File size: 13,458 Bytes
3ef1661
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
import numpy as np
import logging
import torch.distributed as dist
import math
import os
from mono.utils.comm import get_func, main_process
from torch.utils.data import ConcatDataset, DataLoader
import random
import copy
import torch
import logging


def build_dataset_n_sampler_with_cfg(cfg, phase):
    # build data array, similar datasets are organized in the same group
    datasets_array = build_data_array(cfg, phase)
    # concatenate datasets with torch.utils.data.ConcatDataset methods
    dataset_merge = concatenate_datasets(datasets_array)
    # customerize sampler
    custom_sampler = CustomerMultiDataSampler(cfg, dataset_merge, phase)
    return dataset_merge, custom_sampler

class CustomerMultiDataSampler(torch.utils.data.Sampler):
    """
    Customerize a sampler method.  During this process, the size of some datasets will be tailored or expanded. 
    Such process aims to ensure each group has the same data size. 
    e.g. dataset_list: [[A, B, C], [E, F], M], then group 'A,B,C' (Size(A) + Size(B) + Size(C)) has the same size 
    as to group 'E,F' (Size(E) + Size(F)), so as to 'M'.
    args:
        @ cfg: configs for each dataset.
        @ dataset_merge: merged multiple datasets with the torch.utils.data.ConcatDataset method.
        @ phase: train/val/test phase.
    """

    def __init__(self, cfg, dataset_merge, phase):
        self.cfg = cfg
        self.world_size = int(os.environ['WORLD_SIZE'])
        self.phase = phase
        self.global_rank = cfg.dist_params.global_rank
        self.dataset_merge = dataset_merge  
        self.logger = logging.getLogger()
        if main_process():
            self.logger.info(f'Initilized CustomerMultiDataSampler for {phase}.')
        self.random_seed = 136
        self.random_seed_cp = 639

    def __iter__(self):
        self.create_samplers() 
        self.logger.info("Sample list of {} in rank {} is: {}".format(self.phase, self.global_rank, ' '.join(map(str, self.sample_indices_array[-20: -10]))))
        # subsample, each rank sample a subset for training.
        rank_offset = self.each_gpu_size * self.global_rank
        rank_indices = self.sample_indices_array[rank_offset : rank_offset + self.each_gpu_size]
        
        assert rank_indices.size == self.each_gpu_size
        
        for id in rank_indices:
            yield id

    def __len__(self):
        return self.total_dist_size

    def create_samplers(self):       
        # sample idx for each dataset, idx value should not exceed the size of data, 
        # i.e. 0 <= idx < len(data_size)
        #self.samples_mat = []
        self.indices_mat = []
        # size expanded, idx cumulative aggregrated for calling
        self.indices_expand_mat = []
        
        # max group size, each group may consists of multiple similar datasets
        max_group_size = max([len(i) for i in self.dataset_merge.datasets])
        
        dataset_cumulative_sizes = [0] + self.dataset_merge.cumulative_sizes
        
        for gi, dataset_group in enumerate(self.dataset_merge.datasets):
            # the merged dataset consists of multiple grouped datasets
            samples_group = []
            indices_expand_group = []
            indices_group = []

            # to ensure each group has the same size, group with less data has to duplicate its sample list for 'cp_times' times
            cp_times = max_group_size / len(dataset_group)
            
            # adjust each group to ensure they have the same data size
            group_cumulative_sizes = [0] + dataset_group.cumulative_sizes
            expand_indices_sizes = (np.array(group_cumulative_sizes) * cp_times).astype(np.int)
            expand_indices_sizes[-1] = max_group_size
            # datasets in the same group have to expand its sample list
            expand_indices_sizes = expand_indices_sizes[1:] - expand_indices_sizes[:-1]
            
            for di, dataset_i in enumerate(dataset_group.datasets):
                # datasets residing in each group may have similar features
                # samples indices list
                dataset_i_ori_sample_list = self.dataset_merge.datasets[gi].datasets[di].sample_list
                if self.phase == 'train':
                    #sample_list_i = random.sample(dataset_i_ori_sample_list, len(dataset_i_ori_sample_list))
                    sample_list_i = dataset_i_ori_sample_list
                else:
                    # no shuffle in val or test
                    sample_list_i = dataset_i_ori_sample_list
                #samples_group.append(sample_list_i)
                          
