import argparse import tensorflow as tf import model from dataset import get_dataset, preprocess_sentence def inference(hparams, chatbot, tokenizer, sentence): sentence = preprocess_sentence(sentence) sentence = tf.expand_dims( hparams.start_token + tokenizer.encode(sentence) + hparams.end_token, axis=0 ) output = tf.expand_dims(hparams.start_token, 0) for _ in range(hparams.max_length): predictions = chatbot(inputs=[sentence, output], training=False) predictions = predictions[:, -1:, :] predicted_id = tf.cast(tf.argmax(predictions, axis=-1), tf.int32) if tf.equal(predicted_id, hparams.end_token[0]): break output = tf.concat([output, predicted_id], axis=-1) return tf.squeeze(output, axis=0) def predict(hparams, chatbot, tokenizer, sentence): prediction = inference(hparams, chatbot, tokenizer, sentence) predicted_sentence = tokenizer.decode( [i for i in prediction if i < tokenizer.vocab_size] ) return predicted_sentence def read_file(file_path): with open(file_path, 'r', encoding='utf-8') as file: lines = file.readlines() return lines def append_to_file(file_path, line): with open(file_path, 'a', encoding='utf-8') as file: file.write(f"{line}\n") def get_last_ids(lines_file, conversations_file): lines = read_file(lines_file) conversations = read_file(conversations_file) last_line = lines[-1] last_conversation = conversations[-1] last_line_id = int(last_line.split(" +++$+++ ")[0][1:]) last_user_id = int(last_conversation.split(" +++$+++ ")[1][1:]) last_movie_id = int(last_conversation.split(" +++$+++ ")[2][1:]) return last_line_id, last_user_id, last_movie_id def update_data_files(user_input, bot_response, lines_file='data/lines.txt', conversations_file='data/conversations.txt'): last_line_id, last_user_id, last_movie_id = get_last_ids(lines_file, conversations_file) new_line_id = f"L{last_line_id + 1}" new_bot_line_id = f"L{last_line_id + 2}" new_user_id = f"u{last_user_id + 1}" new_bot_user_id = f"u{last_user_id + 2}" new_movie_id = f"m{last_movie_id + 1}" append_to_file(lines_file, f"{new_line_id} +++$+++ {new_user_id} +++$+++ {new_movie_id} +++$+++ Ben +++$+++ {user_input}") append_to_file(lines_file, f"{new_bot_line_id} +++$+++ {new_bot_user_id} +++$+++ {new_movie_id} +++$+++ Bot +++$+++ {bot_response}") new_conversation = f"{new_user_id} +++$+++ {new_bot_user_id} +++$+++ {new_movie_id} +++$+++ ['{new_line_id}', '{new_bot_line_id}']" append_to_file(conversations_file, new_conversation) def get_feedback(): feedback = input("Bu cevap yardımcı oldu mu? (Evet/Hayır): ").lower() return feedback == "Evet" def chat(hparams, chatbot, tokenizer): print("\nCHATBOT") for _ in range(5): sentence = input("Sen: ") output = predict(hparams, chatbot, tokenizer, sentence) print(f"\nBOT: {output}") user_input = sentence bot_response = output feedback = get_feedback() if feedback: update_data_files(user_input, bot_response) else: pass def main(hparams): _, token = get_dataset(hparams) tf.keras.backend.clear_session() chatbot = tf.keras.models.load_model( hparams.save_model, custom_objects={ "PositionalEncoding": model.PositionalEncoding, "MultiHeadAttention": model.MultiHeadAttention, }, compile=False, ) chat(hparams, chatbot, token) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( "--save_model", default="model.h5", type=str, help="path save the model" ) parser.add_argument( "--max_samples", default=25000, type=int, help="maximum number of conversation pairs to use", ) parser.add_argument( "--max_length", default=40, type=int, help="maximum sentence length" ) parser.add_argument("--batch_size", default=64, type=int) parser.add_argument("--num_layers", default=2, type=int) parser.add_argument("--num_units", default=512, type=int) parser.add_argument("--d_model", default=256, type=int) parser.add_argument("--num_heads", default=8, type=int) parser.add_argument("--dropout", default=0.1, type=float) parser.add_argument("--activation", default="relu", type=str) parser.add_argument("--epochs", default=80, type=int) main(parser.parse_args())