Upload PPO LunarLander-v2 trained agent
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +93 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 269.45 +/- 19.18
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fd6906275b0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fd690627640>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fd6906276d0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fd690627760>", "_build": "<function ActorCriticPolicy._build at 0x7fd6906277f0>", "forward": "<function ActorCriticPolicy.forward at 0x7fd690627880>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fd690627910>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fd6906279a0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fd690627a30>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fd690627ac0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fd690627b50>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fd690627be0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fd690622f80>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1682824542578850849, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": null, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVVhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIQdZTq6+9cECUhpRSlIwBbJRNKgGMAXSUR0CUNxHUc4o7dX2UKGgGaAloD0MIWYejq3SAb0CUhpRSlGgVS+5oFkdAlDeEbT+efHV9lChoBmgJaA9DCNrlWx/W8WJAlIaUUpRoFU3oA2gWR0CUN6cJMQEqdX2UKGgGaAloD0MIZkrrbwl0ckCUhpRSlGgVS+toFkdAlDgNWyTpxHV9lChoBmgJaA9DCIy8rInF0nNAlIaUUpRoFUveaBZHQJQ4VL8Jlat1fZQoaAZoCWgPQwi9APvo1EZfQJSGlFKUaBVN6ANoFkdAlDiBs2vSt3V9lChoBmgJaA9DCFNYqaCiWXNAlIaUUpRoFU0KAWgWR0CUOZFMZgogdX2UKGgGaAloD0MIi8OZX80gckCUhpRSlGgVS+JoFkdAlDoZJXhfjXV9lChoBmgJaA9DCFu0AG3rNnFAlIaUUpRoFUvtaBZHQJQ62ukk8ih1fZQoaAZoCWgPQwhxcyoZQBhwQJSGlFKUaBVNJAFoFkdAlDsMx0uDjHV9lChoBmgJaA9DCGHij6LOJ29AlIaUUpRoFU0FAWgWR0CUO+f16E8JdX2UKGgGaAloD0MIEywOZz6kcECUhpRSlGgVS/JoFkdAlDv0xyn1nXV9lChoBmgJaA9DCFd8Q+Gzvm5AlIaUUpRoFU0AAWgWR0CUPTU+9rXUdX2UKGgGaAloD0MIJqd2hqlLcECUhpRSlGgVTW4BaBZHQJQ+LgVGkN51fZQoaAZoCWgPQwia0vpbgsByQJSGlFKUaBVL+GgWR0CUPsCKaXrudX2UKGgGaAloD0MIzXLZ6JyoU0CUhpRSlGgVS7poFkdAlD75cTrVv3V9lChoBmgJaA9DCKaAtP8BBHJAlIaUUpRoFUvqaBZHQJRAQhePaL51fZQoaAZoCWgPQwhG0QMfQ/pxQJSGlFKUaBVL92gWR0CUQQVOsT37dX2UKGgGaAloD0MIV3iXizgacUCUhpRSlGgVTREBaBZHQJRBZNO/L1V1fZQoaAZoCWgPQwgSvvc3aPpuQJSGlFKUaBVL0GgWR0CUQhMbWEsbdX2UKGgGaAloD0MIAHMtWsAUcUCUhpRSlGgVS/toFkdAlEJIwmE5AHV9lChoBmgJaA9DCJP98zQgU3JAlIaUUpRoFUvtaBZHQJREHP4VRDV1fZQoaAZoCWgPQwgHYAMiRApyQJSGlFKUaBVL3WgWR0CURFwFC9h7dX2UKGgGaAloD0MIyQT8GokCcUCUhpRSlGgVS+toFkdAlETNUKiPAHV9lChoBmgJaA9DCEM3+wMllXBAlIaUUpRoFU06AWgWR0CURPgKWszVdX2UKGgGaAloD0MIrwj+t5L9cUCUhpRSlGgVS/RoFkdAlEZpcxCY1HV9lChoBmgJaA9DCAe0dAVbXXNAlIaUUpRoFU0BAWgWR0CURvrdnCfpdX2UKGgGaAloD0MIpI0j1uLdcUCUhpRSlGgVS+1oFkdAlEjkOy3TeHV9lChoBmgJaA9DCL9+iA0WYEVAlIaUUpRoFUuzaBZHQJRJdY3eenR1fZQoaAZoCWgPQwhcr+lBwepwQJSGlFKUaBVNEQFoFkdAlEmDr7fpEHV9lChoBmgJaA9DCPzfERVqO3BAlIaUUpRoFU0DAWgWR0CUSv40Mw10dX2UKGgGaAloD0MIH7+36U92cECUhpRSlGgVTRgBaBZHQJRLuliz9jx1fZQoaAZoCWgPQwiM2CeAYpxLQJSGlFKUaBVL12gWR0CUTHNfw7T2dX2UKGgGaAloD0MIdhcoKbACckCUhpRSlGgVS/doFkdAlE06URnOB3V9lChoBmgJaA9DCCmXxi88iG1AlIaUUpRoFUvqaBZHQJRPT/ffoA51fZQoaAZoCWgPQwj+mNamsXhtQJSGlFKUaBVL5mgWR0CUT1fLs8gZdX2UKGgGaAloD0MIkWCqmfUzckCUhpRSlGgVTRgBaBZHQJRPi7Wd3B51fZQoaAZoCWgPQwiQgqeQK65wQJSGlFKUaBVNBAFoFkdAlFCipJf6XXV9lChoBmgJaA9DCBzqd2GrhHBAlIaUUpRoFUvvaBZHQJRRE3CKrJd1fZQoaAZoCWgPQwiDbcST3Z5xQJSGlFKUaBVNJAFoFkdAlFHLqY7aI3V9lChoBmgJaA9DCB6LbVIRjXJAlIaUUpRoFU0VAWgWR0CUUrfQa72+dX2UKGgGaAloD0MIgQTFjzH1cECUhpRSlGgVTQEBaBZHQJRTwsf7rLR1fZQoaAZoCWgPQwjfMqfL4v1yQJSGlFKUaBVNIgFoFkdAlGXA0j1PFnV9lChoBmgJaA9DCMEZ/P0idHBAlIaUUpRoFU0bAWgWR0CUZeMDfWMCdX2UKGgGaAloD0MIv51EhH89ckCUhpRSlGgVTREBaBZHQJRmrreIl+p1fZQoaAZoCWgPQwi3DaMguKZxQJSGlFKUaBVNBwFoFkdAlGdnCwbEP3V9lChoBmgJaA9DCHKmCdsPLHBAlIaUUpRoFUv3aBZHQJRnY/3WWhR1fZQoaAZoCWgPQwigjVw3pcpwQJSGlFKUaBVL1GgWR0CUZ8n0TURWdX2UKGgGaAloD0MIcO1ESUgycUCUhpRSlGgVTSkBaBZHQJRn/mYBvJl1fZQoaAZoCWgPQwhNSkG3l1FxQJSGlFKUaBVL6mgWR0CUaGfMOf/WdX2UKGgGaAloD0MI6wCIu7qkcECUhpRSlGgVS/9oFkdAlGk05lvqDHV9lChoBmgJaA9DCK8hOC7jikFAlIaUUpRoFUu+aBZHQJRqNEmY0EZ1fZQoaAZoCWgPQwi214Le2y1xQJSGlFKUaBVL4mgWR0CUam6nR9gGdX2UKGgGaAloD0MIuiwmNh8RckCUhpRSlGgVTQ8BaBZHQJRqtYfW+XZ1fZQoaAZoCWgPQwifqkID8fJxQJSGlFKUaBVL7GgWR0CUbY30PH1fdX2UKGgGaAloD0MILAyR09evVkCUhpRSlGgVTegDaBZHQJRu1pmEoOR1fZQoaAZoCWgPQwiRC87grwNwQJSGlFKUaBVNKgFoFkdAlG8NlZowmHV9lChoBmgJaA9DCEg2V81zrHFAlIaUUpRoFU0XAWgWR0CUbyQI2OyWdX2UKGgGaAloD0MIH7qgvmXucECUhpRSlGgVS+hoFkdAlG98/QjUu3V9lChoBmgJaA9DCDs6rkZ2pnJAlIaUUpRoFU0OAWgWR0CUb7D0UXYUdX2UKGgGaAloD0MItW/ur16Gc0CUhpRSlGgVTQUBaBZHQJRwBgpjMFF1fZQoaAZoCWgPQwh1VgvsselvQJSGlFKUaBVNCAFoFkdAlHC7FjurqHV9lChoBmgJaA9DCINsWb4uJXJAlIaUUpRoFUvkaBZHQJRw/iEQGwB1fZQoaAZoCWgPQwi28/3UOGxyQJSGlFKUaBVNEwFoFkdAlHGaLjxTbXV9lChoBmgJaA9DCCFaK9qcMXBAlIaUUpRoFU02AWgWR0CUcaW+XZ5BdX2UKGgGaAloD0MIwmuXNpyZcUCUhpRSlGgVS/VoFkdAlHKSPU8V6HV9lChoBmgJaA9DCLVQMjl1n3JAlIaUUpRoFU0NAWgWR0CUc42ETQE7dX2UKGgGaAloD0MImQzH89kVcUCUhpRSlGgVTSMBaBZHQJR0i9alk6N1fZQoaAZoCWgPQwjpQxfUt9BdQJSGlFKUaBVN6ANoFkdAlHduYtxuK3V9lChoBmgJaA9DCPesa7RcNHBAlIaUUpRoFUv9aBZHQJR3tqveP7x1fZQoaAZoCWgPQwiOPXsuU05yQJSGlFKUaBVNDwFoFkdAlHhYIF/x2HV9lChoBmgJaA9DCKj8a3nliG9AlIaUUpRoFU0LAWgWR0CUeSBo24usdX2UKGgGaAloD0MIOfHVjuLDbkCUhpRSlGgVTUUBaBZHQJR5hWq94/x1fZQoaAZoCWgPQwgou5nRT5lxQJSGlFKUaBVNJQFoFkdAlHnX0Gu9vnV9lChoBmgJaA9DCF37AnphE3JAlIaUUpRoFU0cAWgWR0CUeijdHlOodX2UKGgGaAloD0MIodrgRLQickCUhpRSlGgVTRIBaBZHQJR6MTewcHZ1fZQoaAZoCWgPQwiFzJVBddNxQJSGlFKUaBVL4mgWR0CUekBjnV5KdX2UKGgGaAloD0MIXio25nWScUCUhpRSlGgVTQEBaBZHQJR6Z/ViF0x1fZQoaAZoCWgPQwhwtrkxvdtvQJSGlFKUaBVL7mgWR0CUeqMh5gPVdX2UKGgGaAloD0MIDr+bblmdckCUhpRSlGgVTQQBaBZHQJR6vCemNzd1fZQoaAZoCWgPQwhevB+3X5xuQJSGlFKUaBVL7GgWR0CUe5FJQLuydX2UKGgGaAloD0MIct9qnXiacUCUhpRSlGgVTQYBaBZHQJR9m8AaNuN1fZQoaAZoCWgPQwilaybf7LpxQJSGlFKUaBVNJwFoFkdAlIBfyPMjeXV9lChoBmgJaA9DCBvzOuIQsG9AlIaUUpRoFUvSaBZHQJSBqRnvlU91fZQoaAZoCWgPQwheY5eonidxQJSGlFKUaBVL+GgWR0CUgv1WbPQfdX2UKGgGaAloD0MIfO9v0N4OckCUhpRSlGgVS+FoFkdAlIPHVf/m1nV9lChoBmgJaA9DCDDWNzB5mHBAlIaUUpRoFU0lAWgWR0CUhN5Gz8gqdX2UKGgGaAloD0MI0XmNXSIXcECUhpRSlGgVTQQBaBZHQJSE+jvd/KB1fZQoaAZoCWgPQwg42QbuwDdyQJSGlFKUaBVNEgFoFkdAlIYMpCrtFHV9lChoBmgJaA9DCB+i0R2EdXNAlIaUUpRoFU0OAWgWR0CUhoF0PpY+dX2UKGgGaAloD0MIRmCsb6CUcECUhpRSlGgVS/FoFkdAlIbTSofjj3V9lChoBmgJaA9DCH7Er1gDlXJAlIaUUpRoFU0gAWgWR0CUhx0aIeo2dX2UKGgGaAloD0MIXHSy1HrCcUCUhpRSlGgVTSsBaBZHQJSHrH2h7E51fZQoaAZoCWgPQwik4ZS5eSZyQJSGlFKUaBVNLAFoFkdAlIhb7O3UhHV9lChoBmgJaA9DCF0Y6UVtVmJAlIaUUpRoFU3oA2gWR0CUiJSKWLP2dX2UKGgGaAloD0MIgZTYtT3EckCUhpRSlGgVTUMBaBZHQJSJKbwz+FV1fZQoaAZoCWgPQwiIK2fvDBxxQJSGlFKUaBVNoAFoFkdAlIov+4smOXV9lChoBmgJaA9DCOT5DKi3c3BAlIaUUpRoFU0UAWgWR0CUiskPMB6sdX2UKGgGaAloD0MIB84ZUdrHcUCUhpRSlGgVS95oFkdAlIxLilzltHV9lChoBmgJaA9DCJKTiVsFYHBAlIaUUpRoFUv9aBZHQJSMfjBEa2p1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAAAAAAAAAAAlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWViAAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.10.11", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:04e8cbdbc6640085253d0a9005b47dcea5541cbd7f0f22e8101dadb7947f981a
|
3 |
+
size 146553
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.8.0
