yxmauw commited on
Commit
80767ae
Β·
1 Parent(s): 3da470b
Enet-ep19-val0.210.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:93d59e12f99d900c4b99fdcccc682f1b89e9175c1342c38884e3aa778397c155
3
+ size 243581695
LICENSE ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ MIT License
2
+
3
+ Copyright (c) 2022 Belle
4
+
5
+ Permission is hereby granted, free of charge, to any person obtaining a copy
6
+ of this software and associated documentation files (the "Software"), to deal
7
+ in the Software without restriction, including without limitation the rights
8
+ to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9
+ copies of the Software, and to permit persons to whom the Software is
10
+ furnished to do so, subject to the following conditions:
11
+
12
+ The above copyright notice and this permission notice shall be included in all
13
+ copies or substantial portions of the Software.
14
+
15
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
+ IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
+ FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18
+ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
+ LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20
+ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21
+ SOFTWARE.
README.md CHANGED
@@ -1,199 +1,14 @@
1
- ---
2
- license: mit
3
- ---
4
 
5
- # Model Card for Model ID
6
 
7
- <!-- Provide a quick summary of what the model is/does. -->
8
-
9
- This modelcard aims to be a base template for new models. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/modelcard_template.md?plain=1).
10
-
11
- ## Model Details
12
-
13
- ### Model Description
14
-
15
- <!-- Provide a longer summary of what this model is. -->
16
-
17
-
18
-
19
- - **Developed by:** [More Information Needed]
20
- - **Shared by [optional]:** [More Information Needed]
21
- - **Model type:** [More Information Needed]
22
- - **Language(s) (NLP):** [More Information Needed]
23
- - **License:** [More Information Needed]
24
- - **Finetuned from model [optional]:** [More Information Needed]
25
-
26
- ### Model Sources [optional]
27
-
28
- <!-- Provide the basic links for the model. -->
29
-
30
- - **Repository:** [More Information Needed]
31
- - **Paper [optional]:** [More Information Needed]
32
- - **Demo [optional]:** [More Information Needed]
33
-
34
- ## Uses
35
-
36
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
37
-
38
- ### Direct Use
39
-
40
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
41
-
42
- [More Information Needed]
43
-
44
- ### Downstream Use [optional]
45
-
46
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
47
-
48
- [More Information Needed]
49
-
50
- ### Out-of-Scope Use
51
-
52
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
53
-
54
- [More Information Needed]
55
-
56
- ## Bias, Risks, and Limitations
57
-
58
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
59
-
60
- [More Information Needed]
61
-
62
- ### Recommendations
63
-
64
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
65
-
66
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
67
-
68
- ## How to Get Started with the Model
69
-
70
- Use the code below to get started with the model.
71
-
72
- [More Information Needed]
73
-
74
- ## Training Details
75
-
76
- ### Training Data
77
-
78
- <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
79
-
80
- [More Information Needed]
81
-
82
- ### Training Procedure
83
-
84
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
85
-
86
- #### Preprocessing [optional]
87
-
88
- [More Information Needed]
89
-
90
-
91
- #### Training Hyperparameters
92
-
93
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
94
-
95
- #### Speeds, Sizes, Times [optional]
96
-
97
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
98
-
99
- [More Information Needed]
100
-
101
- ## Evaluation
102
-
103
- <!-- This section describes the evaluation protocols and provides the results. -->
104
-
105
- ### Testing Data, Factors & Metrics
106
-
107
- #### Testing Data
108
-
109
- <!-- This should link to a Data Card if possible. -->
110
-
111
- [More Information Needed]
112
-
113
- #### Factors
114
-
115
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
116
-
117
- [More Information Needed]
118
-
119
- #### Metrics
120
-
121
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
122
-
123
- [More Information Needed]
124
-
125
- ### Results
126
-
127
- [More Information Needed]
128
-
129
- #### Summary
130
-
131
-
132
-
133
- ## Model Examination [optional]
134
-
135
- <!-- Relevant interpretability work for the model goes here -->
136
-
137
- [More Information Needed]
138
-
139
- ## Environmental Impact
140
-
141
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
142
-
143
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
144
-
145
- - **Hardware Type:** [More Information Needed]
146
- - **Hours used:** [More Information Needed]
147
- - **Cloud Provider:** [More Information Needed]
148
- - **Compute Region:** [More Information Needed]
149
- - **Carbon Emitted:** [More Information Needed]
150
-
151
- ## Technical Specifications [optional]
152
-
153
- ### Model Architecture and Objective
154
-
155
- [More Information Needed]
156
-
157
- ### Compute Infrastructure
158
-
159
- [More Information Needed]
160
-
161
- #### Hardware
162
-
163
- [More Information Needed]
164
-
165
- #### Software
166
-
167
- [More Information Needed]
168
-
169
- ## Citation [optional]
170
-
171
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
172
-
173
- **BibTeX:**
174
-
175
- [More Information Needed]
176
-
177
- **APA:**
178
-
179
- [More Information Needed]
180
-
181
- ## Glossary [optional]
182
-
183
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
184
-
185
- [More Information Needed]
186
-
187
- ## More Information [optional]
188
-
189
- [More Information Needed]
190
-
191
- ## Model Card Authors [optional]
192
-
193
- [More Information Needed]
194
-
195
- ## Model Card Contact
196
-
197
- [More Information Needed]
198
 
 
 
199
 
 
 
 
 
 
1
+ # Multi-Label classification using Chest X-rays
2
+ Using dataset from [Kaggle](https://www.kaggle.com/competitions/ranzcr-clip-catheter-line-classification/overview)
 
3
 
4
+ First attempt at Pytorch
5
 
6
+ At first, tried running on Kaggle GPU100 - very slow
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7
 
8
+ * Kaggle notebook [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/yxmauw/cxr-multilabel-clf/blob/main/enet-kaggle.ipynb)
9
+ * Google colab notebook [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/yxmauw/cxr-multilabel-clf/blob/main/enet-colab.ipynb)
10
 
11
+ ## References:
12
+ 1. [Debugger cafe](https://debuggercafe.com/multi-label-image-classification-with-pytorch-and-deep-learning/)
13
+ 1. [StackOverflow](https://stackoverflow.com/questions/71404067/using-more-than-1-metric-in-pytorch)
14
+ 1. [Debugger cafe - model checkpoints](https://debuggercafe.com/saving-and-loading-the-best-model-in-pytorch/)
README_template.md ADDED
@@ -0,0 +1,199 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ ---
4
+
5
+ # Model Card for Model ID
6
+
7
+ <!-- Provide a quick summary of what the model is/does. -->
8
+
9
+ This modelcard aims to be a base template for new models. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/modelcard_template.md?plain=1).
10
+
11
+ ## Model Details
12
+
13
+ ### Model Description
14
+
15
+ <!-- Provide a longer summary of what this model is. -->
16
+
17
+
18
+
19
+ - **Developed by:** [More Information Needed]
20
+ - **Shared by [optional]:** [More Information Needed]
21
+ - **Model type:** [More Information Needed]
22
+ - **Language(s) (NLP):** [More Information Needed]
23
+ - **License:** [More Information Needed]
24
+ - **Finetuned from model [optional]:** [More Information Needed]
25
+
26
+ ### Model Sources [optional]
27
+
28
+ <!-- Provide the basic links for the model. -->
29
+
30
+ - **Repository:** [More Information Needed]
31
+ - **Paper [optional]:** [More Information Needed]
32
+ - **Demo [optional]:** [More Information Needed]
33
+
