File size: 10,784 Bytes
bcb1848 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 |
"""
Author:
"""
import re
import torch.nn as nn
import torch.nn.functional as functional
import torch
from transformers import AutoModel
import torch.autograd as autograd
def get_nonlinear(nonlinear):
"""
Activation function.
"""
nonlinear_dict = {'relu': nn.ReLU(), 'tanh': nn.Tanh(),
'sigmoid': nn.Sigmoid(), 'softmax': nn.Softmax(dim=-1)}
try:
return nonlinear_dict[nonlinear]
except:
raise ValueError('not a valid nonlinear type!')
class SeqPooling(nn.Module):
"""
Sequence pooling module.
Can do max-pooling, mean-pooling and attentive-pooling on a list of sequences of different lengths.
"""
def __init__(self, pooling_type, hidden_dim):
super(SeqPooling, self).__init__()
self.pooling_type = pooling_type
self.hidden_dim = hidden_dim
if pooling_type == 'attentive_pooling':
self.query_vec = nn.parameter.Parameter(torch.randn(hidden_dim))
def max_pool(self, seq):
return seq.max(0)[0]
def mean_pool(self, seq):
return seq.mean(0)
def attn_pool(self, seq):
attn_score = torch.mm(seq, self.query_vec.view(-1, 1)).view(-1)
attn_w = nn.Softmax(dim=0)(attn_score)
weighted_sum = torch.mm(attn_w.view(1, -1), seq).view(-1)
return weighted_sum
def forward(self, batch_seq):
pooling_fn = {'max_pooling': self.max_pool,
'mean_pooling': self.mean_pool,
'attentive_pooling': self.attn_pool}
pooled_seq = [pooling_fn[self.pooling_type](seq) for seq in batch_seq]
return torch.stack(pooled_seq, dim=0)
class MLP_Scorer(nn.Module):
"""
MLP scorer module.
A perceptron with two layers.
"""
def __init__(self, args, classifier_input_size):
super(MLP_Scorer, self).__init__()
self.scorer = nn.ModuleList()
self.scorer.append(nn.Linear(classifier_input_size, args.classifier_intermediate_dim))
self.scorer.append(nn.Linear(args.classifier_intermediate_dim, 1))
self.nonlinear = get_nonlinear(args.nonlinear_type)
def forward(self, x):
for model in self.scorer:
x = self.nonlinear(model(x))
return x
class KCSN(nn.Module):
"""
Candidate Scoring Network.
It's built on BERT with an MLP and other simple components.
"""
def __init__(self, args):
super(KCSN, self).__init__()
self.args = args
self.bert_model = AutoModel.from_pretrained(args.bert_pretrained_dir)
self.pooling = SeqPooling(args.pooling_type, self.bert_model.config.hidden_size)
self.mlp_scorer = MLP_Scorer(args, self.bert_model.config.hidden_size * 3)
self.dropout = nn.Dropout(args.dropout)
def forward(self, features, sent_char_lens, mention_poses, quote_idxes, true_index, device, tokens_list, cut_css):
# encoding
qs_hid = []
ctx_hid = []
cdd_hid = []
unk_loc_li = []
unk_loc = 0
for i, (cdd_sent_char_lens, cdd_mention_pos, cdd_quote_idx) in enumerate(
