File size: 9,112 Bytes
3ef1661
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
import os
import json
import torch
import torchvision.transforms as transforms
import os.path
import numpy as np
import cv2
from torch.utils.data import Dataset
import random
from .__base_dataset__ import BaseDataset


class NYUDataset(BaseDataset):
    def __init__(self, cfg, phase, **kwargs):
        super(NYUDataset, self).__init__(
            cfg=cfg,
            phase=phase,
            **kwargs)
        self.metric_scale = cfg.metric_scale

    def get_data_for_trainval(self, idx: int):
        anno = self.annotations['files'][idx]
        meta_data = self.load_meta_data(anno)
        
        data_path = self.load_data_path(meta_data)
        data_batch = self.load_batch(meta_data, data_path)
        # if data_path['sem_path'] is not None:
        #     print(self.data_name)

        curr_rgb, curr_depth, curr_normal, curr_sem, curr_cam_model = data_batch['curr_rgb'], data_batch['curr_depth'], data_batch['curr_normal'], data_batch['curr_sem'], data_batch['curr_cam_model']
        #curr_stereo_depth = data_batch['curr_stereo_depth']
        new_rgb = np.zeros_like(curr_rgb)
        new_rgb[6:-6, 6:-6, :] = curr_rgb[6:-6, 6:-6, :]
        curr_rgb = new_rgb

        # A patch for stereo depth dataloader (no need to modify specific datasets)
        if 'curr_stereo_depth' in data_batch.keys():
            curr_stereo_depth = data_batch['curr_stereo_depth']
        else:
            curr_stereo_depth = self.load_stereo_depth_label(None, H=curr_rgb.shape[0], W=curr_rgb.shape[1]) 

        curr_intrinsic = meta_data['cam_in']
        # data augmentation
        transform_paras = dict(random_crop_size = self.random_crop_size) # dict() 
        assert curr_rgb.shape[:2] == curr_depth.shape == curr_normal.shape[:2] == curr_sem.shape
        rgbs, depths, intrinsics, cam_models, normals, other_labels, transform_paras = self.img_transforms(
                                                                   images=[curr_rgb, ], 
                                                                   labels=[curr_depth, ], 
                                                                   intrinsics=[curr_intrinsic,], 
                                                                   cam_models=[curr_cam_model, ],
                                                                   normals = [curr_normal, ],
                                                                   other_labels=[curr_sem, curr_stereo_depth],
                                                                   transform_paras=transform_paras)
        # process sky masks
        sem_mask = other_labels[0].int()
        # clip depth map 
        depth_out = self.normalize_depth(depths[0])
        # set the depth of sky region to the invalid
        depth_out[sem_mask==142] = -1 # self.depth_normalize[1] - 1e-6
        # get inverse depth
        inv_depth = self.depth2invdepth(depth_out, sem_mask==142)
        filename = os.path.basename(meta_data['rgb'])[:-4] + '.jpg'
        curr_intrinsic_mat = self.intrinsics_list2mat(intrinsics[0])
        cam_models_stacks = [
            torch.nn.functional.interpolate(cam_models[0][None, :, :, :], size=(cam_models[0].shape[1]//i, cam_models[0].shape[2]//i), mode='bilinear', align_corners=False).squeeze()
            for i in [2, 4, 8, 16, 32] 
            ]

        # stereo_depth 
        stereo_depth_pre_trans = other_labels[1] * (other_labels[1] > 0.3) * (other_labels[1] < 200)
        stereo_depth = stereo_depth_pre_trans * transform_paras['label_scale_factor']
        stereo_depth = self.normalize_depth(stereo_depth)

        pad = transform_paras['pad'] if 'pad' in transform_paras else [0,0,0,0]        
        data = dict(input=rgbs[0],
                    target=depth_out,
                    intrinsic=curr_intrinsic_mat,
                    filename=filename,
                    dataset=self.data_name,
                    cam_model=cam_models_stacks,
                    pad=torch.tensor(pad),
                    data_type=[self.data_type, ],
                    sem_mask=sem_mask.int(),
                    stereo_depth= stereo_depth,
                    normal=normals[0],
                    inv_depth=inv_depth,
                    scale=transform_paras['label_scale_factor'])
        return data

    def get_data_for_test(self, idx: int):
        anno = self.annotations['files'][idx]
        meta_data = self.load_meta_data(anno)
        curr_rgb_path = os.path.join(self.data_root, meta_data['rgb'])
        curr_depth_path = os.path.join(self.depth_root, meta_data['depth'])
        # load data
        ori_curr_intrinsic = meta_data['cam_in']
        curr_rgb, curr_depth = self.load_rgb_depth(curr_rgb_path, curr_depth_path)
        # crop rgb/depth
        new_rgb = np.zeros_like(curr_rgb)
        new_rgb[6:-6, 6:-6, :] = curr_rgb[6:-6, 6:-6, :]
        curr_rgb = new_rgb
        