34
+ ## Uses
35
+
36
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
37
+
38
+ ### Direct Use
39
+
40
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
41
+
42
+ [More Information Needed]
43
+
44
+ ### Downstream Use [optional]
45
+
46
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
47
+
48
+ [More Information Needed]
49
+
50
+ ### Out-of-Scope Use
51
+
52
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
53
+
54
+ [More Information Needed]
55
+
56
+ ## Bias, Risks, and Limitations
57
+
58
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
59
+
60
+ [More Information Needed]
61
+
62
+ ### Recommendations
63
+
64
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
65
+
66
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
67
+
68
+ ## How to Get Started with the Model
69
+
70
+ Use the code below to get started with the model.
71
+
72
+ [More Information Needed]
73
+
74
+ ## Training Details
75
+
76
+ ### Training Data
77
+
78
+ <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
79
+
80
+ [More Information Needed]
81
+
82
+ ### Training Procedure
83
+
84
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
85
+
86
+ #### Preprocessing [optional]
87
+
88
+ [More Information Needed]
89
+
90
+
91
+ #### Training Hyperparameters
92
+
93
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
94
+
95
+ #### Speeds, Sizes, Times [optional]
96
+
97
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
98
+
99
+ [More Information Needed]
100
+
101
+ ## Evaluation
102
+
103
+ <!-- This section describes the evaluation protocols and provides the results. -->
104
+
105
+ ### Testing Data, Factors & Metrics
106
+
107
+ #### Testing Data
108
+
109
+ <!-- This should link to a Data Card if possible. -->
110
+
111
+ [More Information Needed]
112
+
113
+ #### Factors
114
+
115
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
116
+
117
+ [More Information Needed]
118
+
119
+ #### Metrics
120
+
121
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
122
+
123
+ [More Information Needed]
124
+
125
+ ### Results
126
+
127
+ [More Information Needed]
128
+
129
+ #### Summary
130
+
131
+
132
+
133
+ ## Model Examination [optional]
134
+
135
+ <!-- Relevant interpretability work for the model goes here -->
136
+
137
+ [More Information Needed]
138
+
139
+ ## Environmental Impact
140
+
141
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
142
+
143
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
144
+
145
+ - **Hardware Type:** [More Information Needed]
146
+ - **Hours used:** [More Information Needed]
147
+ - **Cloud Provider:** [More Information Needed]
148
+ - **Compute Region:** [More Information Needed]
149
+ - **Carbon Emitted:** [More Information Needed]
150
+
151
+ ## Technical Specifications [optional]
152
+
153
+ ### Model Architecture and Objective
154
+
155
+ [More Information Needed]
156
+
157
+ ### Compute Infrastructure
158
+
159
+ [More Information Needed]
160
+
161
+ #### Hardware
162
+
163
+ [More Information Needed]
164
+
165
+ #### Software
166
+
167
+ [More Information Needed]
168
+
169
+ ## Citation [optional]
170
+
171
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
172
+
173
+ **BibTeX:**
174
+
175
+ [More Information Needed]
176
+
177
+ **APA:**
178
+
179
+ [More Information Needed]
180
+
181
+ ## Glossary [optional]
182
+
183
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
184
+
185
+ [More Information Needed]
186
+
187
+ ## More Information [optional]
188
+
189
+ [More Information Needed]
190
+
191
+ ## Model Card Authors [optional]
192
+
193
+ [More Information Needed]
194
+
195
+ ## Model Card Contact
196
+
197
+ [More Information Needed]
198
+
199
+
enet-colab.ipynb ADDED
The diff for this file is too large to render. See raw diff
 
enet-kaggle.ipynb ADDED
@@ -0,0 +1,937 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "kernelspec": {
4
+ "language": "python",
5
+ "display_name": "Python 3",
6
+ "name": "python3"
7
+ },
8
+ "language_info": {
9
+ "name": "python",
10
+ "version": "3.7.12",
11
+ "mimetype": "text/x-python",
12
+ "codemirror_mode": {
13
+ "name": "ipython",
14
+ "version": 3
15
+ },
16
+ "pygments_lexer": "ipython3",
17
+ "nbconvert_exporter": "python",
18
+ "file_extension": ".py"
19
+ },
20
+ "colab": {
21
+ "provenance": [],
22
+ "include_colab_link": true
23
+ }
24
+ },
25
+ "nbformat_minor": 0,
26
+ "nbformat": 4,
27
+ "cells": [
28
+ {
29
+ "cell_type": "markdown",
30
+ "metadata": {
31
+ "id": "view-in-github",
32
+ "colab_type": "text"
33
+ },
34
+ "source": [
35
+ "<a href=\"https://colab.research.google.com/github/yxmauw/cxr-multilabel-clf/blob/main/enet-kaggle.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>"
36
+ ]
37
+ },
38
+ {
39
+ "cell_type": "code",
40
+ "source": [
41
+ "# You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using \"Save & Run All\" \n",
42
+ "# You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session\n",
43
+ "\n",
44
+ "import numpy as np \n",
45
+ "import pandas as pd "
46
+ ],
47
+ "metadata": {
48
+ "_uuid": "8f2839f25d086af736a60e9eeb907d3b93b6e0e5",
49
+ "_cell_guid": "b1076dfc-b9ad-4769-8c92-a6c4dae69d19",
50
+ "execution": {
51
+ "iopub.status.busy": "2022-10-28T02:46:40.023210Z",
52
+ "iopub.execute_input": "2022-10-28T02:46:40.024111Z",
53
+ "iopub.status.idle": "2022-10-28T02:46:40.047013Z",
54
+ "shell.execute_reply.started": "2022-10-28T02:46:40.024018Z",
55
+ "shell.execute_reply": "2022-10-28T02:46:40.046119Z"
56
+ },
57
+ "trusted": true,
58
+ "id": "V06UUnQa1Cjt"
59
+ },
60
+ "execution_count": null,
61
+ "outputs": []
62
+ },
63
+ {
64
+ "cell_type": "code",
65
+ "source": [
66
+ "train_df = pd.read_csv('../input/ranzcr-clip-catheter-line-classification/train.csv')\n",
67
+ "display(len(train_df))\n",
68
+ "display(train_df.head(3))\n",
69
+ "train_annot_df = pd.read_csv('../input/ranzcr-clip-catheter-line-classification/train_annotations.csv')\n",
70
+ "display(len(train_annot_df))\n",
71
+ "display(train_annot_df.head(3))"
72
+ ],
73
+ "metadata": {
74
+ "execution": {
75
+ "iopub.status.busy": "2022-10-28T02:46:44.475857Z",
76
+ "iopub.execute_input": "2022-10-28T02:46:44.476564Z",
77
+ "iopub.status.idle": "2022-10-28T02:46:44.724851Z",
78
+ "shell.execute_reply.started": "2022-10-28T02:46:44.476517Z",
79
+ "shell.execute_reply": "2022-10-28T02:46:44.723861Z"
80
+ },
81
+ "trusted": true,
82
+ "id": "McQ0e-rw1Cjv",
83
+ "outputId": "c0aa2a6f-d842-4a3d-fb22-3b6ae1470b5f"
84
+ },
85
+ "execution_count": null,
86
+ "outputs": [
87
+ {
88
+ "output_type": "display_data",
89
+ "data": {
90
+ "text/plain": "30083"
91
+ },
92
+ "metadata": {}
93
+ },
94
+ {
95
+ "output_type": "display_data",
96
+ "data": {
97
+ "text/plain": " StudyInstanceUID ETT - Abnormal \\\n0 1.2.826.0.1.3680043.8.498.26697628953273228189... 0 \n1 1.2.826.0.1.3680043.8.498.46302891597398758759... 0 \n2 1.2.826.0.1.3680043.8.498.23819260719748494858... 0 \n\n ETT - Borderline ETT - Normal NGT - Abnormal NGT - Borderline \\\n0 0 0 0 0 \n1 0 1 0 0 \n2 0 0 0 0 \n\n NGT - Incompletely Imaged NGT - Normal CVC - Abnormal CVC - Borderline \\\n0 0 1 0 0 \n1 1 0 0 0 \n2 0 0 0 1 \n\n CVC - Normal Swan Ganz Catheter Present PatientID \n0 0 0 ec89415d1 \n1 1 0 bf4c6da3c \n2 0 0 3fc1c97e5 ",
98
+ "text/html": "<div>\n<style scoped>\n .dataframe tbody tr th:only-of-type {\n vertical-align: middle;\n }\n\n .dataframe tbody tr th {\n vertical-align: top;\n }\n\n .dataframe thead th {\n text-align: right;\n }\n</style>\n<table border=\"1\" class=\"dataframe\">\n <thead>\n <tr style=\"text-align: right;\">\n <th></th>\n <th>StudyInstanceUID</th>\n <th>ETT - Abnormal</th>\n <th>ETT - Borderline</th>\n <th>ETT - Normal</th>\n <th>NGT - Abnormal</th>\n <th>NGT - Borderline</th>\n <th>NGT - Incompletely Imaged</th>\n <th>NGT - Normal</th>\n <th>CVC - Abnormal</th>\n <th>CVC - Borderline</th>\n <th>CVC - Normal</th>\n <th>Swan Ganz Catheter Present</th>\n <th>PatientID</th>\n </tr>\n </thead>\n <tbody>\n <tr>\n <th>0</th>\n <td>1.2.826.0.1.3680043.8.498.26697628953273228189...</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>1</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>ec89415d1</td>\n </tr>\n <tr>\n <th>1</th>\n <td>1.2.826.0.1.3680043.8.498.46302891597398758759...</td>\n <td>0</td>\n <td>0</td>\n <td>1</td>\n <td>0</td>\n <td>0</td>\n <td>1</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>1</td>\n <td>0</td>\n <td>bf4c6da3c</td>\n </tr>\n <tr>\n <th>2</th>\n <td>1.2.826.0.1.3680043.8.498.23819260719748494858...</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>1</td>\n <td>0</td>\n <td>0</td>\n <td>3fc1c97e5</td>\n </tr>\n </tbody>\n</table>\n</div>"