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,93 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fd6906275b0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fd690627640>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fd6906276d0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fd690627760>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fd6906277f0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fd690627880>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7fd690627910>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fd6906279a0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fd690627a30>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fd690627ac0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fd690627b50>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fd690627be0>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7fd690622f80>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 1015808,
|
25 |
+
"_total_timesteps": 1000000,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1682824542578850849,
|
30 |
+
"learning_rate": 0.0003,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"lr_schedule": {
|
33 |
+
":type:": "<class 'function'>",
|
34 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
35 |
+
},
|
36 |
+
"_last_obs": null,
|
37 |
+
"_last_episode_starts": {
|
38 |
+
":type:": "<class 'numpy.ndarray'>",
|
39 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
40 |
+
},
|
41 |
+
"_last_original_obs": null,
|
42 |
+
"_episode_num": 0,
|
43 |
+
"use_sde": false,
|
44 |
+
"sde_sample_freq": -1,
|
45 |
+
"_current_progress_remaining": -0.015808000000000044,
|
46 |
+
"_stats_window_size": 100,
|
47 |
+
"ep_info_buffer": {
|
48 |
+
":type:": "<class 'collections.deque'>",
|
49 |
+
":serialized:": "gAWVVhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIQdZTq6+9cECUhpRSlIwBbJRNKgGMAXSUR0CUNxHUc4o7dX2UKGgGaAloD0MIWYejq3SAb0CUhpRSlGgVS+5oFkdAlDeEbT+efHV9lChoBmgJaA9DCNrlWx/W8WJAlIaUUpRoFU3oA2gWR0CUN6cJMQEqdX2UKGgGaAloD0MIZkrrbwl0ckCUhpRSlGgVS+toFkdAlDgNWyTpxHV9lChoBmgJaA9DCIy8rInF0nNAlIaUUpRoFUveaBZHQJQ4VL8Jlat1fZQoaAZoCWgPQwi9APvo1EZfQJSGlFKUaBVN6ANoFkdAlDiBs2vSt3V9lChoBmgJaA9DCFNYqaCiWXNAlIaUUpRoFU0KAWgWR0CUOZFMZgogdX2UKGgGaAloD0MIi8OZX80gckCUhpRSlGgVS+JoFkdAlDoZJXhfjXV9lChoBmgJaA9DCFu0AG3rNnFAlIaUUpRoFUvtaBZHQJQ62ukk8ih1fZQoaAZoCWgPQwhxcyoZQBhwQJSGlFKUaBVNJAFoFkdAlDsMx0uDjHV9lChoBmgJaA9DCGHij6