File size: 10,741 Bytes
3ef1661 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 |
import torch
import torch.nn as nn
import numpy as np
#from numba import jit
class HDSNRandomLoss(nn.Module):
"""
Hieratical depth spatial normalization loss.
Replace the original grid masks with the random created masks.
loss = MAE((d-median(d)/s - (d'-median(d'))/s'), s = mean(d- median(d))
"""
def __init__(self, loss_weight=1.0, random_num=32, data_type=['sfm', 'stereo', 'lidar', 'denselidar', 'denselidar_nometric','denselidar_syn'], disable_dataset=['MapillaryPSD'], sky_id=142, batch_limit=8, **kwargs):
super(HDSNRandomLoss, self).__init__()
self.loss_weight = loss_weight
self.random_num = random_num
self.data_type = data_type
self.sky_id = sky_id
self.batch_limit = batch_limit
self.eps = 1e-6
self.disable_dataset = disable_dataset
def get_random_masks_for_batch(self, image_size: list)-> torch.Tensor:
height, width = image_size
crop_h_min = int(0.125 * height)
crop_h_max = int(0.5 * height)
crop_w_min = int(0.125 * width)
crop_w_max = int(0.5 * width)
h_max = height - crop_h_min
w_max = width - crop_w_min
crop_height = np.random.choice(np.arange(crop_h_min, crop_h_max), self.random_num, replace=False)
crop_width = np.random.choice(np.arange(crop_w_min, crop_w_max), self.random_num, replace=False)
crop_y = np.random.choice(h_max, self.random_num, replace=False)
crop_x = np.random.choice(w_max, self.random_num, replace=False)
crop_y_end = crop_height + crop_y
crop_y_end[crop_y_end>=height] = height
crop_x_end = crop_width + crop_x
crop_x_end[crop_x_end>=width] = width
mask_new = torch.zeros((self.random_num, height, width), dtype=torch.bool, device="cuda") #.cuda() #[N, H, W]
for i in range(self.random_num):
mask_new[i, crop_y[i]:crop_y_end[i], crop_x[i]:crop_x_end[i]] = True
return mask_new
#return crop_y, crop_y_end, crop_x, crop_x_end
def reorder_sem_masks(self, sem_label):
# reorder the semantic mask of a batch
assert sem_label.ndim == 3
semantic_ids = torch.unique(sem_label[(sem_label>0) & (sem_label != self.sky_id)])
sem_masks = [sem_label == id for id in semantic_ids]
if len(sem_masks) == 0:
# no valid semantic labels
out = sem_label > 0
return out
sem_masks = torch.cat(sem_masks, dim=0)
mask_batch = torch.sum(sem_masks.reshape(sem_masks.shape[0], -1), dim=1) > 500
sem_masks = sem_masks[mask_batch]
if sem_masks.shape[0] > self.random_num:
balance_samples = np.random.choice(sem_masks.shape[0], self.random_num, replace=False)
sem_masks = sem_masks[balance_samples, ...]
if sem_masks.shape[0] == 0:
# no valid semantic labels
out = sem_label > 0
return out
if sem_masks.ndim == 2:
sem_masks = sem_masks[None, :, :]
return sem_masks
def ssi_mae(self, prediction, target, mask_valid):
B, C, H, W = target.shape
prediction_nan = prediction.clone().detach()
target_nan = target.clone()
prediction_nan[~mask_valid] = float('nan')
target_nan[~mask_valid] = float('nan')
valid_pixs = mask_valid.reshape((B, C,-1)).sum(dim=2, keepdims=True) + 1e-10
valid_pixs = valid_pixs[:, :, :, None]
gt_median = target_nan.reshape((B, C,-1)).nanmedian(2, keepdims=True)[0].unsqueeze(-1) # [b,c,h,w]
gt_median[torch.isnan(gt_median)] = 0
gt_diff = (torch.abs(target - gt_median) ).reshape((B, C, -1))
gt_s = gt_diff.sum(dim=2)[:, :, None, None] / valid_pixs
gt_trans = (target - gt_median) / (gt_s + self.eps)
pred_median = prediction_nan.reshape((B, C,-1)).nanmedian(2, keepdims=True)[0].unsqueeze(-1) # [b,c,h,w]
pred_median[torch.isnan(pred_median)] = 0
pred_diff = (torch.abs(prediction - pred_median)).reshape((B, C, -1))
pred_s = pred_diff.sum(dim=2)[:, :, None, None] / valid_pixs
pred_trans = (prediction - pred_median) / (pred_s + self.eps)
loss_sum = torch.sum(torch.abs(gt_trans - pred_trans)*mask_valid)
return loss_sum
def conditional_ssi_mae(self, prediction, target, mask_valid):
B, C, H, W = target.shape
conditional_rank_ids = np.random.choice(B, B, replace=False)
prediction_nan = prediction.clone()
target_nan = target.clone()
prediction_nan[~mask_valid] = float('nan')
target_nan[~mask_valid] = float('nan')
valid_pixs = mask_valid.reshape((B, C,-1)).sum(dim=2, keepdims=True) + self.eps
valid_pixs = valid_pixs[:, :, :, None].contiguous()
gt_median = target_nan.reshape((B, C,-1)).nanmedian(2, keepdims=True)[0].unsqueeze(-1) # [b,c,h,w]
gt_median[torch.isnan(gt_median)] = 0
gt_diff = (torch.abs(target - gt_median) * mask_valid).reshape((B, C,-1))
gt_s = gt_diff.sum(dim=2)[:, :, None, None].contiguous() / valid_pixs
# in case some batches have no valid pixels
gt_s_small_mask = gt_s < (torch.mean(gt_s)*0.1)
gt_s[gt_s_small_mask] = torch.mean(gt_s)
gt_trans = (target - gt_median[conditional_rank_ids]) / (gt_s[conditional_rank_ids] + self.eps)
pred_median = prediction_nan.reshape((B, C,-1)).nanmedian(2, keepdims=True)[0].unsqueeze(-1) # [b,c,h,w]
pred_median[torch.isnan(pred_median)] = 0
pred_diff = (torch.abs(prediction - pred_median) * mask_valid).reshape((B, C,-1))
pred_s = pred_diff.sum(dim=2)[:, :, None, None].contiguous() / valid_pixs
pred_s[gt_s_small_mask] = torch.mean(pred_s)
pred_trans = (prediction - pred_median[conditional_rank_ids]) / (pred_s[conditional_rank_ids] + self.eps)
loss_sum = torch.sum(torch.abs(gt_trans - pred_trans)*mask_valid)
# print(torch.abs(gt_trans - pred_trans)[mask_valid])
return loss_sum
def forward(self, prediction, target, mask=None, sem_mask=None, **kwargs):
"""
Calculate loss.