99
+ },
100
+ "metadata": {}
101
+ },
102
+ {
103
+ "output_type": "display_data",
104
+ "data": {
105
+ "text/plain": "17999"
106
+ },
107
+ "metadata": {}
108
+ },
109
+ {
110
+ "output_type": "display_data",
111
+ "data": {
112
+ "text/plain": " StudyInstanceUID label \\\n0 1.2.826.0.1.3680043.8.498.12616281126973421762... CVC - Normal \n1 1.2.826.0.1.3680043.8.498.12616281126973421762... CVC - Normal \n2 1.2.826.0.1.3680043.8.498.72921907356394389969... CVC - Borderline \n\n data \n0 [[1487, 1279], [1477, 1168], [1472, 1052], [14... \n1 [[1328, 7], [1347, 101], [1383, 193], [1400, 2... \n2 [[801, 1207], [812, 1112], [823, 1023], [842, ... ",
113
+ "text/html": "<div>\n<style scoped>\n .dataframe tbody tr th:only-of-type {\n vertical-align: middle;\n }\n\n .dataframe tbody tr th {\n vertical-align: top;\n }\n\n .dataframe thead th {\n text-align: right;\n }\n</style>\n<table border=\"1\" class=\"dataframe\">\n <thead>\n <tr style=\"text-align: right;\">\n <th></th>\n <th>StudyInstanceUID</th>\n <th>label</th>\n <th>data</th>\n </tr>\n </thead>\n <tbody>\n <tr>\n <th>0</th>\n <td>1.2.826.0.1.3680043.8.498.12616281126973421762...</td>\n <td>CVC - Normal</td>\n <td>[[1487, 1279], [1477, 1168], [1472, 1052], [14...</td>\n </tr>\n <tr>\n <th>1</th>\n <td>1.2.826.0.1.3680043.8.498.12616281126973421762...</td>\n <td>CVC - Normal</td>\n <td>[[1328, 7], [1347, 101], [1383, 193], [1400, 2...</td>\n </tr>\n <tr>\n <th>2</th>\n <td>1.2.826.0.1.3680043.8.498.72921907356394389969...</td>\n <td>CVC - Borderline</td>\n <td>[[801, 1207], [812, 1112], [823, 1023], [842, ...</td>\n </tr>\n </tbody>\n</table>\n</div>"
114
+ },
115
+ "metadata": {}
116
+ }
117
+ ]
118
+ },
119
+ {
120
+ "cell_type": "code",
121
+ "source": [
122
+ "# value counts\n",
123
+ "train_df.drop(columns=['StudyInstanceUID','PatientID']).agg(['sum'])\n",
124
+ "# unbalanced dataset"
125
+ ],
126
+ "metadata": {
127
+ "execution": {
128
+ "iopub.status.busy": "2022-10-28T02:46:59.167135Z",
129
+ "iopub.execute_input": "2022-10-28T02:46:59.167596Z",
130
+ "iopub.status.idle": "2022-10-28T02:46:59.208167Z",
131
+ "shell.execute_reply.started": "2022-10-28T02:46:59.167559Z",
132
+ "shell.execute_reply": "2022-10-28T02:46:59.207260Z"
133
+ },
134
+ "trusted": true,
135
+ "id": "NdNcRIOP1Cjx",
136
+ "outputId": "e602d509-882f-4f7b-a237-eb0f5a2af756"
137
+ },
138
+ "execution_count": null,
139
+ "outputs": [
140
+ {
141
+ "execution_count": 3,
142
+ "output_type": "execute_result",
143
+ "data": {
144
+ "text/plain": " ETT - Abnormal ETT - Borderline ETT - Normal NGT - Abnormal \\\nsum 79 1138 7240 279 \n\n NGT - Borderline NGT - Incompletely Imaged NGT - Normal \\\nsum 529 2748 4797 \n\n CVC - Abnormal CVC - Borderline CVC - Normal \\\nsum 3195 8460 21324 \n\n Swan Ganz Catheter Present \nsum 830 ",
145
+ "text/html": "<div>\n<style scoped>\n .dataframe tbody tr th:only-of-type {\n vertical-align: middle;\n }\n\n .dataframe tbody tr th {\n vertical-align: top;\n }\n\n .dataframe thead th {\n text-align: right;\n }\n</style>\n<table border=\"1\" class=\"dataframe\">\n <thead>\n <tr style=\"text-align: right;\">\n <th></th>\n <th>ETT - Abnormal</th>\n <th>ETT - Borderline</th>\n <th>ETT - Normal</th>\n <th>NGT - Abnormal</th>\n <th>NGT - Borderline</th>\n <th>NGT - Incompletely Imaged</th>\n <th>NGT - Normal</th>\n <th>CVC - Abnormal</th>\n <th>CVC - Borderline</th>\n <th>CVC - Normal</th>\n <th>Swan Ganz Catheter Present</th>\n </tr>\n </thead>\n <tbody>\n <tr>\n <th>sum</th>\n <td>79</td>\n <td>1138</td>\n <td>7240</td>\n <td>279</td>\n <td>529</td>\n <td>2748</td>\n <td>4797</td>\n <td>3195</td>\n <td>8460</td>\n <td>21324</td>\n <td>830</td>\n </tr>\n </tbody>\n</table>\n</div>"
146
+ },
147
+ "metadata": {}
148
+ }
149
+ ]
150
+ },
151
+ {
152
+ "cell_type": "code",
153
+ "source": [
154
+ "import matplotlib.pyplot as plt\n",
155
+ "import seaborn as sns"
156
+ ],
157
+ "metadata": {
158
+ "execution": {
159
+ "iopub.status.busy": "2022-10-28T02:47:01.769145Z",
160
+ "iopub.execute_input": "2022-10-28T02:47:01.769618Z",
161
+ "iopub.status.idle": "2022-10-28T02:47:02.507132Z",
162
+ "shell.execute_reply.started": "2022-10-28T02:47:01.769578Z",
163
+ "shell.execute_reply": "2022-10-28T02:47:02.506044Z"
164
+ },
165
+ "trusted": true,
166
+ "id": "cONSDexl1Cjy"
167
+ },
168
+ "execution_count": null,
169
+ "outputs": []
170
+ },
171
+ {
172
+ "cell_type": "code",
173
+ "source": [
174
+ "# value counts\n",
175
+ "train_df.drop(columns=['StudyInstanceUID','PatientID']).agg(['sum']).T.sort_values(by='sum').plot(kind='barh')\n",
176
+ "plt.legend(loc='lower right');"
177
+ ],
178
+ "metadata": {
179
+ "execution": {
180
+ "iopub.status.busy": "2022-10-28T02:47:04.180989Z",
181
+ "iopub.execute_input": "2022-10-28T02:47:04.181680Z",
182
+ "iopub.status.idle": "2022-10-28T02:47:04.493106Z",
183
+ "shell.execute_reply.started": "2022-10-28T02:47:04.181644Z",
184
+ "shell.execute_reply": "2022-10-28T02:47:04.491889Z"
185
+ },
186
+ "trusted": true,
187
+ "id": "rd4yEDyL1Cjz",
188
+ "outputId": "738805db-8fab-48fe-81de-ece60953337c"
189
+ },
190
+ "execution_count": null,
191
+ "outputs": [
192
+ {
193
+ "output_type": "display_data",
194
+ "data": {
195
+ "text/plain": "<Figure size 432x288 with 1 Axes>",
196
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfIAAAD4CAYAAAAXfWQCAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAAsTAAALEwEAmpwYAAAvf0lEQVR4nO3de5xVdb3/8ddbQPCKNyLMjmPl5YgowngrMUxT0cpLFhjmtTh17GYHk7JjdDodLbM8pmkcf4h6TMxbh8K838j7DLcBFQvFEg1FEwUFcfj8/ljfrYvNzJ49M3tmWPp+Ph77wVrf9V3f72etGeaz13etvb+KCMzMzKyYNujpAMzMzKzjnMjNzMwKzInczMyswJzIzczMCsyJ3MzMrMB693QA9t6zzTbbRF1dXU+HYWZWKI2NjUsjYkB5uRO5dbu6ujoaGhp6Ogwzs0KR9ExL5R5aNzMzKzAncjMzswJzIjczMysw3yO3bte0eBl1E6b3dBhmZt1q0blHdEm7viI3MzMrMCfyGpP0fklTJS2U1CjpZkk7SXpK0s5ldS+QdGZa3lvSfZIWSJol6TJJG7ej34mSXpf0vlzZ8todWVUxjJT0h+7s08zsvc6JvIYkCbgJuCciPhwRw4HvAgOBqcCYXN0NgGOBqZIGAtcBZ0bEzhGxJ3ALsFk7Q1gK/FtHY08xmZlZgfgPd20dCKyOiEtLBRExJyJmANcAo3N1DwCeiYhngNOAKyLiwdx+10fEknb2PxkYLWmr8g2Svi1pXnp9K5XVpRGAK4F5wAhJT0iaIulJSVdLOljS/ZL+LGnvtN/ekh5MIwcPlI80mJlZ93Eir63dgMaWNkREE7BG0h6paAxZcq+4XzstJ0vm38wXShoOnAzsA+wLfFnSnmnzjsCvImIw8AzwEeB8YJf0+gKwPzAe+F7a5wlgRBo5OBv4r7YCkzROUoOkhubXl3XqIM3M7B1O5N3rGmCMpN7AUWTD6bV2IXCipPyw/P7ATRGxIiKWAzcCI9K2ZyLioVzdpyOiKSLWAPOBOyMigCagLtXpD1wnaR7wC2BwW0FFxKSIqI+I+l4b9+/M8ZmZWY4TeW3NB4ZX2D4V+DxwMDA3N3Te1n4ASLpc0mxJN7dWJyJeAX5DNlxfjRVl66tyy2ty62t45+OKPwLujojdgE8D/arsy8zMasyJvLbuAvpKGlcqkLS7pBEAEbGQ7IG0c3lnWB3gIrKr6H1y+x2THoJ7W0ScHBFDI+LwNuL4OfAvvJN4ZwBHSdpY0ibA0amso/oDi9PySZ1ox8zMOsmJvIbSEPTRwMHp42fzgXOAv+eqXUN27/nG3H5LyO6Z/yw9fPY4cCjwWgfjWEr29HzftD4TmAI8AjwMXBYRszrSdvJT4BxJs/CXCpmZ9Shluces+9TX14dnPzMzax9JjRFRX17uK3IzM7MCcyI3MzMrMCdyMzOzAnMiNzMzKzAncjMzswJzIjczMyswJ3IzM7MCcyI3MzMrMCdyMzOzAvPXa1q3a1q8jLoJ03s6DOtmi849oqdDMHtX8hW5mZlZgTmRt0DS+yVNTROfNEq6WdJOkp6StHNZ3QsknZmW95Z0X5r4ZJakyyRt3I5+J0panKYqfULSJZI6/DOSVJfmDG/vfsvTv9tKur6j/ZuZWddzIi8jSWQzh90TER+OiOHAd4GBZPOJj8nV3QA4Fpiaphy9DjgzInaOiD2BW4DN2hnCLyJiKLArMAT4eDti79StkvL9I+K5iDi2M22amVnXciJf14HA6oi4tFQQEXMiYgbZFKSjc3UPAJ6JiGeA04ArIuLB3H7XpylKO2JDoB/wDwBJQyU9JGmupJskbZnK70mjAg3ANyUNlzRH0pwUE6leL0nnSXo0tfEvqXykpBmSpgGP5QPIX9FLOknSjZJukfRnST/N1TtE0oOSZkq6TtKmHTxmMzNrJyfyde0GNLa0ISKagDWS9khFY8iSe8X92ul0SbOB54EnI2J2Kr+S7Gp/d6AJ+EFunw0joj4izgcuB74eEXuwtlOBZRGxF7AX8GVJO6Rtw4BvRsRObcQ2lOyNzBBgtKQPStoG+D5wcEQMAxqAb5fvKGmcpAZJDc2vL2v7LJiZWVWcyNvvGmBMGoY+imw4vZZKQ+vvAzaRNEZSf2CLiLg31bmCbDSg5FoASVukevel8qtydQ4BTkhvEh4GtgZ2TNseiYinq4jtzohYFhErya7etwf2JbsNcH9q+8RUvpaImJTebNT32rh/FV2ZmVk1