
        crop_h_min = int(0.125 * height)
        crop_h_max = int(0.5 * height)
        crop_w_min = int(0.125 * width)
        crop_w_max = int(0.5 * width)
        h_max = height - crop_h_min
        w_max = width - crop_w_min
        crop_height = np.random.choice(np.arange(crop_h_min, crop_h_max), self.random_num, replace=False)
        crop_width = np.random.choice(np.arange(crop_w_min, crop_w_max), self.random_num, replace=False)
        crop_y = np.random.choice(h_max, self.random_num, replace=False)
        crop_x = np.random.choice(w_max, self.random_num, replace=False)
        crop_y_end = crop_height + crop_y
        crop_y_end[crop_y_end>=height] = height
        crop_x_end = crop_width + crop_x
        crop_x_end[crop_x_end>=width] = width

        mask_new = torch.zeros((self.random_num,  height, width), dtype=torch.bool, device="cuda") #.cuda() #[N, H, W]
        for i in range(self.random_num):
           mask_new[i, crop_y[i]:crop_y_end[i], crop_x[i]:crop_x_end[i]] = True

        return mask_new
        #return crop_y, crop_y_end, crop_x, crop_x_end
    
    def reorder_sem_masks(self, sem_label):
        # reorder the semantic mask of a batch
        assert sem_label.ndim == 3
        semantic_ids = torch.unique(sem_label[(sem_label>0) & (sem_label != self.sky_id)])
        sem_masks = [sem_label == id for id in semantic_ids]
        if len(sem_masks) == 0:
            # no valid semantic labels
            out = sem_label > 0
            return out

        sem_masks = torch.cat(sem_masks, dim=0)
        mask_batch = torch.sum(sem_masks.reshape(sem_masks.shape[0], -1), dim=1) > 500
        sem_masks = sem_masks[mask_batch]
        if sem_masks.shape[0] > self.random_num:
            balance_samples = np.random.choice(sem_masks.shape[0], self.random_num, replace=False)
            sem_masks = sem_masks[balance_samples, ...]
        
        if sem_masks.shape[0] == 0:
            # no valid semantic labels
            out = sem_label > 0
            return out

        if sem_masks.ndim == 2:
            sem_masks = sem_masks[None, :, :]
        return sem_masks
  
    def ssi_mae(self, prediction, target, mask_valid):
        B, C, H, W = target.shape
        prediction_nan = prediction.clone().detach()
        target_nan = target.clone()
        prediction_nan[~mask_valid] = float('nan')
        target_nan[~mask_valid] = float('nan')

        valid_pixs = mask_valid.reshape((B, C,-1)).sum(dim=2, keepdims=True) + 1e-10
        valid_pixs = valid_pixs[:, :, :, None]

        gt_median = target_nan.reshape((B, C,-1)).nanmedian(2, keepdims=True)[0].unsqueeze(-1) # [b,c,h,w]
        gt_median[torch.isnan(gt_median)] = 0
        gt_diff = (torch.abs(target - gt_median) ).reshape((B, C, -1))
        gt_s = gt_diff.sum(dim=2)[:, :, None, None] / valid_pixs
        gt_trans = (target - gt_median) / (gt_s + self.eps)

        pred_median = prediction_nan.reshape((B, C,-1)).nanmedian(2, keepdims=True)[0].unsqueeze(-1) # [b,c,h,w]
        pred_median[torch.isnan(pred_median)] = 0
        pred_diff = (torch.abs(prediction - pred_median)).reshape((B, C, -1))
        pred_s = pred_diff.sum(dim=2)[:, :, None, None] / valid_pixs
        pred_trans = (prediction - pred_median) / (pred_s + self.eps)

        loss_sum = torch.sum(torch.abs(gt_trans - pred_trans)*mask_valid)
        return loss_sum
    
    def conditional_ssi_mae(self, prediction, target, mask_valid):
        B, C, H, W = target.shape
        conditional_rank_ids = np.random.choice(B, B, replace=False)

        prediction_nan = prediction.clone()
        target_nan = target.clone()
        prediction_nan[~mask_valid] = float('nan')
        target_nan[~mask_valid] = float('nan')

        valid_pixs = mask_valid.reshape((B, C,-1)).sum(dim=2, keepdims=True) + self.eps
        valid_pixs = valid_pixs[:, :, :, None].contiguous()

        gt_median = target_nan.reshape((B, C,-1)).nanmedian(2, keepdims=True)[0].unsqueeze(-1) # [b,c,h,w]
        gt_median[torch.isnan(gt_median)] = 0
        gt_diff = (torch.abs(target - gt_median) * mask_valid).reshape((B, C,-1))
        gt_s = gt_diff.sum(dim=2)[:, :, None, None].contiguous() / valid_pixs