"""
B, C, H, W = target.shape
loss = 0.0
valid_pix = 0.0
device = target.device
batches_dataset = kwargs['dataset']
self.batch_valid = torch.tensor([1 if batch_dataset not in self.disable_dataset else 0 \
for batch_dataset in batches_dataset], device=device)[:,None,None,None]
batch_limit = self.batch_limit
random_sample_masks = self.get_random_masks_for_batch((H, W)) # [N, H, W]
for i in range(B):
# each batch
mask_i = mask[i, ...] #[1, H, W]
if self.batch_valid[i, ...] < 0.5:
loss += 0 * torch.sum(prediction[i, ...])
valid_pix += 0 * torch.sum(mask_i)
continue
pred_i = prediction[i, ...].unsqueeze(0).repeat(batch_limit, 1, 1, 1)
target_i = target[i, ...].unsqueeze(0).repeat(batch_limit, 1, 1, 1)
# get semantic masks
sem_label_i = sem_mask[i, ...] if sem_mask is not None else None
if sem_label_i is not None:
sem_masks = self.reorder_sem_masks(sem_label_i) # [N, H, W]
random_sem_masks = torch.cat([random_sample_masks, sem_masks], dim=0)
else:
random_sem_masks = random_sample_masks
#random_sem_masks = random_sample_masks
sampled_masks_num = random_sem_masks.shape[0]
loops = int(np.ceil(sampled_masks_num / batch_limit))
conditional_rank_ids = np.random.choice(sampled_masks_num, sampled_masks_num, replace=False)
for j in range(loops):
mask_random_sem_loopi = random_sem_masks[j*batch_limit:(j+1)*batch_limit, ...]
mask_sample = (mask_i & mask_random_sem_loopi).unsqueeze(1) # [N, 1, H, W]
loss += self.ssi_mae(
prediction=pred_i[:mask_sample.shape[0], ...],
target=target_i[:mask_sample.shape[0], ...],
mask_valid=mask_sample)
valid_pix += torch.sum(mask_sample)
# conditional ssi loss
# rerank_mask_random_sem_loopi = random_sem_masks[conditional_rank_ids, ...][j*batch_limit:(j+1)*batch_limit, ...]
# rerank_mask_sample = (mask_i & rerank_mask_random_sem_loopi).unsqueeze(1) # [N, 1, H, W]
# loss_cond = self.conditional_ssi_mae(
# prediction=pred_i[:rerank_mask_sample.shape[0], ...],
# target=target_i[:rerank_mask_sample.shape[0], ...],
# mask_valid=rerank_mask_sample)
# print(loss_cond / (torch.sum(rerank_mask_sample) + 1e-10), loss_cond, torch.sum(rerank_mask_sample))
# loss += loss_cond
# valid_pix += torch.sum(rerank_mask_sample)
# crop_y, crop_y_end, crop_x, crop_x_end = self.get_random_masks_for_batch((H, W)) # [N,]
# for j in range(B):
# for i in range(self.random_num):
# mask_crop = mask[j, :, crop_y[i]:crop_y_end[i], crop_x[i]:crop_x_end[i]][None, ...] #[1, 1, crop_h, crop_w]
# target_crop = target[j, :, crop_y[i]:crop_y_end[i], crop_x[i]:crop_x_end[i]][None, ...]
# pred_crop = prediction[j, :, crop_y[i]:crop_y_end[i], crop_x[i]:crop_x_end[i]][None, ...]
# loss += self.ssi_mae(prediction=pred_crop, target=target_crop, mask_valid=mask_crop)
# valid_pix += torch.sum(mask_crop)
# the whole image
mask = mask * self.batch_valid.bool()
loss += self.ssi_mae(
prediction=prediction,
target=target,
mask_valid=mask)
valid_pix += torch.sum(mask)
loss = loss / (valid_pix + self.eps)
if torch.isnan(loss).item() | torch.isinf(loss).item():
loss = 0 * torch.sum(prediction)
print(f'HDSNL NAN error, {loss}, valid pix: {valid_pix}')
return loss * self.loss_weight
if __name__ == '__main__':
torch.manual_seed(1)
torch.cuda.manual_seed_all(1)
ssil = HDSNRandomLoss()
pred = torch.rand((8, 1, 256, 512)).cuda()
gt = torch.rand((8, 1, 256, 512)).cuda()#torch.zeros_like(pred).cuda() #
gt[1:, :, 100:256, 100:350] = -1
gt[:2, ...] = -1
mask = gt > 0
sem_mask = np.random.randint(-1, 200, (8, 1, 256, 512))
sem_mask[sem_mask>0] = -1
sem_mask_torch = torch.from_numpy(sem_mask).cuda()
out = ssil(pred, gt, mask, sem_mask_torch)
print(out)
|