/PGzdc0nu+/dmqnAbcC9wNzc0Pl8YDjwf5Ual3Q5sCfwXEQc3lq9iFgt6RayhP3HNmJe0cZ2AJFdqd9aFs/IKvcHWJVbbib7/RFwe0QcV2UbZmZWQ74iX9ddQF9J40oFknaXNAIgIhYCS4FzeWdYHeAi4ERJ++T2OyY9BPe2iDg5IoZWSuJpXwEfAxZGxDLgH6UYgC+SvZFYS0S8Arwiaf9UNDa3+Vbgq5L6pPZ3krRJpRiq9BDwMUkfSe1uIqmtIXozM6sRJ/IyERHA0cDB6eNn84FzgL/nql0D7ALcmNtvCdk985+lj589DhwKvNbOEEr3yOcBvYBfpfITgfMkzSW7V/0frex/MnBxakO58svIhsNnpgfYfk0NRmQi4kXgJOCaFNuDZOfGzMy6gbK8ZdZ96uvro6GhoafDMDMrFEmNEVFfXu4rcjMzswJzIjczMyswJ3IzM7MCcyI3MzMrMCdyMzOzAnMiNzMzKzAncjMzswJzIjczMyswJ3IzM7MC86Qp1u2aFi+jbsL0ng7DqrTo3CN6OgQzq8BX5GZmZgXmK/IuJKkZaMoVTQX2AXYANgUGAKV5wAeTTYW6FbARsDiVHxURi6rsL4CfR8S/pfXxwKYRMbFTB9IOku4BxkeEv0zdzKwbOJF3rTciYmhLG9I84OMj4lNl5ScB9RHxtQ70two4RtI5EbG0vTtL6h0Rb3WgXzMz6yFO5O8ubwGTgNOBs/IbJNUBk4FtgBeBkyPir5KmACuBPYH7JW0FvJHW3wecApwA7Ac8HBEnpfYuAfYiGz24PiJ+0MXHZmZmLfA98q61kaTZudfobujzYmCspP5l5b8EroiI3YGrgQtz27YDPhoR307rW5Il7tOBacAvyIb+h0gamuqclabT2x34uKTdKwUlaZykBkkNza8v6/jRmZnZWnxF3rVaHVrvKhHxqqQrgW+QXVmX7Acck5avAn6a23ZdRDTn1n8fESGpCVgSEU0AkuYDdcBs4POSxpH9Dg0CdgXmVohrEtloAX0H7RgdPkAzM1uLr8gLRNI+uav7z1SoegFwKrBJlU2vKFtflf5dk1surfeWtAMwHjgoXeFPB/pV2ZeZmdWQE3mBRMTDETE0vaZVqPcy8FuyZF7yADAmLY8FZnQilM3Jkv8ySQOBUZ1oy8zMOsFD611rI0mzc+u3RMSEbur7fCD/5PvXgcslnUF62K2jDUfEHEmzgCeAvwH3dyZQMzPrOEX4dqV1r/r6+mho8MfMzczaQ1Jjesh4LR5aNzMzKzAncjMzswJzIjczMyswJ3IzM7MCcyI3MzMrMCdyMzOzAnMiNzMzKzAncjMzswJzIjczMyswf0WrdbumxcuomzC9p8NYby0694ieDsHMCsRX5DUmKSSdn1sfL2libv14SXMlzZc0R9JlkkbkZjV7WdLTafmOdvQ7MvX96VzZHySNrNGhVRvH8u7sz8zsvc6JvPZWAcdI2qZ8g6TDgNOBURExGBhGNivZC6VZzYBpwBlp/eB29v0scFZHA5fUq6P7mplZz3Air723gElkCbvcWcD4iFgMEBHNETE5IhbUqO85ZFOLfrJ8g6SDJM2S1CRpsqS+qXyRpJ9Imgl8Lq2fk0YEGiQNk3SrpIWSvpL22VTSnZJmpvaOrFH8ZmbWTk7kXeNiYKyk/mXlg4GZXdz3j4Hv5wsk9QOmAKMjYgjZsxFfzVV5KSKGRcTUtP7XNDowI+13LLAv8MO0fSVwdEQMAw4EzpekLjkaMzOryIm8C0TEq8CVwDdaqyNpSLrqXShpdA37vi+1v3+ueGfg6Yh4Mq1fARyQ235tWTPT0r9NwMMR8VpEvAiskrQFIOC/JM0F7gA+AAysFJekcekKv6H59WUdODIzM2uJE3nXuQA4FdgkVzaf7L44EdGUrnr/CGxUTYOSTss9FLdtharrXJW3YUXZ+qr075rccmm9NzAWGAAMT8ewBOhXqYOImBQR9RFR32vj8oEKMzPrKCfyLhIRLwO/JUvmJecAP5O0Xa6sqiSe2ry49FBcRDxXod5twJbA7qloAVAn6SNp/YvAvdX224L+ZA/orZZ0ILB9J9oyM7NOcCLvWucDbz+9HhE3AxcCf5T0mKQHgGbg1i7o+8fAB1O/K4GTgeskNZFdWV/aibavBupTWycAT3QyVjMz6yBFRE/HYO8x9fX10dDQ0NNhmJkViqTGiKgvL/cVuZmZWYE5kZuZmRWYE7mZmVmBOZGbmZkVmBO5mZlZgTmRm5mZFZgTuZmZWYE5kZuZmRWYE7mZmVmB9e7pAOy9p2nxMuomTO/pMDps0blH9HQIZmZv8xW5mZlZgTmRt0HS+yVNTfOGN0q6WdJOkp6StHNZ3QsknZmW95Z0n6QFkmZJukzSxh3of7akqWVl90ha5/t2e5qkkZL+0NNxmJm9lziRVyBJwE3APRHx4YgYDnwXGAhMBcbk6m4AHAtMlTQQuA44MyJ2jog9gVuAzdrZ/z8DvYARkjZpq35nKOPfBzOzgvEf7soOBFZHxNtTfkbEnIiYAVwDjM7VPQB4JiKeAU4DroiIB3P7XR8RS9rZ/3HAVcBtwJFl276YrtbnSdobQNJESZPTFftTkr5Rqizp26nuPEnfSmV1acTgSmAe2RuGJyRNkfSkpKslHSzpfkl/zvWzt6QH00jDA+UjE2Zm1n2cyCvbDWhsaUNENAFrJO2RisaQJfeK+7XTaLIr/2vIknrexhExFPhXYHKufBfgUGBv4AeS+kgaTjYf+T7AvsCXJe2Z6u8I/CoiBgPPAB8hm0d9l/T6ArA/MB74XtrnCWBEGmk4G/ivtg5E0jhJDZIaml9fVv0ZMDOzipzIO+caYIyk3sBRZMPpNZHugS+NiL8CdwJ7StqqrG8i4j5gc0lbpPLpEbEqIpYCL5DdBtgfuCkiVkTEcuBGYESq/0xEPJRr9+mIaIqINcB84M7IJq1vAupSnf7AdZLmAb8ABrd1PBExKSLqI6K+18b923cyzMysVU7klc0HhlfYPhX4PHAwMDc3dN7WfgBIujwNj9/cwubjgF0kLQIWApsDn81tj7L6pfVVubJm2v6I4Yqy9fz+a3Lra3Jt/Qi4OyJ2Az4N9GujDzMz6yJO5JXdBfSVNK5UIGl3SSMAImIhsBQ4l3eG1QEuAk6UtE9uv2PSQ3Bvi4iTI2JoRByeL08PnX0eGBIRdRFRR3aPPD+8PjrV3R9YFhGVxqtnAEdJ2jg9NHd0Kuuo/sDitHxSJ9oxM7NOciKvIA0pHw0cnD5+Nh84B/h7rto1ZPeSb8ztt4TsnvnP0sNkj5Pdt36tyq5HAIsj4rlc2X3ArpIGpfWVkmYBlwKntnEcM4EpwCPAw8BlETGrylha8lPgnNS/v1TIzKwHKctVZt2nvr4+GhoaejoMM7NCkdQYEet8h4ivyM3MzArMidzMzKzAnMjNzMwKzInczMyswJzIzczMCsyJ3MzMrMCcyM3MzArMidzMzKzAnMjNzMwKzF+vad2uafEy6iZM7+kwKlp07hE9HYKZWVV8RW5mZlZgnUrkkkLS+bn18ZIm5taPlzRX0nxJcyRdJmlEmrpztqSXJT2dlu9oR78jJf2hM7HXmqQpko5to85JkratRVtl9e9J85f3KEl1aY5yMzPrJp29Il8FHCNpm/INkg4DTgdGRcRgYBjwAPBCmrpzKDANOCOtH9zJWIrgJKDNRG5mZlatzibyt4BJZAm73FnA+IhYDBARzRExOSIWdLLPtUiaKGlyuip9StI3cttOSCMCcyRdlcrqJN2Vyu+U9E+pfIqkSyQ9lNoZmdp9XNKUXJvLJf0ijTLcKWlACzENl3SvpEZJt0oalK6w64Gr0wjERi3VK2vnE5J+l1v/pKSb2jgfyyWdl+K7Q9LeuXPzmdw5mCFpZnp9NJVvIOlXkp6QdLukm0sjA63FmsrnSJoDnNauH56ZmXVaLe6RXwyMldS/rHwwMLMG7VdjF7L5vvcGfiCpj6TBwPeBT0TEHsA3U91fAldExO7A1cCFuXa2BPYje2MyDfgF2XEMkTQ01dkEaEijDPcCP8gHIqlP6uPYiBgOTAZ+HBHXAw3A2DQa8VZL9cqO625gl9ybhZNTvUo2Ae5K8b0G/CfwSbJ51f8j1XkB+GREDANG587BMUAdsCvwxXQuWj2mtM/lwNfTOW6VpHGSGiQ1NL++rI1DMDOzanX6qfWIeFXSlcA3gDdaqiNpCHAVsBnwvYi4trP9lpkeEauAVZJeAAYCnwCui4ilKc6XU939yBIWKaaf5tr5fUSEpCZgSUQ0pfjnkyW42cAaoBT//wI3lsWyM7AbcLskgF7A8y3E3Ga9FMtVwPGSLk+xn9DGuXgTuCUtNwGrImJ1Oqa6VN4HuCi9OWkGdkrl+5OdszXA3yXdXSlWSVsAW0TEfaneVcColoKKiElkozf0HbRjtHEMZmZWpVp9/OwCsqvvy3Nl88nui9+dEuJQSRcBG1XToKTTgC+n1cMj4rkK1Vfllpvp+HGV2llT1uaaCm2WJyUB8yNivzb6qrbe5cDvgZVkSfatNuqvjohSTG8fR0SskVQ6htOBJcAeZKMyKzsSa0rkZmbWg2ry8bN0tftb4NRc8TnAzyRtlyurKomnNi8uPRTXRhJvzV3A5yRtDSBpq1T+ADAmLY8FZrSz3Q2A0hPlXwD+VLZ9ATBA0tvD0mmYH7Kh7s2qqPe2dOzPkd0muLx8ewf1B55PV95fJLvCBrgf+Gy6Vz4QGFkp1oh4BXhF0v6p3tgaxWdmZlWq5efIzwfefno9Im4mu/f6R0mPSXqA7Gr51hr22aqImE92H/fe9CDWz9OmrwMnS5pLlsS+2UoTrVkB7J0+ZvUJ3rnvXOr3TbJE/5PU72zgo2nzFOBSSbPJkmdr9cpdDfwtIh5vZ6yt+RVwYup3l3RMADcAzwKPkd02mAksa+OYTgYuTsekGsVnZmZV0jujsFYNScsjYtNu7vMiYFZE/L9u6GvTiFieRjIeAT4WEX+vZR/19fXR0NBQyybNzN71JDVGxDrfGeKvaF3PSWoku2L+t27q8g/p3veGwI9qncTNzKy2nMjbqbuvxtPHvbqzv5Hd2Z+ZmXWOv2vdzMyswJzIzczMCsyJ3MzMrMCcyM3MzArMidzMzKzAnMjNzMwKzInczMyswPw5cut2TYuXUTdheqfaWHTuETWKxsys2HxFbmZmVmC+Iq9AUjPZnN4lU4F9gB2ATYEBwNNp22CyqVu3IpvlbXEqPyoiFrWzP5FNMPO1iHigE/FPAf4QEde3Y5+JwPKI+Jmk/wDui4g7OhqDmZl1LSfyyt6IiKEtbZA0EhgfEZ8qKz8JqI+Ir3WmP0mHkk0F+/FqdpTUu4q5yttsI78eEWd3pj0zM+t6Hlpff20O/ANAmfMkzZPUJGl0Kh8paYakacBjqd5FkhZIugN4X6kxScMl3SupUdKtkgal8nskXSCpgbIpXSVNkXRsWl4k6YeSZqYYdknlm0iaLOkRSbMkHdkdJ8fMzDK+Iq9sozTPdsk5EXFtN/TXDxhENt85wDHAUGAPsjnfH5V0X9o2DNgtIp6WdAywM7ArMJBsXvHJkvoAvwSOjIgX0xuBHwOnpDY2LE2Nl4bWW7M0IoZJ+ldgPPAl4Czgrog4Jc2a9oikOyJiRX5HSeOAcQC9Nh/Q7hNjZmYtcyKvrNWh9a7uT9J+wJWSdgP2B66JiGZgiaR7gb2AV4FHIqJ0n/6AXL3nJN2VyncGdgNulwTQC3g+12+1b05uTP82kr25ADgE+Iyk8Wm9H/BPwOP5HSNiEjAJoO+gHaPK/szMrA1O5N1I0j7Ar9Pq2RExrbW6EfGgpG3IHqirZEUb2yF7eG5+ROzXiTYAVqV/m3nnd0fAZyNiQZVtmJlZDfkeeTeKiIcjYmh6tZrEAdI96F7AS8AMYLSkXpIGkF15P9LCbvfl6g0CDkzlC4AB6SofSX0kDa7RYd0KfF3pUl/SnjVq18zMquAr8srK75HfEhETuqk/ASdGRLOkm4D9gDlAAN+JiL+XHjjLuYnsvvpjwF+BBwEi4s300NqFkvqT/dwvIPu4XGf9KLU1V9IGZB/H+1TFPczMrGYU4duV1r3q6+ujoaGhp8MwMysUSY2lB5PzPLRuZmZWYE7kZmZmBeZEbmZmVmBO5GZmZgXmRG5mZlZgTuRmZmYF5kRuZmZWYE7kZmZmBeZEbmZmVmD+ilbrdk2Ll1E3YXrV9Rede0QXRmNmVmxtXpFLOkvSfElzJc1OM3h1OUkDJf1G0lOSGiU9KOnoLu7zBEnzJDVJmpWbmrO1+kdJ2jW3fo+kdb4+r8L+dZK+0JmYUzuLUsxzJd0m6f2dbbMDMQyVdHh392tm9l5XMZGn2bI+BQyLiN2Bg4G/dXVQaSat3wH3RcSHImI4MAbYrgv7HAV8CzgkIoYA+wLL2tjtKGDXNupUUge0K5FLam0U5cD0M2oAvle2j9KEJl1pKOBEbmbWzdr64z4IWBoRqwAiYmlEPCdpL0k3Akg6UtIbkjaU1E/SU6n8y5IelTRH0g2SNk7lUyRdKOmBdLV9bAv9fgJ4MyIuLRVExDMR8cvURp2kGZJmptdHU/nIdFV8vaQnJF2dklh9Gk2Yna5cW5op5rvA+Ih4LvW3KiL+p7VjSX1+Bjgvtfvh1M7nJD0i6UlJI9L+vSSdl9qYK+lfUt1zgRFp/9Nbq5eOa4akaWQzm1VyH/CRdI4WSLoSmAd8UNIZubZ/mNreRNL0dGzzJI1O5cMl3ZtGQ25VNi1qadThJ/ljlLQh8B9kU6jOLrVhZmZdr6175LcBZ0t6ErgDuDYi7gVmkV2BAYwgSxR7pfYeTuU35hLhfwKnAr9M2wYB+wO7ANOA68v6HQzMrBDXC8AnI2KlpB2Ba4DSkPaeaf/ngPuBj0XEn0rxSjoPuKWFNncDGlvpb51jiYhfpsT6h4i4Pm0D6B0Re6dh5h+QjWKcCiyLiL0k9QXul3QbMIHszcOn0v7jWqkHMAzYLSKernBeIBtBaUrLO5JNhfqQpEPS+t5kU6ROk3QAMAB4LiKOSDH0l9SH7Gd1ZES8mBLzj4FTUrtrHWNEHCzpbKA+Ir7WRnxmZlZDFRN5RCyXNJwsWR8IXCtpQkRMkbRQ0j+TJYafAwcAvYAZaffdUtLbAtgUuDXX9O8iYg3wmKSBbQUp6WKyxP9mROwF9AEukjQUaAZ2ylV/JCKeTfvNJhu+/lNaH02WEA9pq88ylY6l3I3p38bUN6m/3XOjD/3JkuqbZftWqvdIG0n8bknNwFzg+ynWZyLioVzbh5C9CSMdx45kP6/zJf2E7E3JDEm7kb2xuT29OekFPN/GMVaU3qSMA+i1+YBqdjEzsyq0+dR6RDQD9wD3SGoCTgSmkA3hjgJWk12tTyH7g39G2nUKcFREzJF0EjAy1+yq3LJa6HY+8NlcDKdJ2obs/i/A6cASYA+y2wMrW2m7uXSMKTlNBA5Ix9RSn8OBu1rYVulYypX6f7tvsmP8ekSs9QZAUnk7leqtqNAnZPfIl+b22aJsHwHnRMSvy3eUNIzs/vZ/SroTuAmYHxH7tdJXS8dYUURMAiYB9B20Y0u3NszMrAPaetht5zR0XTIUeCYtzyB7OOzBiHgR2BrYmWyYHWAz4Pk0TDu2nXHdBfST9NVc2ca55f7A8+mq/otkbyAqHccWZMPvJ6RYW3IO2f3u96d9NpT0pTaO5bW0rS23Al9N+yNpJ0mbtLB/a/Vq4VbgFEmbprY/IOl9krYFXo+I/wXOIxuxWAAMUPawI5L6SBrcRvvVngszM6uhtq6mNgV+mRLhW8BfSMOjZPfCB5JdmUM2pPv+iChdbf17qvNi+rfqP/IREZKOAn4h6TupjRXAmanKr4AbJJ1Adr+7ravVI4Htgf9JQ8VExNCyPm9Ow/x3KKsUwOQ2jmVqavMbQEsP7ZVcRjYEPTO1/SLZE+9zgWZJc8iu+v+7lXqdFhG3pVshD6ZzsBw4HvgI2RuYNWSjK1+NiDfT8P6FkvqT/Z5cQDZq0Zq7gQnpdsY5EXFtLeI2M7PK9E7eNesefQftGINOvKDq+v5CGDMzkNQYEet8V4m/2c263ZAP9KfBydnMrCb8XetmZmYF5kRuZmZWYE7kZmZmBeZEbmZmVmBO5GZmZgXmRG5mZlZgTuRmZmYF5kRuZmZWYP5CGOt2TYuXUTdheqvb/U1uZmbV8xW5mZlZgTmRl5EUks7PrY+XNDG3frykuZLmS5oj6TJJIyTNTq+XJT2dlu9oR78jJS1L+82VdIek93XyWBal6V/bs889kurT8s1pwhwzM1tPOZGvaxVwTEsJUNJhZHOhj4qIwWRTfj4AvBARQ9OMatOAM9L6we3se0bab3fgUeC0aneU1OnbJJLWmg42Ig6PiFc6266ZmXUdJ/J1vQVMIkvY5c4CxkfEYoCIaI6IyRGxoJYBpClMNwP+kda3kvS7dKX+kKTdU/lESVdJuh+4StLWkm5LowWXAcq1ebykR9IV/69LSVvScknnp6lU9yuLY5GkbSTVSXpc0v+ktm+TtFGq82FJt0hqlDRD0i61PBdmZlaZE3nLLgbGprm48wYDM7uw3xFpPu+/AgfzznzoPwRmpSv17wFX5vbZFTg4Io4DfgD8KY0W3AT8E0Cah3w08LE0atAMjE37bwI8HBF7RMSfKsS2I3BxavsV4LOpfBLw9YgYDownmyt+HZLGSWqQ1ND8+rJqzoWZmVXBibwFEfEqWbL8Rmt1JA1JV7cLJY2uUdelofUPApcDP03l+wNXpdjuAraWtHnaNi0i3kjLBwD/m+pNJ13RAwcBw4FH0xuFg4APpW3NwA1VxPZ0RMxOy41AnaRNgY8C16V2fw0MamnniJgUEfURUd9r4/L3R2Zm1lH++FnrLiC7+r48Vzaf7L743RHRBAyVdBGwUTUNSjoN+HJaPTwinqtQfRrVJdgV1XQNXBER321h28qIaK6ijVW55WayY94AeCVd5ZuZWQ/wFXkrIuJl4LfAqbnic4CfSdouV1ZVEk9tXlx6KK6NJA7ZVfjCtDyDNBQuaSSwNI0alLsP+EKqNwrYMpXfCRxbego+3XPfvtq4W5NieFrS51K7krRHZ9s1M7Pq+Yq8svOBr5VWIuJmSQOAP6aHxV4B5gG31qi/0j1yAcuAL6XyicBkSXOB14ETW9n/h8A1kuaTPU3/1xT3Y5K+D9wmaQNgNdkT8c/UIOaxwCWp/T7AVGBODdo1M7MqKCJ6OgZ7j6mvr4+GhoaeDsPMrFAkNUZEfXm5h9bNzMwKzInczMyswJzIzczMCsyJ3MzMrMCcyM3MzArMidzMzKzAnMjNzMwKzInczMyswJzIzczMCsxf0WrdrmnxMuomTH97fdG5R/RgNGZmxeYrcjMzswJzIm+DpJB0fm59vKSJufXjJc2VNF/SHEmXSRqR5iqfLellSU+n5Ts60P8FkhanyU5KZRMlje/0wXUBSct7OgYzs/cSJ/K2rQKOkbRN+QZJhwGnA6MiYjDZXOUPAC+Upislm1f8jLR+cHs6Tsn7aOBvwMc7dxhV9derq/swM7PaciJv21vAJLKEXe4sYHxELAaIiOaImBwRC2rU90hgPnAJcFzZtj0kPSjpz5K+DNlc5ZLukXS9pCckXS1JadtBkmZJapI0WVLfVL5I0k8kzQQ+l9bPSSMIDZKGSbpV0kJJX0n7bCrpTkkzU3tH1uh4zcysnZzIq3MxMFZS/7LywcDMLuz3OOAa4CbgCEl9ctt2Bz4B7AecLWnbVL4n8C1gV+BDwMck9QOmAKMjYgjZQ45fzbX1UkQMi4ipaf2vaTRhRtrvWGBfsvnOAVYCR0fEMOBA4PzSG4bWSBqX3hg0NL++rF0nwczMWudEXoWIeBW4EvhGa3UkDUlXsQslje5sn5I2BA4Hfpf6fxg4NFfl/yLijYhYCtwN7J3KH4mIZyNiDTAbqAN2Bp6OiCdTnSuAA3JtXVvW/bT0bxPwcES8FhEvAqskbQEI+C9Jc4E7gA8AAysdT0RMioj6iKjvtXH5+yEzM+soJ/LqXQCcCmySK5tPdl+ciGhKV7F/BDaqpkFJp+Ueitu2bPOhwBZAk6RFwP6sPbweZfVL66tyZc1U9xHDFWXrpTbWlLW3JrU3FhgADE/HvAToV0U/ZmZWY07kVYqIl4HfkiXzknOAn0naLldWVRJPbV5ceiguIp4r23wc8KWIqIuIOmAH4JOSNk7bj5TUT9LWZPfSH63Q1QKgTtJH0voXgXurjbMF/cke6Fst6UBg+060ZWZmneAvhGmf84GvlVYi4mZJA4A/pie+XwHmAbd2ppOUrA8DvpLra4WkPwGfTkVzyYbUtwF+FBHPSdqppfYiYqWkk4HrJPUmS/qXdiLEq4HfS2oCGoAnOtGWmZl1giLKR2jNulZ9fX00NDT0dBhmZoUiqTEi6svLPbRuZmZWYB5aNzOzwli9ejXPPvssK1eu7OlQuky/fv3Ybrvt6NOnT9uVcSI3M7MCefbZZ9lss82oq6ujja+vKKSI4KWXXuLZZ59lhx12qGofD62bmVlhrFy5kq233vpdmcQBJLH11lu3a8TBidzMzArl3ZrES9p7fE7kZmZmBeZ75GZmVlh1E6bXtL1F5x5R0/a6g6/IzczMCsyJ3MzMrB1WrFjBEUccwR577MFuu+3GtddeS11dHUuXLgWgoaGBkSNHAjBx4kROPPFERowYwfbbb8+NN97Id77zHYYMGcJhhx3G6tWrOx2PE7l1u6bFnsbUzIrrlltuYdttt2XOnDnMmzePww47rGL9hQsXctdddzFt2jSOP/54DjzwQJqamthoo42YPr3ztwacyM3MzNphyJAh3H777Zx55pnMmDGD/v0rT808atQo+vTpw5AhQ2hubn478Q8ZMoRFixZ1Oh4/7NYOkprJ5ugumQrsQzYz2aZkU3s+nbYNJpvmdCuyGdEWp/KjImJRO/o8CrgJ+OeIeCKVjQTGR8SnOnYkXUfSPWSx+cvUzexdaaeddmLmzJncfPPNfP/73+eggw6id+/erFmzBmCdz4D37dsXgA022IA+ffq8/fGyDTbYgLfeeqvT8TiRt88baf7tdbSWXCWdBNRHxNda2K0axwF/Sv/+oINtVEVS74jo/G+Vmdm72HPPPcdWW23F8ccfzxZbbMFll11GXV0djY2NjBo1ihtuuKFb43EiX49J2hTYHzgQ+D1rJ/LNJU0HPkI2nem/RsQaScuB/wY+BbwBHBkRSyTVAZPJpj19ETg5Iv4qaQqwEtgTuF/SVmm/PYH3AacAJwD7AQ9HxEkptkuAvchGG66PiC59k2Fm1pKe+LhYU1MTZ5xxxttX2JdccglvvPEGp556Kv/+7//+9oNu3cWJvH02kjQ7t35ORFzbhf0dCdwSEU9KeknS8IhoTNv2BnYFngFuAY4Brgc2AR6KiLMk/RT4MvCfwC+BKyLiCkmnABcCR6W2tgM+GhHNKbFvSZa4PwNMAz4GfAl4VNLQiJgNnBURL6d52O+UtHtEzG3tQCSNA8YB9Np8QC3OjZlZjzj00EM59NBD1yl/8skn1ymbOHHiWuvLly9vdVtH+WG39nkjIobmXl2ZxCEbTp+alqem9ZJHIuKpiGgGriG7cgd4E/hDWm4E6tLyfsBv0vJVufoA16V2Sn4f2UT1TcCSiGiKiDVk9/xL7X1e0kxgFtnzALtWOpCImBQR9RFR32vjyg+GmJlZ9XxF3oMk7QP8Oq2eHRHTctu2Aj4BDJEUQC8gJJ2RqkRZc6X11SkJAzRT3c94Rdn6qvTvmtxyab23pB2A8cBeEfGPdBXfr4p+zMysxnxF3oMi4uHc1f20ss3HAldFxPYRURcRHyR7In5E2r63pB0kbQCMJnsgrpIHgDFpeSwwoxOhb06W/JdJGgiM6kRbZmbt8s61yrtTe4/Pibx9NpI0O/c6twv7Oo7sY2d5N/DO8PqjwEXA42QJvrxuua8DJ0uaC3wR+GZHA4uIOWRD6k+QDdff39G2zMzao1+/frz00kvv2mRemo+8X7/qBzn1bj0Ztv6qr6+PhgZ/zNzM2m/16tU8++yz7Zqvu2j69evHdtttR58+fdYql9QYEfXl9X2P3MzMCqNPnz7ssMMOPR3GesVD62ZmZgXmRG5mZlZgTuRmZmYF5ofdrNtJeg1Y0NNxlNkGWNrTQbRgfYzLMVVvfYxrfYwJ1s+41reYto+Idb4a0w+7WU9Y0NKTlz1JUsP6FhOsn3E5puqtj3GtjzHB+hnX+hhTSzy0bmZmVmBO5GZmZgXmRG49YVJPB9CC9TEmWD/jckzVWx/jWh9jgvUzrvUxpnX4YTczM7MC8xW5mZlZgTmRm5mZFZgTuXUbSYdJWiDpL5ImdHFfH5R0t6THJM2X9M1UPlHS4twMdofn9vluim2BpEO7Km5JiyQ1pf4bUtlWkm6X9Of075apXJIuTH3PlTQs186Jqf6fJZ3YiXh2LpvV71VJ3+qJcyVpsqQXJM3LldXs3Egans79X9K+6mBM50l6IvV7k6QtUnmdpDdy5+zStvpu7fg6EFPNfl7Kpkh+OJVfK2nDtmKqENe1uZgWSZrdzeeqtb8FPfp7VVMR4ZdfXf4CegELgQ8BGwJzgF27sL9BwLC0vBnwJLArMBEY30L9XVNMfYEdUqy9uiJuYBGwTVnZT4EJaXkC8JO0fDjwR0DAvsDDqXwr4Kn075Zpecsa/Zz+DmzfE+cKOAAYBszrinMDPJLqKu07qoMxHQL0Tss/ycVUl69X1k6Lfbd2fB2IqWY/L+C3wJi0fCnw1Y7+/Mq2nw+c3c3nqrW/BT36e1XLl6/IrbvsDfwlIp6KiDeBqcCRXdVZRDwfETPT8mtk87Z/oMIuRwJTI2JVRDwN/CXF3F1xHwlckZavAI7KlV8ZmYeALSQNAg4Fbo+IlyPiH8DtwGE1iOMgYGFEPNNGrF1yriLiPuDlFvrr9LlJ2zaPiIci++t7Za6tdsUUEbdFxFtp9SFgu0pttNF3a8fXrpgqaNfPK11NfgK4vj0xtRVXavfzwDWV2uiCc9Xa34Ie/b2qJSdy6y4fAP6WW3+Wyom1ZiTVAXsCD6eir6Uhs8m5obnW4uuKuAO4TVKjpHGpbGBEPJ+W/w4M7IG4AMaw9h/anj5XULtz84G0XOv4TiG7CivZQdIsSfdKGpGLtbW+Wzu+jqjFz2tr4JXcG5VanacRwJKI+HOurFvPVdnfgvX996pqTuT2riZpU+AG4FsR8SpwCfBhYCjwPNlQX3fbPyKGAaOA0yQdkN+Y3tV3++dC033QzwDXpaL14VytpafOTWsknQW8BVydip4H/iki9gS+DfxG0ubVttfJ41vvfl5ljmPtN4ndeq5a+FvQ4bbWN07k1l0WAx/MrW+XyrqMpD5k/3GvjogbASJiSUQ0R8Qa4H/IhhcrxVfzuCNicfr3BeCmFMOSNERXGlp8obvjIntjMTMilqT4evxcJbU6N4tZewi8U/FJOgn4FDA2JQLS8PVLabmR7B70Tm303drxtUsNf14vkQ0n9y4r77DU1jHAtbl4u+1ctfS3oEJbPfp71RFO5NZdHgV2TE/Dbkg2hDutqzpL9+P+H/B4RPw8Vz4oV+1ooPR07TRgjKS+knYAdiR7gKWmcUvaRNJmpWWyh6bmpTZLT8GeCPxfLq4T0pO0+wLL0nDgrcAhkrZMQ6iHpLLOWOuKqafPVU5Nzk3a9qqkfdPvxwm5ttpF0mHAd4DPRMTrufIBknql5Q+RnZun2ui7teNrb0w1+XmlNyV3A8d2Nqacg4EnIuLtIejuOlet/S2o0FaP/V51WHuejPPLr868yJ4GfZLsnfdZXdzX/mRDZXOB2el1OHAV0JTKpwGDcvuclWJbQO6p01rGTfaE8Jz0ml9qj+y+5J3An4E7gK1SuYCLU99NQH2urVPIHlz6C3ByJ+PahOxKrH+urNvPFdkbieeB1WT3Gk+t5bkB6skS3ELgItK3W3Ygpr+Q3S8t/W5dmup+Nv1cZwMzgU+31Xdrx9eBmGr280q/p4+k47wO6NvRn18qnwJ8paxud52r1v4W9OjvVS1f/opWMzOzAvPQupmZWYE5kZuZmRWYE7mZmVmBOZGbmZkVmBO5mZlZgTmRm5mZFZgTuZmZWYH9f+MJU2sei/e1AAAAAElFTkSuQmCC\n"
197
+ },
198
+ "metadata": {
199
+ "needs_background": "light"
200
+ }
201
+ }
202
+ ]
203
+ },
204
+ {
205
+ "cell_type": "code",
206
+ "source": [
207
+ "len(train_df.drop(columns=['StudyInstanceUID','PatientID']).agg(['sum']).T)\n",
208
+ "# num of classes"
209
+ ],
210
+ "metadata": {
211
+ "execution": {
212
+ "iopub.status.busy": "2022-10-28T02:47:07.675004Z",
213
+ "iopub.execute_input": "2022-10-28T02:47:07.675678Z",
214
+ "iopub.status.idle": "2022-10-28T02:47:07.695859Z",
215
+ "shell.execute_reply.started": "2022-10-28T02:47:07.675642Z",
216
+ "shell.execute_reply": "2022-10-28T02:47:07.694954Z"
217
+ },
218
+ "trusted": true,
219
+ "id": "gdTMPjw_1Cjz",
220
+ "outputId": "85e76a14-a8c8-4846-8db8-6cc7ba628017"
221
+ },
222
+ "execution_count": null,
223
+ "outputs": [
224
+ {
225
+ "execution_count": 6,
226
+ "output_type": "execute_result",
227
+ "data": {
228
+ "text/plain": "11"
229
+ },
230
+ "metadata": {}
231
+ }
232
+ ]
233
+ },
234
+ {
235
+ "cell_type": "code",
236
+ "source": [
237
+ "import torch\n",
238
+ "import cv2\n",
239
+ "import numpy as np\n",
240
+ "from torchvision import transforms\n",
241
+ "from torch.utils.data import Dataset"
242
+ ],
243
+ "metadata": {
244
+ "execution": {
245
+ "iopub.status.busy": "2022-10-28T02:47:09.612626Z",
246
+ "iopub.execute_input": "2022-10-28T02:47:09.613355Z",
247
+ "iopub.status.idle": "2022-10-28T02:47:11.485435Z",
248
+ "shell.execute_reply.started": "2022-10-28T02:47:09.613293Z",
249
+ "shell.execute_reply": "2022-10-28T02:47:11.484503Z"
250
+ },
251
+ "trusted": true,
252
+ "id": "0AMhReRR1Cj0"
253
+ },
254
+ "execution_count": null,
255
+ "outputs": []
256
+ },
257
+ {
258
+ "cell_type": "code",
259
+ "source": [
260
+ "class ImageDataset(Dataset):\n",
261
+ " def __init__(self, csv, train, test):\n",
262
+ " self.csv = csv\n",
263
+ " self.train = train\n",
264
+ " self.test = test\n",
265
+ " self.all_image_names = self.csv[:]['StudyInstanceUID']\n",
266
+ " self.all_labels = np.array(self.csv.drop(['StudyInstanceUID', 'PatientID'], axis=1))\n",
267
+ " self.train_ratio = int(0.85 * len(self.csv))\n",
268
+ " self.valid_ratio = len(self.csv) - self.train_ratio\n",
269
+ " # set the training data images and labels\n",
270
+ " if self.train == True:\n",
271
+ " print(f\"Number of training images: {self.train_ratio}\")\n",
272
+ " self.image_names = list(self.all_image_names[:self.train_ratio])\n",
273
+ " self.labels = list(self.all_labels[:self.train_ratio])\n",
274
+ " # define the training transforms\n",
275
+ " self.transform = transforms.Compose([\n",
276
+ " transforms.ToPILImage(),\n",
277
+ " transforms.Resize((400, 400)),\n",
278
+ " transforms.RandomHorizontalFlip(p=0.5),\n",
279
+ " transforms.RandomRotation(degrees=45),\n",
280
+ " transforms.ToTensor(),\n",
281
+ " ])\n",
282
+ " # set the validation data images and labels\n",
283
+ " elif self.train == False and self.test == False:\n",
284
+ " print(f\"Number of validation images: {self.valid_ratio}\")\n",
285
+ " self.image_names = list(self.all_image_names[-self.valid_ratio:-10])\n",
286
+ " self.labels = list(self.all_labels[-self.valid_ratio:])\n",
287
+ " # define the validation transforms\n",
288
+ " self.transform = transforms.Compose([\n",
289
+ " transforms.ToPILImage(),\n",
290
+ " transforms.Resize((400, 400)),\n",
291
+ " transforms.ToTensor(),\n",
292
+ " ])\n",
293
+ " # set the test data images and labels, only last 10 images\n",
294
+ " # this, we will use in a separate inference script\n",
295
+ " elif self.test == True and self.train == False:\n",
296
+ " self.image_names = list(self.all_image_names[-10:])\n",
297
+ " self.labels = list(self.all_labels[-10:])\n",
298
+ " # define the test transforms\n",
299
+ " self.transform = transforms.Compose([\n",
300
+ " transforms.ToPILImage(),\n",
301
+ " transforms.ToTensor(),\n",
302
+ " ])\n",
303
+ " def __len__(self):\n",
304
+ " return len(self.image_names)\n",
305
+ " \n",
306
+ " def __getitem__(self, index):\n",
307
+ " image = cv2.imread(f\"../input/ranzcr-clip-catheter-line-classification/train/{self.image_names[index]}.jpg\")\n",
308
+ " # convert the image from BGR to RGB color format\n",
309
+ " image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)\n",
310
+ " # apply image transforms\n",
311
+ " image = self.transform(image)\n",
312
+ " targets = self.labels[index]\n",
313
+ " \n",
314
+ " return {\n",
315
+ " 'image': torch.tensor(image, dtype=torch.float32),\n",
316
+ " 'label': torch.tensor(targets, dtype=torch.float32)\n",
317
+ " }"
318
+ ],
319
+ "metadata": {
320
+ "execution": {
321
+ "iopub.status.busy": "2022-10-28T02:47:13.898477Z",
322
+ "iopub.execute_input": "2022-10-28T02:47:13.899027Z",
323
+ "iopub.status.idle": "2022-10-28T02:47:13.912689Z",
324
+ "shell.execute_reply.started": "2022-10-28T02:47:13.898986Z",
325
+ "shell.execute_reply": "2022-10-28T02:47:13.911765Z"
326
+ },
327
+ "trusted": true,
328
+ "id": "s2qBJ08t1Cj0"
329
+ },
330
+ "execution_count": null,
331
+ "outputs": []
332
+ },
333
+ {
334
+ "cell_type": "code",
335
+ "source": [
336
+ "import torchvision\n",
337
+ "torchvision.__version__"
338
+ ],
339
+ "metadata": {
340
+ "execution": {
341
+ "iopub.status.busy": "2022-10-28T03:05:44.948332Z",
342
+ "iopub.execute_input": "2022-10-28T03:05:44.948713Z",
343
+ "iopub.status.idle": "2022-10-28T03:05:44.955478Z",
344
+ "shell.execute_reply.started": "2022-10-28T03:05:44.948681Z",
345
+ "shell.execute_reply": "2022-10-28T03:05:44.954402Z"
346
+ },
347
+ "trusted": true,
348
+ "id": "HgyolOKX1Cj1",
349
+ "outputId": "eabf26d8-d035-47c8-961d-39d5627588c3"
350
+ },
351
+ "execution_count": null,
352
+ "outputs": [
353
+ {
354
+ "execution_count": 29,
355
+ "output_type": "execute_result",
356
+ "data": {
357
+ "text/plain": "'0.12.0'"
358
+ },
359
+ "metadata": {}
360
+ }
361
+ ]
362
+ },
363
+ {
364
+ "cell_type": "code",
365
+ "source": [
366
+ "print(dir(torchvision.models))"
367
+ ],
368
+ "metadata": {
369
+ "execution": {
370
+ "iopub.status.busy": "2022-10-28T03:42:01.322455Z",
371
+ "iopub.execute_input": "2022-10-28T03:42:01.322825Z",
372
+ "iopub.status.idle": "2022-10-28T03:42:01.328721Z",
373
+ "shell.execute_reply.started": "2022-10-28T03:42:01.322792Z",
374
+ "shell.execute_reply": "2022-10-28T03:42:01.327749Z"
375
+ },
376
+ "trusted": true,
377
+ "id": "L_eYnLj-1Cj2",
378
+ "outputId": "92372aff-1f26-4aea-e9f2-8ecef131f56f"
379
+ },
380
+ "execution_count": null,
381
+ "outputs": [
382
+ {
383
+ "name": "stdout",
384
+ "text": "['AlexNet', 'ConvNeXt', 'DenseNet', 'EfficientNet', 'GoogLeNet', 'GoogLeNetOutputs', 'Inception3', 'InceptionOutputs', 'MNASNet', 'MobileNetV2', 'MobileNetV3', 'RegNet', 'ResNet', 'ShuffleNetV2', 'SqueezeNet', 'VGG', 'VisionTransformer', '_GoogLeNetOutputs', '_InceptionOutputs', '__builtins__', '__cached__', '__doc__', '__file__', '__loader__', '__name__', '__package__', '__path__', '__spec__', '_utils', 'alexnet', 'convnext', 'convnext_base', 'convnext_large', 'convnext_small', 'convnext_tiny', 'densenet', 'densenet121', 'densenet161', 'densenet169', 'densenet201', 'detection', 'efficientnet', 'efficientnet_b0', 'efficientnet_b1', 'efficientnet_b2', 'efficientnet_b3', 'efficientnet_b4', 'efficientnet_b5', 'efficientnet_b6', 'efficientnet_b7', 'feature_extraction', 'googlenet', 'inception', 'inception_v3', 'mnasnet', 'mnasnet0_5', 'mnasnet0_75', 'mnasnet1_0', 'mnasnet1_3', 'mobilenet', 'mobilenet_v2', 'mobilenet_v3_large', 'mobilenet_v3_small', 'mobilenetv2', 'mobilenetv3', 'optical_flow', 'quantization', 'regnet', 'regnet_x_16gf', 'regnet_x_1_6gf', 'regnet_x_32gf', 'regnet_x_3_2gf', 'regnet_x_400mf', 'regnet_x_800mf', 'regnet_x_8gf', 'regnet_y_128gf', 'regnet_y_16gf', 'regnet_y_1_6gf', 'regnet_y_32gf', 'regnet_y_3_2gf', 'regnet_y_400mf', 'regnet_y_800mf', 'regnet_y_8gf', 'resnet', 'resnet101', 'resnet152', 'resnet18', 'resnet34', 'resnet50', 'resnext101_32x8d', 'resnext50_32x4d', 'segmentation', 'shufflenet_v2_x0_5', 'shufflenet_v2_x1_0', 'shufflenet_v2_x1_5', 'shufflenet_v2_x2_0', 'shufflenetv2', 'squeezenet', 'squeezenet1_0', 'squeezenet1_1', 'vgg', 'vgg11', 'vgg11_bn', 'vgg13', 'vgg13_bn', 'vgg16', 'vgg16_bn', 'vgg19', 'vgg19_bn', 'video', 'vision_transformer', 'vit_b_16', 'vit_b_32', 'vit_l_16', 'vit_l_32', 'wide_resnet101_2', 'wide_resnet50_2']\n",
385
+ "output_type": "stream"
386
+ }
387
+ ]
388
+ },
389
+ {
390
+ "cell_type": "code",
391
+ "source": [
392
+ "from torchvision import models \n",
393
+ "import torch.nn as nn\n",
394
+ "def model(pretrained, requires_grad):\n",
395
+ " model = models.efficientnet_b7(progress=True, pretrained=pretrained)\n",
396
+ " # to freeze the hidden layers\n",
397
+ " if requires_grad == False:\n",
398
+ " for param in model.parameters():\n",
399
+ " param.requires_grad = False\n",
400
+ " # to train the hidden layers\n",
401
+ " elif requires_grad == True:\n",
402
+ " for param in model.parameters():\n",
403
+ " param.requires_grad = True\n",
404
+ " # make the classification layer learnable\n",
405
+ " # we have 11 classes in total\n",
406
+ " model.classifier[1] = nn.Linear(in_features=2560, out_features=11)\n",
407
+ " return model"
408
+ ],
409
+ "metadata": {
410
+ "execution": {
411
+ "iopub.status.busy": "2022-10-28T04:24:13.656142Z",
412
+ "iopub.execute_input": "2022-10-28T04:24:13.656782Z",
413
+ "iopub.status.idle": "2022-10-28T04:24:13.663143Z",
414
+ "shell.execute_reply.started": "2022-10-28T04:24:13.656746Z",
415
+ "shell.execute_reply": "2022-10-28T04:24:13.662004Z"
416
+ },
417
+ "trusted": true,
418
+ "id": "QrLWPTo41Cj2"
419
+ },
420
+ "execution_count": null,
421
+ "outputs": []
422
+ },
423
+ {
424
+ "cell_type": "code",
425
+ "source": [
426
+ "from tqdm import tqdm\n",
427
+ "from torchmetrics import Accuracy, AUROC, F1Score, Precision, Recall\n",
428
+ "# training function\n",
429
+ "def train(model, dataloader, optimizer, criterion, train_data, device):\n",
430
+ " print('Training')\n",
431
+ " model.train()\n",
432
+ " counter = 0\n",
433
+ " train_running_loss = 0.0\n",
434
+ " # instantiate metrics\n",