                # expand the sample list for each dataset
                expand_size_i = expand_indices_sizes[di]
                indices_expand_list = copy.deepcopy(sample_list_i)
                
                for i in range(int(cp_times)-1):
                    #indices_expand_list += random.sample(sample_list_i, len(dataset_i))
                    indices_expand_list += sample_list_i
                random.seed(self.random_seed_cp)
                indices_expand_list += random.sample(sample_list_i, len(dataset_i))[:expand_size_i % len(dataset_i)]
                # adjust indices value
                indices_expand_list = np.array(indices_expand_list) + dataset_cumulative_sizes[gi] + group_cumulative_sizes[di]
                indices_list = np.array(sample_list_i) + dataset_cumulative_sizes[gi] + group_cumulative_sizes[di]

                # the expanded sample list for dataset_i
                indices_expand_group.append(indices_expand_list)
                # the original sample list for the dataset_i
                indices_group.append(indices_list)
                
                if main_process():
                    self.logger.info(f'"{dataset_i.data_name}", {self.phase} set in group {gi}: ' + 
                                     f'expand size {len(sample_list_i)} --->>>---, {expand_size_i}')

            concat_group = np.concatenate(indices_expand_group)
            # shuffle the grouped datasets samples, e.g. each group data is [a1, a2, a3, b1, b2, b3, b4, c1, c2], the shuffled one, maybe, is [a3, b1, b2, b3, b4, c1,...]
            np.random.seed(self.random_seed)
            if self.phase == 'train':
                np.random.shuffle(concat_group)
            self.indices_expand_mat.append(concat_group)
            self.indices_mat.append(np.concatenate(indices_group))
        
        # create sample list
        if "train" in self.phase:
            # data groups are cross sorted, i.e. [A, B, C, A, B, C....]
            self.sample_indices_array = np.array(self.indices_expand_mat).transpose(1, 0).reshape(-1)
            self.total_indices_size = max_group_size * len(self.dataset_merge.datasets)
        else:
            self.sample_indices_array = np.concatenate(self.indices_mat[:])
            self.total_indices_size = self.sample_indices_array.size
        
        self.total_sample_size = len(self.dataset_merge)
        self.each_gpu_size = int(np.ceil(self.total_indices_size * 1.0 / self.world_size)) # ignore some residual samples
        self.total_dist_size = self.each_gpu_size * self.world_size
        # add extra samples to make it evenly divisible
        diff_size = int(self.total_dist_size - self.total_indices_size)  # int(self.total_dist_size - self.total_sample_size)
        if diff_size > 0:
            self.sample_indices_array = np.append(self.sample_indices_array, self.sample_indices_array[:diff_size])
        #if main_process():
        self.logger.info(f'Expanded data size in merged dataset: {self.total_sample_size}, adjusted data size for distributed running: {self.total_dist_size}')
        self.random_seed += 413
        self.random_seed_cp += 377


def build_data_array(cfg, phase):
    """
    Construct data repo with cfg. In cfg, there is a data name array, which encloses the name of each data. 
    Each data name links to a data config file. With this config file, dataset can be constructed.
    e.g. [['A', 'B', 'C'], ['E', 'F'], 'M']. Each letter indicates a dataset. 
    """
  
    datasets_array = []
    data_array_names_for_log = []
    
    dataname_array = cfg.data_array
    for group_i in dataname_array:
        dataset_group_i = []
        data_group_i_names_for_log = []
        if not isinstance(group_i, list):
            group_i = [group_i, ]
        for data_i in group_i:
            if not isinstance(data_i, dict):
                raise TypeError(f'data name must be a dict, but got {type(data_i)}')
            # each data only can employ a single dataset config
            assert len(data_i.values()) == 1
            if list(data_i.values())[0] not in cfg:
                raise RuntimeError(f'cannot find the data config for {data_i}')
            
            # dataset configure for data i
            #data_i_cfg = cfg[data_i]
            args = copy.deepcopy(cfg) #data_i_cfg.copy()
            data_i_cfg_name = list(data_i.values())[0]
            data_i_db_info_name = list(data_i.keys())[0]
            data_i_db_info = cfg.db_info[data_i_db_info_name]