LOJ29AlIaUUpRoFU0FAWgWR0CUO+f16E8JdX2UKGgGaAloD0MIEywOZz6kcECUhpRSlGgVS/JoFkdAlDv0xyn1nXV9lChoBmgJaA9DCFd8Q+Gzvm5AlIaUUpRoFU0AAWgWR0CUPTU+9rXUdX2UKGgGaAloD0MIJqd2hqlLcECUhpRSlGgVTW4BaBZHQJQ+LgVGkN51fZQoaAZoCWgPQwia0vpbgsByQJSGlFKUaBVL+GgWR0CUPsCKaXrudX2UKGgGaAloD0MIzXLZ6JyoU0CUhpRSlGgVS7poFkdAlD75cTrVv3V9lChoBmgJaA9DCKaAtP8BBHJAlIaUUpRoFUvqaBZHQJRAQhePaL51fZQoaAZoCWgPQwhG0QMfQ/pxQJSGlFKUaBVL92gWR0CUQQVOsT37dX2UKGgGaAloD0MIV3iXizgacUCUhpRSlGgVTREBaBZHQJRBZNO/L1V1fZQoaAZoCWgPQwgSvvc3aPpuQJSGlFKUaBVL0GgWR0CUQhMbWEsbdX2UKGgGaAloD0MIAHMtWsAUcUCUhpRSlGgVS/toFkdAlEJIwmE5AHV9lChoBmgJaA9DCJP98zQgU3JAlIaUUpRoFUvtaBZHQJREHP4VRDV1fZQoaAZoCWgPQwgHYAMiRApyQJSGlFKUaBVL3WgWR0CURFwFC9h7dX2UKGgGaAloD0MIyQT8GokCcUCUhpRSlGgVS+toFkdAlETNUKiPAHV9lChoBmgJaA9DCEM3+wMllXBAlIaUUpRoFU06AWgWR0CURPgKWszVdX2UKGgGaAloD0MIrwj+t5L9cUCUhpRSlGgVS/RoFkdAlEZpcxCY1HV9lChoBmgJaA9DCAe0dAVbXXNAlIaUUpRoFU0BAWgWR0CURvrdnCfpdX2UKGgGaAloD0MIpI0j1uLdcUCUhpRSlGgVS+1oFkdAlEjkOy3TeHV9lChoBmgJaA9DCL9+iA0WYEVAlIaUUpRoFUuzaBZHQJRJdY3eenR1fZQoaAZoCWgPQwhcr+lBwepwQJSGlFKUaBVNEQFoFkdAlEmDr7fpEHV9lChoBmgJaA9DCPzfERVqO3BAlIaUUpRoFU0DAWgWR0CUSv40Mw10dX2UKGgGaAloD0MIH7+36U92cECUhpRSlGgVTRgBaBZHQJRLuliz9jx1fZQoaAZoCWgPQwiM2CeAYpxLQJSGlFKUaBVL12gWR0CUTHNfw7T2dX2UKGgGaAloD0MIdhcoKbACckCUhpRSlGgVS/doFkdAlE06URnOB3V9lChoBmgJaA9DCCmXxi88iG1AlIaUUpRoFUvqaBZHQJRPT/ffoA51fZQoaAZoCWgPQwj+mNamsXhtQJSGlFKUaBVL5mgWR0CUT1fLs8gZdX2UKGgGaAloD0MIkWCqmfUzckCUhpRSlGgVTRgBaBZHQJRPi7Wd3B51fZQoaAZoCWgPQwiQgqeQK65wQJSGlFKUaBVNBAFoFkdAlFCipJf6XXV9lChoBmgJaA9DCBzqd2GrhHBAlIaUUpRoFUvvaBZHQJRRE3CKrJd1fZQoaAZoCWgPQwiDbcST3Z5xQJSGlFKUaBVNJAFoFkdAlFHLqY7aI3V9lChoBmgJaA9DCB6LbVIRjXJAlIaUUpRoFU0VAWgWR0CUUrfQa72+dX2UKGgGaAloD0MIgQTFjzH1cECUhpRSlGgVTQEBaBZHQJRTwsf7rLR1fZQoaAZoCWgPQwjfMqfL4v1yQJSGlFKUaBVNIgFoFkdAlGXA0j1PFnV9lChoBmgJaA9DCMEZ/P0idHBAlIaUUpRoFU0bAWgWR0CUZeMDfWMCdX2UKGgGaAloD0MIv51EhH89ckCUhpRSlGgVTREBaBZHQJRmrreIl+p1fZQoaAZoCWgPQwi3DaMguKZxQJSGlFKUaBVNBwFoFkdAlGdnCwbEP3V9lChoBmgJaA9DCHKmCdsPLHBAlIaUUpRoFUv3aBZHQJRnY/3WWhR1fZQoaAZoCWgPQwigjVw3pcpwQJSGlFKUaBVL1GgWR0CUZ8n0TURWdX2UKGgGaAloD0MIcO1ESUgycUCUhpRSlGgVTSkBaBZHQJRn/mYBvJl1fZQoaAZoCWgPQwhNSkG3l1FxQJSGlFKUaBVL6mgWR0CUaGfMOf/WdX2UKGgGaAloD0MI6wCIu7qkcECUhpRSlGgVS/9oFkdAlGk05lvqDHV9lChoBmgJaA9DCK8hOC7jikFAlIaUUpRoFUu+aBZHQJRqNEmY0EZ1fZQoaAZoCWgPQwi214Le2y1xQJSGlFKUaBVL4mgWR0CUam6nR9gGdX2UKGgGaAloD0MIuiwmNh8RckCUhpRSlGgVTQ8BaBZHQJRqtYfW+XZ1fZQoaAZoCWgPQwifqkID8fJxQJSGlFKUaBVL7GgWR0CUbY30PH1fdX2UKGgGaAloD0MILAyR09evVkCUhpRSlGgVTegDaBZHQJRu1pmEoOR1fZQoaAZoCWgPQwiRC87grwNwQJSGlFKUaBVNKgFoFkdAlG8NlZowmHV9lChoBmgJaA9DCEg2V81zrHFAlIaUUpRoFU0XAWgWR0CUbyQI2OyWdX2UKGgGaAloD0MIH7qgvmXucECUhpRSlGgVS+hoFkdAlG98/QjUu3V9lChoBmgJaA9DCDs6rkZ2pnJAlIaUUpRoFU0OAWgWR0CUb7D0UXYUdX2UKGgGaAloD0MItW/ur16Gc0CUhpRSlGgVTQUBaBZHQJRwBgpjMFF1fZQoaAZoCWgPQwh1VgvsselvQJSGlFKUaBVNCAFoFkdAlHC7FjurqHV9lChoBmgJaA9DCINsWb4uJXJAlIaUUpRoFUvkaBZHQJRw/iEQGwB1fZQoaAZoCWgPQwi28/3UOGxyQJSGlFKUaBVNEwFoFkdAlHGaLjxTbXV9lChoBmgJaA9DCCFaK9qcMXBAlIaUUpRoFU02AWgWR0CUcaW+XZ5BdX2UKGgGaAloD0MIwmuXNpyZcUCUhpRSlGgVS/VoFkdAlHKSPU8V6HV9lChoBmgJaA9DCLVQMjl1n3JAlIaUUpRoFU0NAWgWR0CUc42ETQE7dX2UKGgGaAloD0MImQzH89kVcUCUhpRSlGgVTSMBaBZHQJR0i9alk6N1fZQoaAZoCWgPQwjpQxfUt9BdQJSGlFKUaBVN6ANoFkdAlHduYtxuK3V9lChoBmgJaA9DCPesa7RcNHBAlIaUUpRoFUv9aBZHQJR3tqveP7x1fZQoaAZoCWgPQwiOPXsuU05yQJSGlFKUaBVNDwFoFkdAlHhYIF/x2HV9lChoBmgJaA9DCKj8a3nliG9AlIaUUpRoFU0LAWgWR0CUeSBo24usdX2UKGgGaAloD0MIOfHVjuLDbkCUhpRSlGgVTUUBaBZHQJR5hWq94/x1fZQoaAZoCWgPQwgou5nRT5lxQJSGlFKUaBVNJQFoFkdAlHnX0Gu9vnV9lChoBmgJaA9DCF37AnphE3JAlIaUUpRoFU0cAWgWR0CUeijdHlOodX2UKGgGaAloD0MIodrgRLQickCUhpRSlGgVTRIBaBZHQJR6MTewcHZ1fZQoaAZoCWgPQwiFzJVBddNxQJSGlFKUaBVL4mgWR0CUekBjnV5KdX2UKGgGaAloD0MIXio25nWScUCUhpRSlGgVTQEBaBZHQJR6Z/ViF0x1fZQoaAZoCWgPQwhwtrkxvdtvQJSGlFKUaBVL7mgWR0CUeqMh5gPVdX2UKGgGaAloD0MIDr+bblmdckCUhpRSlGgVTQQBaBZHQJR6vCemNzd1fZQoaAZoCWgPQwhevB+3X5xuQJSGlFKUaBVL7GgWR0CUe5FJQLuydX2UKGgGaAloD0MIct9qnXiacUCUhpRSlGgVTQYBaBZHQJR9m8AaNuN1fZQoaAZoCWgPQwilaybf7LpxQJSGlFKUaBVNJwFoFkdAlIBfyPMjeXV9lChoBmgJaA9DCBvzOuIQsG9AlIaUUpRoFUvSaBZHQJSBqRnvlU91fZQoaAZoCWgPQwheY5eonidxQJSGlFKUaBVL+GgWR0CUgv1WbPQfdX2UKGgGaAloD0MIfO9v0N4OckCUhpRSlGgVS+FoFkdAlIPHVf/m1nV9lChoBmgJaA9DCDDWNzB5mHBAlIaUUpRoFU0lAWgWR0CUhN5Gz8gqdX2UKGgGaAloD0MI0XmNXSIXcECUhpRSlGgVTQQBaBZHQJSE+jvd/KB1fZQoaAZoCWgPQwg42QbuwDdyQJSGlFKUaBVNEgFoFkdAlIYMpCrtFHV9lChoBmgJaA9DCB+i0R2EdXNAlIaUUpRoFU0OAWgWR0CUhoF0PpY+dX2UKGgGaAloD0MIRmCsb6CUcECUhpRSlGgVS/FoFkdAlIbTSofjj3V9lChoBmgJaA9DCH7Er1gDlXJAlIaUUpRoFU0gAWgWR0CUhx0aIeo2dX2UKGgGaAloD0MIXHSy1HrCcUCUhpRSlGgVTSsBaBZHQJSHrH2h7E51fZQoaAZoCWgPQwik4ZS5eSZyQJSGlFKUaBVNLAFoFkdAlIhb7O3UhHV9lChoBmgJaA9DCF0Y6UVtVmJAlIaUUpRoFU3oA2gWR0CUiJSKWLP2dX2UKGgGaAloD0MIgZTYtT3EckCUhpRSlGgVTUMBaBZHQJSJKbwz+FV1fZQoaAZoCWgPQwiIK2fvDBxxQJSGlFKUaBVNoAFoFkdAlIov+4smOXV9lChoBmgJaA9DCOT5DKi3c3BAlIaUUpRoFU0UAWgWR0CUiskPMB6sdX2UKGgGaAloD0MIB84ZUdrHcUCUhpRSlGgVS95oFkdAlIxLilzltHV9lChoBmgJaA9DCJKTiVsFYHBAlIaUUpRoFUv9aBZHQJSMfjBEa2p1ZS4="