435
+ " acc = Accuracy()\n",
436
+ " auc = AUROC()\n",
437
+ " f1_score = F1Score()\n",
438
+ " precision = Precision()\n",
439
+ " recall = Recall()\n",
440
+ " preds = []\n",
441
+ " labels = []\n",
442
+ " for i, data in tqdm(enumerate(dataloader), total=int(len(train_data)/dataloader.batch_size)):\n",
443
+ " counter += 1\n",
444
+ " data, target = data['image'].to(device), data['label'].to(device)\n",
445
+ " labels.append(target.cpu().numpy().argmax(axis=1))\n",
446
+ " optimizer.zero_grad()\n",
447
+ " outputs = model(data)\n",
448
+ " # apply sigmoid activation to get all the outputs between 0 and 1\n",
449
+ " outputs = torch.sigmoid(outputs)\n",
450
+ " loss = criterion(outputs, target)\n",
451
+ " train_running_loss += loss.item()\n",
452
+ " # backpropagation\n",
453
+ " loss.backward()\n",
454
+ " # update optimizer parameters\n",
455
+ " optimizer.step()\n",
456
+ " preds.append(outputs.detach().cpu().numpy().argmax(axis=1))\n",
457
+ " \n",
458
+ " train_loss = train_running_loss / counter\n",
459
+ " preds = torch.tensor(np.concatenate(preds))\n",
460
+ " labels = torch.tensor(np.concatenate(labels))\n",
461
+ " train_acc = acc(preds, labels).item()\n",
462
+ " \n",
463
+ " return train_loss, train_acc"
464
+ ],
465
+ "metadata": {
466
+ "execution": {
467
+ "iopub.status.busy": "2022-10-28T04:24:16.962617Z",
468
+ "iopub.execute_input": "2022-10-28T04:24:16.963764Z",
469
+ "iopub.status.idle": "2022-10-28T04:24:16.976195Z",
470
+ "shell.execute_reply.started": "2022-10-28T04:24:16.963715Z",
471
+ "shell.execute_reply": "2022-10-28T04:24:16.975023Z"
472
+ },
473
+ "trusted": true,
474
+ "id": "HQLCRVLO1Cj-"
475
+ },
476
+ "execution_count": null,
477
+ "outputs": []
478
+ },
479
+ {
480
+ "cell_type": "code",
481
+ "source": [
482
+ "# validation function\n",
483
+ "def validate(model, dataloader, criterion, val_data, device):\n",
484
+ " print('Validating')\n",
485
+ " model.eval()\n",
486
+ " counter = 0\n",
487
+ " val_running_loss = 0.0\n",
488
+ " # instantiate metrics\n",
489
+ " acc = Accuracy()\n",
490
+ " auc = AUROC()\n",
491
+ " f1_score = F1Score()\n",
492
+ " precision = Precision()\n",
493
+ " recall = Recall()\n",
494
+ " preds = []\n",
495
+ " labels = []\n",
496
+ " with torch.no_grad():\n",
497
+ " for i, data in tqdm(enumerate(dataloader), total=int(len(val_data)/dataloader.batch_size)):\n",
498
+ " counter += 1\n",
499
+ " data, target = data['image'].to(device), data['label'].to(device)\n",
500
+ " labels.append(target.cpu().numpy().argmax(axis=1))\n",
501
+ " # make predictions\n",
502
+ " outputs = model(data)\n",
503
+ " # apply sigmoid activation to get all the outputs between 0 and 1\n",
504
+ " outputs = torch.sigmoid(outputs)\n",
505
+ " loss = criterion(outputs, target)\n",
506
+ " val_running_loss += loss.item()\n",
507
+ " preds.append(outputs.detach().cpu().numpy().argmax(axis=1))\n",
508
+ " \n",
509
+ " val_loss = val_running_loss / counter\n",
510
+ " preds = torch.tensor(np.concatenate(preds))\n",
511
+ " labels = torch.tensor(np.concatenate(labels))\n",
512
+ " val_acc = acc(preds, labels).item()\n",
513
+ " return val_loss, val_acc"
514
+ ],
515
+ "metadata": {
516
+ "execution": {
517
+ "iopub.status.busy": "2022-10-28T04:24:20.716225Z",
518
+ "iopub.execute_input": "2022-10-28T04:24:20.716601Z",
519
+ "iopub.status.idle": "2022-10-28T04:24:20.727583Z",
520
+ "shell.execute_reply.started": "2022-10-28T04:24:20.716567Z",
521
+ "shell.execute_reply": "2022-10-28T04:24:20.726191Z"
522
+ },
523
+ "trusted": true,
524
+ "id": "LyvS7_OW1Cj-"
525
+ },
526
+ "execution_count": null,
527
+ "outputs": []
528
+ },
529
+ {
530
+ "cell_type": "code",
531
+ "source": [
532
+ "import torch.optim as optim\n",
533
+ "import matplotlib\n",
534
+ "from torch.utils.data import DataLoader\n",
535
+ "matplotlib.style.use('ggplot')\n",
536
+ "# initialize the computation device\n",
537
+ "device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')"
538
+ ],
539
+ "metadata": {
540
+ "execution": {
541
+ "iopub.status.busy": "2022-10-28T04:24:24.617804Z",
542
+ "iopub.execute_input": "2022-10-28T04:24:24.618166Z",
543
+ "iopub.status.idle": "2022-10-28T04:24:24.623867Z",
544
+ "shell.execute_reply.started": "2022-10-28T04:24:24.618134Z",
545
+ "shell.execute_reply": "2022-10-28T04:24:24.622628Z"
546
+ },
547
+ "trusted": true,
548
+ "id": "-GFaZnzr1Cj_"
549
+ },
550
+ "execution_count": null,
551
+ "outputs": []
552
+ },
553
+ {
554
+ "cell_type": "code",
555
+ "source": [
556
+ "#intialize the model\n",
557
+ "from torch.optim.lr_scheduler import ReduceLROnPlateau\n",
558
+ "\n",
559
+ "ENet_model = model(pretrained=True, requires_grad=False).to(device)\n",
560
+ "# learning parameters\n",
561
+ "lr = 0.0001\n",
562
+ "epochs = 30\n",
563
+ "batch_size = 32\n",
564
+ "optimizer = optim.Adam(ENet_model.parameters(), lr=lr)\n",
565
+ "scheduler = ReduceLROnPlateau(optimizer, 'min')\n",
566
+ "criterion = nn.BCELoss()"
567
+ ],
568
+ "metadata": {
569
+ "execution": {
570
+ "iopub.status.busy": "2022-10-28T04:24:26.626925Z",
571
+ "iopub.execute_input": "2022-10-28T04:24:26.630098Z",
572
+ "iopub.status.idle": "2022-10-28T04:24:28.432430Z",
573
+ "shell.execute_reply.started": "2022-10-28T04:24:26.630044Z",
574
+ "shell.execute_reply": "2022-10-28T04:24:28.431444Z"
575
+ },
576
+ "trusted": true,
577
+ "id": "JzQrr2xz1Cj_"
578
+ },
579
+ "execution_count": null,
580
+ "outputs": []
581
+ },
582
+ {
583
+ "cell_type": "code",
584
+ "source": [
585
+ "train_data = ImageDataset(\n",
586
+ " train_df, train=True, test=False\n",
587
+ ")\n",
588
+ "# validation dataset\n",
589
+ "valid_data = ImageDataset(\n",
590
+ " train_df, train=False, test=False\n",
591
+ ")\n",
592
+ "# train data loader\n",
593
+ "train_loader = DataLoader(\n",
594
+ " train_data, \n",
595
+ " batch_size=batch_size,\n",
596
+ " shuffle=True\n",
597
+ ")\n",
598
+ "# validation data loader\n",
599
+ "valid_loader = DataLoader(\n",
600
+ " valid_data, \n",
601
+ " batch_size=batch_size,\n",
602
+ " shuffle=False\n",
603
+ ")"
604
+ ],
605
+ "metadata": {
606
+ "execution": {
607
+ "iopub.status.busy": "2022-10-28T04:24:32.210103Z",
608
+ "iopub.execute_input": "2022-10-28T04:24:32.210655Z",
609
+ "iopub.status.idle": "2022-10-28T04:24:32.243373Z",
610
+ "shell.execute_reply.started": "2022-10-28T04:24:32.210615Z",
611
+ "shell.execute_reply": "2022-10-28T04:24:32.242479Z"
612
+ },
613
+ "trusted": true,
614
+ "id": "R-b3ePes1CkA",
615
+ "outputId": "21605b5c-fa5e-47e1-b622-7748fe8e8863"
616
+ },
617
+ "execution_count": null,
618
+ "outputs": [
619
+ {
620
+ "name": "stdout",
621
+ "text": "Number of training images: 25570\nNumber of validation images: 4513\n",
622
+ "output_type": "stream"
623
+ }
624
+ ]
625
+ },
626
+ {
627
+ "cell_type": "code",
628
+ "source": [
629
+ "class EarlyStopper:\n",
630
+ " def __init__(self, patience=1, min_delta=0):\n",
631
+ " self.patience = patience\n",
632
+ " self.min_delta = min_delta\n",
633
+ " self.counter = 0\n",
634
+ " self.min_validation_loss = np.inf\n",
635
+ "\n",
636
+ " def early_stop(self, validation_loss):\n",
637
+ " if validation_loss < self.min_validation_loss:\n",
638
+ " self.min_validation_loss = validation_loss\n",
639
+ " self.counter = 0\n",
640
+ " elif validation_loss > (self.min_validation_loss + self.min_delta):\n",
641
+ " self.counter += 1\n",
642
+ " if self.counter >= self.patience:\n",
643
+ " return True\n",
644
+ " return False"
645
+ ],
646
+ "metadata": {
647
+ "execution": {
648
+ "iopub.status.busy": "2022-10-28T04:24:36.170818Z",
649
+ "iopub.execute_input": "2022-10-28T04:24:36.171515Z",
650
+ "iopub.status.idle": "2022-10-28T04:24:36.178005Z",
651
+ "shell.execute_reply.started": "2022-10-28T04:24:36.171477Z",
652
+ "shell.execute_reply": "2022-10-28T04:24:36.176852Z"
653
+ },
654
+ "trusted": true,
655
+ "id": "ylwK2HO01CkB"
656
+ },
657
+ "execution_count": null,
658
+ "outputs": []
659
+ },
660
+ {
661
+ "cell_type": "code",
662
+ "source": [
663
+ "# start the training and validation\n",
664
+ "train_loss = []\n",
665