            # Online evaluation using only metric datasets
            # if phase == 'val' and 'exclude' in cfg.evaluation \
            #     and data_i_db_info_name in cfg.evaluation.exclude:
            #     continue

            # dataset lib name
            obj_name = cfg[data_i_cfg_name]['lib']
            obj_path = os.path.dirname(__file__).split(os.getcwd() + '/')[-1].replace('/', '.') + '.' + obj_name 
            obj_cls = get_func(obj_path)
            if obj_cls is None:
                raise KeyError(f'{obj_name} is not in .data')
                             
            dataset_i = obj_cls(
                args[data_i_cfg_name], 
                phase, 
                db_info=data_i_db_info, 
                **cfg.data_basic)
            # if 'Taskonomy' not in data_i:
            #     print('>>>>>>>>>>ditributed_sampler LN189', dataset_i.data_name, dataset_i.annotations['files'][0]['rgb'].split('/')[-1],
            #       dataset_i.annotations['files'][1000]['rgb'].split('/')[-1], dataset_i.annotations['files'][3000]['rgb'].split('/')[-1])
            # else:
            #     print('>>>>>>>>>>ditributed_sampler LN189', dataset_i.data_name, dataset_i.annotations['files'][0]['meta_data'].split('/')[-1],
            #       dataset_i.annotations['files'][1000]['meta_data'].split('/')[-1], dataset_i.annotations['files'][3000]['meta_data'].split('/')[-1])
            dataset_group_i.append(dataset_i)
            # get data name for log
            data_group_i_names_for_log.append(data_i_db_info_name)

        datasets_array.append(dataset_group_i)
        data_array_names_for_log.append(data_group_i_names_for_log)

    if main_process():
        logger = logging.getLogger()
        logger.info(f'{phase}: data array ({data_array_names_for_log}) has been constructed.')
    return datasets_array
            
def concatenate_datasets(datasets_array):
    """
    Merge grouped datasets to a single one.
    args:
        @ dataset_list: the list of constructed dataset. 
    """
    #max_size = 0
    dataset_merge = []                         
    for group in datasets_array:
        group_dataset = ConcatDataset(group)
        group_size = len(group_dataset)
        #max_size = max_size if group_size < max_size else group_size
        dataset_merge.append(group_dataset)
    return ConcatDataset(dataset_merge)


def log_canonical_transfer_info(cfg):
    logger = logging.getLogger()
    data = []
    canonical_focal_length = cfg.data_basic.canonical_space.focal_length
    canonical_size = cfg.data_basic.canonical_space.img_size
    for group_i in cfg.data_array:
        if not isinstance(group_i, list):
            group_i = [group_i, ]
        for data_i in group_i:
            if not isinstance(data_i, dict):
                raise TypeError(f'data name must be a dict, but got {type(data_i)}')
            assert len(data_i.values()) == 1
            if list(data_i.values())[0] not in cfg:
                raise RuntimeError(f'cannot find the data config for {data_i.values()}')
            if list(data_i.values())[0] not in data:
                data.append(list(data_i.values())[0])

    logger.info('>>>>>>>>>>>>>>Some data transfer details during augmentation.>>>>>>>>>>>>>>')
    for data_i in data:
        data_i_cfg = cfg[data_i]
        if type(data_i_cfg.original_focal_length) != tuple:
            ori_focal = (data_i_cfg.original_focal_length, )
        else:
            ori_focal = data_i_cfg.original_focal_length
        
        log_str = '%s transfer details: \n' % data_i
        for ori_f  in ori_focal:
            # to canonical space
            scalor = canonical_focal_length / ori_f
            img_size = (data_i_cfg.original_size[0]*scalor,  data_i_cfg.original_size[1]*scalor)
            log_str += 'To canonical space: focal length, %f -> %f; size, %s -> %s\n' %(ori_f, canonical_focal_length, data_i_cfg.original_size, img_size)
            
            # random resize in augmentaiton
            resize_range = data_i_cfg.data.train.pipeline[1].ratio_range
            resize_low = (img_size[0]*resize_range[0],  img_size[1]*resize_range[0])
            resize_up = (img_size[0]*resize_range[1],  img_size[1]*resize_range[1])
            log_str += 'Random resize bound: %s ~ %s; \n' %(resize_low, resize_up)
        
        logger.info(log_str)