|
50 |
+
},
|
51 |
+
"ep_success_buffer": {
|
52 |
+
":type:": "<class 'collections.deque'>",
|
53 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
54 |
+
},
|
55 |
+
"_n_updates": 248,
|
56 |
+
"observation_space": {
|
57 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
58 |
+
":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAAAAAAAAAAAlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
59 |
+
"dtype": "float32",
|
60 |
+
"_shape": [
|
61 |
+
8
|
62 |
+
],
|
63 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
64 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
65 |
+
"bounded_below": "[False False False False False False False False]",
|
66 |
+
"bounded_above": "[False False False False False False False False]",
|
67 |
+
"_np_random": null
|
68 |
+
},
|
69 |
+
"action_space": {
|
70 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
71 |
+
":serialized:": "gAWViAAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
72 |
+
"n": 4,
|
73 |
+
"_shape": [],
|
74 |
+
"dtype": "int64",
|
75 |
+
"_np_random": null
|
76 |
+
},
|
77 |
+
"n_envs": 16,
|
78 |
+
"n_steps": 1024,
|
79 |
+
"gamma": 0.999,
|
80 |
+
"gae_lambda": 0.98,
|
81 |
+
"ent_coef": 0.01,
|
82 |
+
"vf_coef": 0.5,
|
83 |
+
"max_grad_norm": 0.5,
|
84 |
+
"batch_size": 64,
|
85 |
+
"n_epochs": 4,
|
86 |
+
"clip_range": {
|
87 |
+
":type:": "<class 'function'>",
|
88 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
89 |
+
},
|
90 |
+
"clip_range_vf": null,
|
91 |
+
"normalize_advantage": true,
|
92 |
+
"target_kl": null
|
93 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fbdbc6d87120ab6093e733709881f38e0681b053f236a97b182eec55ff616306
|
3 |
+
size 88057
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e7bd118b9ea6f5a14a15892995868d6157f915f5a75cf5c7d89de147a3111666
|
3 |
+
size 43329
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.10.11
|
3 |
+
- Stable-Baselines3: 1.8.0
|
4 |
+
- PyTorch: 2.0.0+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Gym: 0.21.0
|
replay.mp4
ADDED
Binary file (227 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 269.45196443915836, "std_reward": 19.175012658681595, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-04-30T03:47:38.596214"}
|