+ "valid_loss = []\n",
666
+ "train_acc = []\n",
667
+ "val_acc = []\n",
668
+ "early_stopper = EarlyStopper(patience=5, min_delta=0.001)\n",
669
+ "for epoch in range(epochs):\n",
670
+ " print(f\"Epoch {epoch+1} of {epochs}\")\n",
671
+ " train_epoch_loss, train_epoch_acc = train(\n",
672
+ " ENet_model, train_loader, optimizer, criterion, train_data, device\n",
673
+ " )\n",
674
+ " valid_epoch_loss, val_epoch_acc = validate(\n",
675
+ " ENet_model, valid_loader, criterion, valid_data, device\n",
676
+ " )\n",
677
+ " if early_stopper.early_stop(valid_epoch_loss): \n",
678
+ " break\n",
679
+ " train_loss.append(train_epoch_loss)\n",
680
+ " valid_loss.append(valid_epoch_loss)\n",
681
+ " train_acc.append(train_epoch_acc)\n",
682
+ " val_acc.append(val_epoch_acc)\n",
683
+ " print(f\"Train Loss: {train_epoch_loss:.4f}\")\n",
684
+ " print(f'Val Loss: {valid_epoch_loss:.4f}')\n",
685
+ " print(f'Train accuracy: {train_epoch_acc:.4f}')\n",
686
+ " print(f'Val accuracy: {val_epoch_acc:.4f}')"
687
+ ],
688
+ "metadata": {
689
+ "execution": {
690
+ "iopub.status.busy": "2022-10-28T04:24:39.710609Z",
691
+ "iopub.execute_input": "2022-10-28T04:24:39.710988Z"
692
+ },
693
+ "trusted": true,
694
+ "id": "O969K8JC1CkB",
695
+ "outputId": "745f1db7-804a-42e2-c8a4-91b71cde8930"
696
+ },
697
+ "execution_count": null,
698
+ "outputs": [
699
+ {
700
+ "name": "stderr",
701
+ "text": "/opt/conda/lib/python3.7/site-packages/torchmetrics/utilities/prints.py:36: UserWarning: Metric `AUROC` will save all targets and predictions in buffer. For large datasets this may lead to large memory footprint.\n warnings.warn(*args, **kwargs)\n",
702
+ "output_type": "stream"
703
+ },
704
+ {
705
+ "name": "stdout",
706
+ "text": "Epoch 1 of 30\nTraining\n",
707
+ "output_type": "stream"
708
+ },
709
+ {
710
+ "name": "stderr",
711
+ "text": " 0%| | 0/799 [00:00<?, ?it/s]/opt/conda/lib/python3.7/site-packages/ipykernel_launcher.py:56: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).\n800it [48:36, 3.65s/it] \n",
712
+ "output_type": "stream"
713
+ },
714
+ {
715
+ "name": "stdout",
716
+ "text": "Validating\n",
717
+ "output_type": "stream"
718
+ },
719
+ {
720
+ "name": "stderr",
721
+ "text": "141it [08:23, 3.57s/it] \n",
722
+ "output_type": "stream"
723
+ },
724
+ {
725
+ "name": "stdout",
726
+ "text": "Train Loss: 0.4688\nVal Loss: 0.5190\nTrain accuracy: 0.3987\nVal accuracy: 0.4033\nEpoch 2 of 30\nTraining\n",
727
+ "output_type": "stream"
728
+ },
729
+ {
730
+ "name": "stderr",
731
+ "text": "800it [45:57, 3.45s/it] \n",
732
+ "output_type": "stream"
733
+ },
734
+ {
735
+ "name": "stdout",
736
+ "text": "Validating\n",
737
+ "output_type": "stream"
738
+ },
739
+ {
740
+ "name": "stderr",
741
+ "text": "141it [07:49, 3.33s/it] \n",
742
+ "output_type": "stream"
743
+ },
744
+ {
745
+ "name": "stdout",
746
+ "text": "Train Loss: 0.3776\nVal Loss: 0.3924\nTrain accuracy: 0.4472\nVal accuracy: 0.4706\nEpoch 3 of 30\nTraining\n",
747
+ "output_type": "stream"
748
+ },
749
+ {
750
+ "name": "stderr",
751
+ "text": "800it [46:11, 3.46s/it] \n",
752
+ "output_type": "stream"
753
+ },
754
+ {
755
+ "name": "stdout",
756
+ "text": "Validating\n",
757
+ "output_type": "stream"
758
+ },
759
+ {
760
+ "name": "stderr",
761
+ "text": "141it [07:51, 3.35s/it] \n",
762
+ "output_type": "stream"
763
+ },
764
+ {
765
+ "name": "stdout",
766
+ "text": "Train Loss: 0.3433\nVal Loss: 0.3581\nTrain accuracy: 0.4567\nVal accuracy: 0.4801\nEpoch 4 of 30\nTraining\n",
767
+ "output_type": "stream"
768
+ },
769
+ {
770
+ "name": "stderr",
771
+ "text": "800it [45:33, 3.42s/it] \n",
772
+ "output_type": "stream"
773
+ },
774
+ {
775
+ "name": "stdout",
776
+ "text": "Validating\n",
777
+ "output_type": "stream"
778
+ },
779
+ {
780
+ "name": "stderr",
781
+ "text": "141it [07:48, 3.32s/it] \n",
782
+ "output_type": "stream"
783
+ },
784
+ {
785
+ "name": "stdout",
786
+ "text": "Train Loss: 0.3224\nVal Loss: 0.3392\nTrain accuracy: 0.4632\nVal accuracy: 0.4832\nEpoch 5 of 30\nTraining\n",
787
+ "output_type": "stream"
788
+ },
789
+ {
790
+ "name": "stderr",
791
+ "text": "800it [45:28, 3.41s/it] \n",
792
+ "output_type": "stream"
793
+ },
794
+ {
795
+ "name": "stdout",
796
+ "text": "Validating\n",
797
+ "output_type": "stream"
798
+ },
799
+ {
800
+ "name": "stderr",
801
+ "text": "141it [07:48, 3.32s/it] \n",
802
+ "output_type": "stream"
803
+ },
804
+ {
805
+ "name": "stdout",
806
+ "text": "Train Loss: 0.3092\nVal Loss: 0.3225\nTrain accuracy: 0.4662\nVal accuracy: 0.4843\nEpoch 6 of 30\nTraining\n",
807
+ "output_type": "stream"
808
+ },
809
+ {
810
+ "name": "stderr",
811
+ "text": "800it [45:10, 3.39s/it] \n",
812
+ "output_type": "stream"
813
+ },
814
+ {
815
+ "name": "stdout",
816
+ "text": "Validating\n",
817
+ "output_type": "stream"
818
+ },
819
+ {
820
+ "name": "stderr",
821
+ "text": "141it [07:45, 3.30s/it] \n",
822
+ "output_type": "stream"
823
+ },
824
+ {
825
+ "name": "stdout",
826
+ "text": "Train Loss: 0.3027\nVal Loss: 0.3136\nTrain accuracy: 0.4667\nVal accuracy: 0.4861\nEpoch 7 of 30\nTraining\n",
827
+ "output_type": "stream"
828
+ },
829
+ {
830
+ "name": "stderr",
831
+ "text": "800it [45:19, 3.40s/it] \n",
832
+ "output_type": "stream"
833
+ },
834
+ {
835
+ "name": "stdout",
836
+ "text": "Validating\n",
837
+ "output_type": "stream"
838
+ },
839
+ {
840
+ "name": "stderr",
841
+ "text": "141it [07:49, 3.33s/it] \n",
842
+ "output_type": "stream"
843
+ },
844
+ {
845
+ "name": "stdout",
846
+ "text": "Train Loss: 0.2951\nVal Loss: 0.3053\nTrain accuracy: 0.4677\nVal accuracy: 0.4861\nEpoch 8 of 30\nTraining\n",
847
+ "output_type": "stream"
848
+ },
849
+ {
850
+ "name": "stderr",
851
+ "text": "800it [45:25, 3.41s/it] \n",
852
+ "output_type": "stream"
853
+ },
854
+ {
855
+ "name": "stdout",
856
+ "text": "Validating\n",
857
+ "output_type": "stream"
858
+ },
859
+ {
860
+ "name": "stderr",
861
+ "text": "141it [07:47, 3.32s/it] \n",
862
+ "output_type": "stream"
863
+ },
864
+ {
865
+ "name": "stdout",
866
+ "text": "Train Loss: 0.2905\nVal Loss: 0.2986\nTrain accuracy: 0.4689\nVal accuracy: 0.4852\nEpoch 9 of 30\nTraining\n",
867
+ "output_type": "stream"
868
+ },
869
+ {
870
+ "name": "stderr",
871
+ "text": "800it [45:28, 3.41s/it] \n",
872
+ "output_type": "stream"
873
+ },
874
+ {
875
+ "name": "stdout",
876
+ "text": "Validating\n",
877
+ "output_type": "stream"
878
+ },
879
+ {
880
+ "name": "stderr",
881
+ "text": "141it [07:49, 3.33s/it] \n",
882
+ "output_type": "stream"
883
+ },
884
+ {
885
+ "name": "stdout",
886
+ "text": "Train Loss: 0.2878\nVal Loss: 0.2941\nTrain accuracy: 0.4700\nVal accuracy: 0.4817\nEpoch 10 of 30\nTraining\n",
887
+ "output_type": "stream"
888
+ },
889
+ {
890
+ "name": "stderr",
891
+ "text": "800it [45:26, 3.41s/it] \n",
892
+ "output_type": "stream"
893
+ },
894
+ {
895
+ "name": "stdout",
896
+ "text": "Validating\n",
897
+ "output_type": "stream"
898
+ },
899
+ {
900
+ "name": "stderr",
901
+ "text": "141it [07:48, 3.32s/it] \n",
902
+ "output_type": "stream"
903
+ },
904
+ {
905
+ "name": "stdout",
906
+ "text": "Train Loss: 0.2844\nVal Loss: 0.2889\nTrain accuracy: 0.4689\nVal accuracy: 0.4801\nEpoch 11 of 30\nTraining\n",
907
+ "output_type": "stream"
908
+ },
909
+ {
910
+ "name": "stderr",
911
+ "text": "800it [45:33, 3.42s/it] \n",
912
+ "output_type": "stream"
913
+ },
914
+ {
915
+ "name": "stdout",
916
+ "text": "Validating\n",
917
+ "output_type": "stream"
918
+ },
919
+ {
920
+ "name": "stderr",
921
+ "text": "141it [07:46, 3.31s/it] \n",
922
+ "output_type": "stream"
923
+ },
924
+ {
925
+ "name": "stdout",
926
+ "text": "Train Loss: 0.2825\nVal Loss: 0.2847\nTrain accuracy: 0.4689\nVal accuracy: 0.4797\nEpoch 12 of 30\nTraining\n",
927
+ "output_type": "stream"
928
+ },
929
+ {
930
+ "name": "stderr",
931
+ "text": " 69%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š | 548/799 [31:11<14:19, 3.42s/it]",
932
+ "output_type": "stream"
933
+ }
934
+ ]
935
+ }
936
+ ]
937
+ }
kaggle_submission.csv ADDED
The diff for this file is too large to render. See raw diff