Upload folder using huggingface_hub
Browse files
README.md
ADDED
|
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
library_name: transformers
|
| 3 |
+
pipeline_tag: automatic-speech-recognition
|
| 4 |
+
inference: true
|
| 5 |
+
---
|
| 6 |
+
|
| 7 |
+
This model is for debugging. It is randomly initialized with the config from [openai/whisper-large-v3](https://huggingface.co/openai/whisper-large-v3) but is of smaller size.
|
| 8 |
+
|
| 9 |
+
Codes:
|
| 10 |
+
```python
|
| 11 |
+
import os
|
| 12 |
+
|
| 13 |
+
import torch
|
| 14 |
+
|
| 15 |
+
from huggingface_hub import create_repo, upload_folder
|
| 16 |
+
from transformers import (
|
| 17 |
+
AutoModelForCausalLM,
|
| 18 |
+
AutoTokenizer,
|
| 19 |
+
GenerationConfig,
|
| 20 |
+
AutoConfig,
|
| 21 |
+
pipeline,
|
| 22 |
+
set_seed,
|
| 23 |
+
)
|
| 24 |
+
import torch
|
| 25 |
+
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline, AutoConfig
|
| 26 |
+
from datasets import load_dataset
|
| 27 |
+
|
| 28 |
+
model_id = "openai/whisper-large-v3"
|
| 29 |
+
repo_id = "yujiepan/whisper-v3-tiny-random"
|
| 30 |
+
save_path = f"/tmp/{repo_id}"
|
| 31 |
+
os.system(f'rm -rf {save_path}')
|
| 32 |
+
os.makedirs(save_path, exist_ok=True)
|
| 33 |
+
|
| 34 |
+
device = "cuda"
|
| 35 |
+
torch_dtype = torch.float16
|
| 36 |
+
model_id = "openai/whisper-large-v3"
|
| 37 |
+
|
| 38 |
+
config = AutoConfig.from_pretrained(model_id)
|
| 39 |
+
config.num_hidden_layers = 2
|
| 40 |
+
config.d_model = 8
|
| 41 |
+
config.decoder_attention_heads = 2
|
| 42 |
+
config.decoder_ffn_dim = 16
|
| 43 |
+
config.decoder_layers = 2
|
| 44 |
+
config.encoder_ffn_dim = 16
|
| 45 |
+
config.encoder_attention_heads = 2
|
| 46 |
+
config.encoder_layers = 2
|
| 47 |
+
|
| 48 |
+
model = AutoModelForSpeechSeq2Seq.from_config(config)
|
| 49 |
+
model.to(device).to(torch_dtype)
|
| 50 |
+
model.generation_config = GenerationConfig.from_pretrained(model_id)
|
| 51 |
+
processor = AutoProcessor.from_pretrained(model_id)
|
| 52 |
+
|
| 53 |
+
set_seed(42)
|
| 54 |
+
num_params = 0
|
| 55 |
+
with torch.no_grad():
|
| 56 |
+
for name, p in sorted(model.named_parameters()):
|
| 57 |
+
print(name, p.shape)
|
| 58 |
+
torch.nn.init.uniform_(p, -0.5, 0.5)
|
| 59 |
+
num_params += p.numel()
|
| 60 |
+
print("Total number of parameters:", num_params)
|
| 61 |
+
|
| 62 |
+
pipe = pipeline(
|
| 63 |
+
"automatic-speech-recognition",
|
| 64 |
+
model=model,
|
| 65 |
+
tokenizer=processor.tokenizer,
|
| 66 |
+
feature_extractor=processor.feature_extractor,
|
| 67 |
+
torch_dtype=torch_dtype,
|
| 68 |
+
device=device,
|
| 69 |
+
)
|
| 70 |
+
|
| 71 |
+
sample = load_dataset(
|
| 72 |
+
"distil-whisper/librispeech_long", "clean",
|
| 73 |
+
split="validation",
|
| 74 |
+
)[0]["audio"]
|
| 75 |
+
result = pipe(sample, return_timestamps=True)
|
| 76 |
+
print(result["text"])
|
| 77 |
+
|
| 78 |
+
create_repo(repo_id, exist_ok=True)
|
| 79 |
+
upload_folder(repo_id=repo_id, folder_path=save_path, repo_type='model')
|
| 80 |
+
```
|