zip(sent_char_lens, mention_poses, quote_idxes)):
unk_loc = unk_loc + 1
bert_output = self.bert_model(
torch.tensor([features[i].input_ids], dtype=torch.long).to(device),
token_type_ids=None,
attention_mask=torch.tensor([features[i].input_mask], dtype=torch.long).to(device)
)
modified_list = [s.replace('#', '') for s in tokens_list[i]]
cnt = 1
verify = 0
num_check = 0
num_vid = -999
accum_char_len = [0]
for idx, txt in enumerate(cut_css[i]):
result_string = ''.join(txt)
replace_dict = {']': r'\]', '[': r'\[', '?': r'\?', '-': r'\-', '!': r'\!'}
string_processing = result_string[-7:].translate(str.maketrans(replace_dict))
pattern = re.compile(rf'[{string_processing}]')
cnt = 1
if num_check == 1000:
accum_char_len.append(num_vid)
num_check = 1000
for string in modified_list:
string_nospace = string.replace(' ','')
if len(accum_char_len) > idx + 1:
continue
for letter in string_nospace:
match_result = pattern.match(letter)
if match_result:
verify += 1
if verify == len(result_string[-7:]):
if cnt > accum_char_len[-1]:
accum_char_len.append(cnt)
verify = 0
num_check = len(accum_char_len)
else:
verify = 0
cnt = cnt + 1
if num_check == 1000:
accum_char_len.append(num_vid)
if -999 in accum_char_len:
unk_loc_li.append(unk_loc)
continue
CSS_hid = bert_output['last_hidden_state'][0][1:sum(cdd_sent_char_lens) + 1].to(device)
qs_hid.append(CSS_hid[accum_char_len[cdd_quote_idx]:accum_char_len[cdd_quote_idx + 1]])
## ๋ฐํ์ ๋ถ๋ถ ์ฐพ์์ - bert tokenizer ๋ ๋ถ๋ถ์ ์ธ๋ฑ์ฑ ํ๋ ๋ถ๋ถ
cnt = 1
cdd_mention_pos_bert_li = []
cdd_mention_pos_unk = []
name = cut_css[i][cdd_mention_pos[0]][cdd_mention_pos[3]]
# extract only name
# ์ด๋ฆ๋ง ์ถ์ถ
cdd_pattern = re.compile(r'&C[0-5][0-9]&')
name_process = cdd_pattern.search(name)
# find candidate location in bert output
# ๋ฒํธ ๊ฒฐ๊ณผ์์ ๋ฐํ์ ์์น๋ฅผ ์ฐพ์ต๋๋ค
pattern_unk = re.compile(r'[\[UNK\]]')
# ์ด ๋ถ๋ถ์ ๊ฒฐ๊ณผ๋ฅผ ์ฐพ๊ฒ ๋๋ฉด, ๋ ์ด์ ๋์ด๊ฐ์ง ์๋๋ก ํ๋ ์ฝ๋ ์
๋๋ค.
if len(accum_char_len) < cdd_mention_pos[0]+1:
maxx_len = accum_char_len[len(accum_char_len)-1]
elif len(accum_char_len) == cdd_mention_pos[0]+1:
maxx_len = accum_char_len[-1] + 1000
else:
maxx_len = accum_char_len[cdd_mention_pos[0]+1]
# ํฌํจ๋๋ ๋ฐํ์๋ฅผ ์ฐพ๊ธฐ ์ํด.
start_name = None
name_match = '&'
for string in modified_list:
string_nospace = string.replace(' ','')
for letter in string_nospace:
match_result_unk = pattern_unk.match(letter)
if match_result_unk:
cdd_mention_pos_unk.append(cnt)
if start_name is True:
name_match += letter
if (name_match == name_process.group(0) or letter == '&') and len(
cdd_mention_pos_bert_li) < 3 and maxx_len > cnt >= accum_char_len[
cdd_mention_pos[0]]: # ๋ง์ฝ & ๊ฐ ํฌํจ๋์ด ์์ ๊ฒฝ์ฐ์ ์ฌ๋์ผ๋ก ์ถ์ถ
start_name = True # ๋งค์นญ์ด ๋๋ฉด, 1์ ๋ํฉ๋๋ค.