        # in case some batches have no valid pixels
        gt_s_small_mask = gt_s < (torch.mean(gt_s)*0.1)
        gt_s[gt_s_small_mask] = torch.mean(gt_s)
        gt_trans = (target - gt_median[conditional_rank_ids]) / (gt_s[conditional_rank_ids] + self.eps)

        pred_median = prediction_nan.reshape((B, C,-1)).nanmedian(2, keepdims=True)[0].unsqueeze(-1) # [b,c,h,w]
        pred_median[torch.isnan(pred_median)] = 0
        pred_diff = (torch.abs(prediction - pred_median) * mask_valid).reshape((B, C,-1))
        pred_s = pred_diff.sum(dim=2)[:, :, None, None].contiguous() / valid_pixs
        pred_s[gt_s_small_mask] = torch.mean(pred_s)
        pred_trans = (prediction - pred_median[conditional_rank_ids]) / (pred_s[conditional_rank_ids] + self.eps)

        loss_sum = torch.sum(torch.abs(gt_trans - pred_trans)*mask_valid)
        # print(torch.abs(gt_trans - pred_trans)[mask_valid])
        return loss_sum


    def forward(self, prediction, target, mask=None, sem_mask=None, **kwargs):
        """
        Calculate loss.
        """
        B, C, H, W = target.shape
        
        loss = 0.0
        valid_pix = 0.0

        device = target.device
        
        batches_dataset = kwargs['dataset']
        self.batch_valid = torch.tensor([1 if batch_dataset not in self.disable_dataset else 0 \
            for batch_dataset in batches_dataset], device=device)[:,None,None,None]

        batch_limit = self.batch_limit
        
        random_sample_masks = self.get_random_masks_for_batch((H, W)) # [N, H, W]
        for i in range(B):
            # each batch
            mask_i = mask[i, ...] #[1, H, W]
            if self.batch_valid[i, ...] < 0.5:
                loss += 0 * torch.sum(prediction[i, ...])
                valid_pix += 0 * torch.sum(mask_i)
                continue

            pred_i = prediction[i, ...].unsqueeze(0).repeat(batch_limit, 1, 1, 1)
            target_i = target[i, ...].unsqueeze(0).repeat(batch_limit, 1, 1, 1)

            # get semantic masks
            sem_label_i = sem_mask[i, ...] if sem_mask is not None else None
            if sem_label_i is not None:
                sem_masks = self.reorder_sem_masks(sem_label_i) # [N, H, W]
                random_sem_masks = torch.cat([random_sample_masks, sem_masks], dim=0)
            else:
                random_sem_masks = random_sample_masks
            #random_sem_masks = random_sample_masks


            sampled_masks_num = random_sem_masks.shape[0]
            loops = int(np.ceil(sampled_masks_num / batch_limit))
            conditional_rank_ids = np.random.choice(sampled_masks_num, sampled_masks_num, replace=False)

            for j in range(loops):
                mask_random_sem_loopi = random_sem_masks[j*batch_limit:(j+1)*batch_limit, ...]
                mask_sample = (mask_i & mask_random_sem_loopi).unsqueeze(1) # [N, 1, H, W]
                loss += self.ssi_mae(
                    prediction=pred_i[:mask_sample.shape[0], ...], 
                    target=target_i[:mask_sample.shape[0], ...], 
                    mask_valid=mask_sample)
                valid_pix += torch.sum(mask_sample)

                # conditional ssi loss
                # rerank_mask_random_sem_loopi = random_sem_masks[conditional_rank_ids, ...][j*batch_limit:(j+1)*batch_limit, ...]
                # rerank_mask_sample = (mask_i & rerank_mask_random_sem_loopi).unsqueeze(1) # [N, 1, H, W]
                # loss_cond = self.conditional_ssi_mae(
                #     prediction=pred_i[:rerank_mask_sample.shape[0], ...], 
                #     target=target_i[:rerank_mask_sample.shape[0], ...], 
                #     mask_valid=rerank_mask_sample)
                # print(loss_cond / (torch.sum(rerank_mask_sample) + 1e-10), loss_cond, torch.sum(rerank_mask_sample))
                # loss += loss_cond
                # valid_pix += torch.sum(rerank_mask_sample)

        # crop_y, crop_y_end, crop_x, crop_x_end = self.get_random_masks_for_batch((H, W)) # [N,]
        # for j in range(B):
        #     for i in range(self.random_num):
        #         mask_crop = mask[j, :, crop_y[i]:crop_y_end[i], crop_x[i]:crop_x_end[i]][None, ...] #[1, 1, crop_h, crop_w]
        #         target_crop = target[j, :, crop_y[i]:crop_y_end[i], crop_x[i]:crop_x_end[i]][None, ...]
        #         pred_crop = prediction[j, :, crop_y[i]:crop_y_end[i], crop_x[i]:crop_x_end[i]][None, ...]
        #         loss += self.ssi_mae(prediction=pred_crop, target=target_crop, mask_valid=mask_crop)
        #         valid_pix += torch.sum(mask_crop)
        
        # the whole image
        mask = mask * self.batch_valid.bool()
        loss += self.ssi_mae(
                    prediction=prediction, 
                    target=target, 
                    mask_valid=mask)
        valid_pix += torch.sum(mask)
        loss = loss / (valid_pix + self.eps)
        if torch.isnan(loss).item() | torch.isinf(loss).item():
            loss = 0 * torch.sum(prediction)
            print(f'HDSNL NAN error, {loss}, valid pix: {valid_pix}')
        return loss * self.loss_weight
    
if __name__ == '__main__':
    torch.manual_seed(1)
    torch.cuda.manual_seed_all(1)
    ssil = HDSNRandomLoss()
    pred = torch.rand((8, 1, 256, 512)).cuda()
    gt = torch.rand((8, 1, 256, 512)).cuda()#torch.zeros_like(pred).cuda() #
    gt[1:, :, 100:256, 100:350] = -1
    gt[:2, ...] = -1
    mask = gt > 0
    sem_mask = np.random.randint(-1, 200, (8, 1, 256, 512))
    sem_mask[sem_mask>0] = -1
    sem_mask_torch = torch.from_numpy(sem_mask).cuda()

    out = ssil(pred, gt, mask, sem_mask_torch)
    print(out)