        ori_h, ori_w, _ = curr_rgb.shape
        # create camera model
        curr_cam_model = self.create_cam_model(curr_rgb.shape[0], curr_rgb.shape[1], ori_curr_intrinsic)

        if 'normal' in meta_data.keys():
            normal_path = os.path.join(self.data_root, meta_data['normal'])
        else:
            normal_path = None

        curr_normal = self.load_norm_label(normal_path, H=curr_rgb.shape[0], W=curr_rgb.shape[1]) 
        # load tmpl rgb info
        # tmpl_annos = self.load_tmpl_image_pose(curr_rgb, meta_data)
        # tmpl_rgbs = tmpl_annos['tmpl_rgb_list'] # list of reference rgbs

        # get crop size
        transform_paras = dict()
        rgbs, depths, intrinsics, cam_models, normals, other_labels, transform_paras = self.img_transforms(
                                                                   images=[curr_rgb,],  #+ tmpl_rgbs, 
                                                                   labels=[curr_depth, ], 
                                                                   intrinsics=[ori_curr_intrinsic, ], # * (len(tmpl_rgbs) + 1), 
                                                                   cam_models=[curr_cam_model, ],
                                                                   normals = [curr_normal, ],
                                                                   transform_paras=transform_paras)
        # depth in original size and orignial metric***
        depth_out = self.clip_depth(curr_depth) * self.depth_range[1] # self.clip_depth(depths[0]) #
        
        filename = os.path.basename(meta_data['rgb'])
        curr_intrinsic_mat = self.intrinsics_list2mat(intrinsics[0])

        pad = transform_paras['pad'] if 'pad' in transform_paras else [0,0,0,0]
        scale_ratio = transform_paras['label_scale_factor'] if 'label_scale_factor' in transform_paras else 1.0
        cam_models_stacks = [
            torch.nn.functional.interpolate(cam_models[0][None, :, :, :], size=(cam_models[0].shape[1]//i, cam_models[0].shape[2]//i), mode='bilinear', align_corners=False).squeeze()
            for i in [2, 4, 8, 16, 32] 
            ]    
        raw_rgb = torch.from_numpy(curr_rgb)
        # rel_pose = torch.from_numpy(tmpl_annos['tmpl_pose_list'][0])
        curr_normal = torch.from_numpy(curr_normal.transpose((2,0,1)))

        data = dict(input=rgbs[0],
                    target=depth_out,
                    intrinsic=curr_intrinsic_mat,
                    filename=filename,
                    dataset=self.data_name,
                    cam_model=cam_models_stacks,
                    # ref_input=rgbs[1:],
                    # tmpl_flg=tmpl_annos['w_tmpl'],
                    pad=pad,
                    scale=scale_ratio,
                    raw_rgb=raw_rgb,
                    # rel_pose=rel_pose,
                    normal=curr_normal
                    #normal=np.zeros_like(curr_rgb.transpose((2,0,1))),
                    )
        return data

    def load_norm_label(self, norm_path, H, W):
        if norm_path is None:
            norm_gt = np.zeros((H, W, 3)).astype(np.float32)
        else:
            norm_gt = cv2.imread(norm_path)

            norm_gt = np.array(norm_gt).astype(np.uint8)
            norm_valid_mask = np.logical_not(
                np.logical_and(
                    np.logical_and(
                        norm_gt[:, :, 0] == 0, norm_gt[:, :, 1] == 0),
                    norm_gt[:, :, 2] == 0))
            norm_valid_mask = norm_valid_mask[:, :, np.newaxis]

            norm_gt = ((norm_gt.astype(np.float32) / 255.0) * 2.0) - 1.0
            norm_gt = norm_gt * norm_valid_mask * -1
            
        return norm_gt   

    def process_depth(self, depth, rgb):
        # eign crop
        new_depth = np.zeros_like(depth)
        new_depth[45:471, 41:601] = depth[45:471, 41:601]
        
        new_depth[new_depth>65500] = 0
        new_depth /= self.metric_scale
        return new_depth




if __name__ == '__main__':
    from mmcv.utils import Config 
    cfg = Config.fromfile('mono/configs/Apolloscape_DDAD/convnext_base.cascade.1m.sgd.mae.py')
    dataset_i = NYUDataset(cfg['Apolloscape'], 'train', **cfg.data_basic)
    print(dataset_i)