if len(cdd_mention_pos_bert_li) == 1 and name_match != name_process.group(0): # ๋ง์ฝ &๊ฐ ๋๋ฒ์งธ๋ก ๋์ค๊ณ , ๋งค์นญ์ด ์๋ ๊ฒฝ์ฐ
start_name = None
name_match = '&'
cdd_mention_pos_bert_li = []
elif name_match == name_process.group(0): # ๋๋ฒ์งธ ์ถ๊ฐ
cdd_mention_pos_bert_li.append(cnt)
start_name = None
name_match = '&'
else:
cdd_mention_pos_bert_li.append(cnt-1)
cnt += 1
if len(cdd_mention_pos_bert_li) == 0 & len(cdd_mention_pos_unk) != 0:
cdd_mention_pos_bert_li.extend([cdd_mention_pos_unk[0], cdd_mention_pos_unk[0]+1])
elif len(cdd_mention_pos_bert_li) != 2:
cdd_mention_pos_bert_li = []
cdd_mention_pos_bert_li.extend([int(cdd_mention_pos[1] * accum_char_len[-1]/sum(
cdd_sent_char_lens)), int(cdd_mention_pos[2] * accum_char_len[-1]/sum(
cdd_sent_char_lens))])
if cdd_mention_pos_bert_li[0] == cdd_mention_pos_bert_li[1]:
cdd_mention_pos_bert_li[1] = cdd_mention_pos_bert_li[1]+1
# ctx ๊ฒฐ์ ํ๋ ์ฝ๋. candidate ์ฃผ๋ณ ์ ๋ณด ์ถ์ถ
# ํ๋์ผ ๊ฒฝ์ฐ์๋ ์ ์ฒด ๋ถ๋ถ์ ๊ฐ์ ธ์จ๋ค.
if len(cdd_sent_char_lens) == 1:
ctx_hid.append(torch.zeros(1, CSS_hid.size(1)).to(device))
# ๋ง์ฝ ์์ ๋ฐํ์๊ฐ ์์ ๊ฒฝ์ฐ์ ์ ๋ฌธ์ฅ๋ถํฐ, ๋ง์ง๋ง(์ธ์ฉ๋ฌธ) ์ ๊น์ง ๊ฐ์ ธ์จ๋ค.
elif cdd_mention_pos[0] == 0:
ctx_hid.append(CSS_hid[:accum_char_len[-2]])
# ๋ง์ง๋ง์ผ๋ก ๋ฐํ์๊ฐ ๋ค์ ์์ ๊ฒฝ์ฐ์๋ ๋๋ฒ์งธ ๋ถํฐ ๋๊น์ง ๊ฐ์ ธ์จ๋ค.
else:
ctx_hid.append(CSS_hid[accum_char_len[1]:])
cdd_mention_pos_bert = (cdd_mention_pos[0], cdd_mention_pos_bert_li[0],
cdd_mention_pos_bert_li[1])
cdd_hid.append(CSS_hid[cdd_mention_pos_bert[1]:cdd_mention_pos_bert[2]])
# pooling
if not qs_hid:
scores = '1'
scores_false = 1
scores_true = 1
return scores, scores_false, scores_true
qs_rep = self.pooling(qs_hid).to(device)
ctx_rep = self.pooling(ctx_hid).to(device)
cdd_rep = self.pooling(cdd_hid).to(device)
# concatenate
feature_vector = torch.cat([qs_rep, ctx_rep, cdd_rep], dim=-1).to(device)
# dropout
feature_vector = self.dropout(feature_vector).to(device)
# scoring
scores = self.mlp_scorer(feature_vector).view(-1).to(device)
for i in unk_loc_li:
# ์ถ๊ฐํ ์์
new_element = torch.tensor([-0.9000], requires_grad=True).to(device)
# ํน์ ์ธ๋ฑ์ค์ ์์๋ฅผ ์ถ๊ฐํ๊ธฐ ์ํด torch.cat()๊ณผ ์ฌ๋ผ์ด์ฑ์ ์ฌ์ฉํฉ๋๋ค.
index_to_insert = i - 1
scores = torch.cat((scores[:index_to_insert], new_element, scores[index_to_insert:]),
dim=0).to(device)
scores_false = [scores[i] for i in range(scores.size(0)) if i != true_index]
scores_true = [scores[true_index] for i in range(scores.size(0) - 1)]
return scores, scores_false, scores_true
|